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SUMMARY

More than six decades have passed since the discovery of monoaminergic antidepressants. Yet, it

remains a mystery why these drugs take weeks to months to achieve therapeutic effects, although

their monoaminergic actions are present rapidly after treatment. In an attempt to solve this mys-

tery, rather than studying the acute neurochemical effects of antidepressants, here we propose

focusing on the early changes in the brain functional connectome using traditional statistics and ma-

chine learning approaches. Capitalizing on three independent datasets (n = 1,261) and recent devel-

opments in data and network science, we identified a specific connectome fingerprint that predates

and predicts response to monoaminergic antidepressants. The discovered fingerprint appears to

generalize to antidepressants with differing mechanism of action. We also established a consensus

whole-brain hierarchical connectivity architecture and provided a set of model-based features engi-

neering approaches suitable for identifying connectomic signatures of brain function in health and

disease.
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INTRODUCTION

The serendipitous discovery of slow acting antidepressants in the 1950s has generated persistent interest

in identifying the biological underpinnings of depression and unraveling the mechanism of action of anti-

depressants (Ban, 2006). The clinical neuroscience field has since produced a wealth of knowledge related

to the biological systems implicated in depression pathophysiology and to the neurochemical effects of

these slow acting antidepressants, which tend to modulate monoaminergic neurotransmitters (Abdallah

et al., 2018b; Coplan et al., 2014). Yet, despite more than six decades of research, it remains a mystery

as to why the therapeutic behavioral effects of these drugs are only evident following weeks to months

of treatment, whereas the neurochemical effects are acutely present after administration (Coplan et al.,

2014). Solving this mystery may be critical to developing novel efficacious and rapid acting treatments

for the large population of patients who are treatment resistant to currently available antidepressants

(Trivedi et al., 2006). In recent years, accumulating evidence implicated brain circuitry and functionally con-

nected networks in the pathology and treatment of depression (Kaiser et al., 2015). Hence, rather than

focusing on the acute synaptic neurochemical effects of monoaminergic antidepressants, it may be

more revealing to examine the role of early brain network changes in the mechanisms of these slow acting

antidepressants.

A consistent evidence in the field is that the behavioral severity of depression significantly improves

following placebo treatment, at times leading to lack of behavioral difference between placebo treat-

ment and well-established antidepressants (Andrews, 2001). The placebo response could be due to

nonspecific effects or to the milieu effects of research studies (e.g., repeated visits and assessments).

Although the placebo effect is a major impediment for efficacy studies, we here used the significant

improvement in depression following placebo to our advantage, as it provided an optimal control for

both the test-retest of fMRI and depression measures, as well as controlling for behavioral improvement

due to nonspecific and milieu effects. This allowed us to identify the biological correlates of response to

the studied antidepressants, controlling for test-retest and nonspecific response. Focusing on the inter-

action between treatment and response, we implemented data-driven approaches to test three

hypotheses.
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Hypothesis 1—Better Response to SertralineWould Be Predicted by an Increase in Prefrontal

Cortex and Caudate Global Brain Connectivity

Global brain connectivity (GBC) is a measure of nodal strength within a network. Nodal strength is the most

fundamental measure in a graph, as most other topology measures are affected by or are partially derived

from nodal strength (Bullmore and Sporns, 2009). GBC is calculated as the average connectivity between a

node (e.g., a graymatter voxel) and all other nodes within a network (e.g., all graymatter voxels) (Cole et al.,

2011). In major depressive disorder (MDD), widespread reduction in GBC and other comparable nodal

strength measures has been repeatedly demonstrated across samples and by several research groups,

particularly in regions within the prefrontal cortex (PFC) (Abdallah et al., 2017a, 2017b; Holmes et al.,

2019; Murrough et al., 2016; Scheinost et al., 2018; Wang et al., 2014). Moreover, increased GBC in bilateral

caudate or lateral PFC following or during infusion with the rapid acting antidepressant ketamine was asso-

ciated with enhanced response (Abdallah et al., 2017b, 2018a). Compared with healthy controls, patients

with MDD were also found to have high GBC in the posterior cingulate, a critical node within the default

mode (DM) network (Abdallah et al., 2017b). This DM GBC dysconnectivity is also normalized following ke-

tamine treatment (Abdallah et al., 2017b). The GBC approach has two essential strengths: (1) nodal

strength is a fundamental topology measure within a network, and (2) whole-brain analysis can be con-

ducted, without the limitation and the bias of a priori seed selection. However, a main limitation of GBC

is the inability to determine which edges (i.e., connection between two regions) are driving the abnormal-

ities. This limitation is addressed in the current study by the use of network-restricted strength (NRS) and

NRS predictivemodel (NRS-PM) approaches, described in hypotheses 2 and 3. Another limitation of GBC is

that it does not capture network changes in opposing directions, e.g., a balanced dynamic network shift

from internal to external connectivity cannot be captured using GBC values. To address this issue, we

here implemented two measures: nodal internal NRS (niNRS) and nodal external NRS (neNRS).

Hypothesis 2—Better Response to Sertraline Would Be Predicted by a Reduction in Internal

Default Mode Network-Restricted Strength

The DM comprises brain regions that are synchronously activated at rest and deactivated during external

tasks (Andrews-Hanna et al., 2014). Although not without inconsistency (Mulders et al., 2015; Sexton et al.,

2012), seed based, independent component, and meta-analysis results have suggested DM hyperconnec-

tivity in MDD compared with controls (Alexopoulos et al., 2012; Greicius et al., 2007; Kaiser et al., 2015; She-

line et al., 2010; Wu et al., 2011). To date, connectivity studies have primarily used seed-based approaches

to identify abnormalities or changes in DM of patients with MDD. Among the limitations of this approach

are (1) one (or a few) seeds do not cover all the nodes of the DM and the target clusters, hence potentially

lowering sensitivity and complicating interpretability of the findings, and (2) it would be difficult to fully inte-

grate findings across studies as they are often highly dependent on the seed location (Akiki et al., 2018).

Alternatively, whole-brain topology measures address some of these limitations but fail to identify the spe-

cific interactions within and between networks (a.k.a., modules, systems, or communities; e.g., DM).

Borrowing from studies of complex systems (Gu et al., 2015; Guimera and Amaral, 2005), NRS approaches

address these limitations and have been successfully implemented in the study of psychopathology (Akiki

et al., 2018; Etkin et al., 2019; Nusslock et al., 2019; Schultz et al., 2018; Yang et al., 2018). Briefly, the

network-restricted approach used in this study is capable of comprehensively assessing all identifiable no-

des in a given brain network (e.g., DM), to extract internal connectivity strength within that network and also

calculate the external connectivity between networks. To ensure reproducibility in future studies, we opted

to use a consensus hierarchical modularity atlas recently established in 1,003 subjects with high-quality

functional magnetic resonance imaging (fMRI) data (Akiki and Abdallah, 2019). Based on the hypothesized

hyperconnectivity in DM, we investigated whether reduction in internal DM connectivity would predict

better response to sertraline. This was followed by exploratory analysis, with appropriate correction for

multiple comparisons, to determine whether response to sertraline is predicted by connectivity within or

between brain networks.

Hypothesis 3—Better Response to SertralineWould Be Predicted by a Consensus-Based NRS

Predictive Model

Machine learning methods have been increasingly implemented in the study of psychopathology (Galat-

zer-Levy et al., 2018). Among the strengths of machine learning algorithms are the fully data-driven

approach and the cross-validation component often included in these predictive models, which could

address the issue of over-fitting in interpretive models (e.g., regression) and may enhance generalizability
2 iScience 23, 100800, January 24, 2020



to new data (Scheinost et al., 2019; Shen et al., 2017). However, these machine learning approaches have

two critical limitations in the study of psychopathology: (1) They are faced with large number of features

(e.g., there are 1,799,970,000 unique edges in a cifti-based fMRI dense connectome) compared with the

number of observations, which in psychiatry are often in the order of dozens to hundreds. (2) Considering

the dimensionality reduction and weighting procedures involved, it is often not possible to back translate

the selected/weighted features to the original space to visualize and understand the underlying neurobi-

ology (Shen et al., 2017). Connectome-based predictive model (CPM) is a linear machine learning

approach, which retains the ability to back translate findings to the original feature space (Finn et al.,

2015; Shen et al., 2017). However, a limitation of CPM is the use of individual parcellated nodes, which leads

to a relatively high number of features (e.g., there are 89,676 unique edges in the A424 atlas), which sub-

sequently complicates the interpretability of the findings as the edges included in the final model are often

in the order of thousands. Moreover, these nodes are based on anatomical location rather than on network

affiliations. To address these limitations, we implemented an NRS-PM that reduces the connectome input

features and facilitates the neurobiological interpretation of the final model, as all input features are

network based. To assess the robustness of the approach and to rule out potential bias related to architec-

ture selection, we investigated NRS-PM across all architecture levels—with and without subcortical struc-

tures, we deconstructed GBC into nodal internal and external NRS, and we determined the full connec-

tome (FC-PM) results using a whole-brain multimodal atlas with 424 nodes (i.e., A424).

Overall, we aimed to determine whether early changes in brain functional connectivity predates and pre-

dicts response to slow acting antidepressants. To answer this question, we analyzed publicly available data

from a relatively large neuroimaging clinical trial in which depressed patients (n = 202) were randomized to

placebo or sertraline, a typical monoaminergic slow acting antidepressant (Trivedi et al., 2016). We then

leveraged a large dataset of high-quality fMRI from healthy volunteers (n = 1,003) who participated in

the Human Connectome Project (Van Essen et al., 2013) to establish a whole-brain hierarchical parcellation

of intrinsic connectivity networks (ICNs). The latter allowed us to extend the cortical findings to subcortical

and cerebellar brain regions. Finally, encouraged by the predictive model findings, we conducted a pilot

analysis to determine whether the identified connectomic signature related to sertraline response could

predate and predict response to the rapid acting antidepressant ketamine, compared with both active

and inactive control (Abdallah et al., 2018a; Downey et al., 2016).

RESULTS

The sertraline dataset was acquired from the National Institute of Mental Health Data Archive (NDA), Es-

tablishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC). All par-

ticipants (n = 202) with successful resting state fMRI at baseline and week 1, who completed depression

assessment at week 8, were included in the current study. The protocol and results of the EMBARC clinical

trial were reported elsewhere (Pizzagalli et al., 2018; Trivedi et al., 2006). Briefly, unmedicated patients with

chronic or recurrent MDD were randomized to 8 weeks of daily oral placebo or sertraline. Demographics

and clinical features are described in Table 1. Hamilton rating scale for depression (HAMD) was used to

determine severity. Response was defined as at least 50% improvement in HAMD at week 8, the time point

at which full clinical benefit is expected following slow acting antidepressant treatment.

The Antidepressant Response Is Associated with Early Increase in Caudate Global

Connectivity

Guided by previous work with antidepressants (Abdallah et al., 2017b), we first conducted a whole-brain

vertex-/voxel-wise GBC analysis, with false discovery rate (FDR) correction (q < 0.05), examining the inter-

action between treatment (sertraline versus placebo) and response (responders versus non-responders).

We found that increased GBC in bilateral caudate and right rostral anterior cingulate (rACC) at week 1

were associated with better response to sertraline at week 8 compared with placebo (Figure 1A). Two clus-

ters with reduced GBC in left Brodmann areas 4 (motor) and 5 (somatosensory) were associated with better

response to sertraline (Figure 1A). The independent effects of response and treatment are provided in the

Supplemental Information (Figure S1).

These results confirmed the predicted role of caudate GBC but failed to show an association between an-

tidepressant response and increased lateral PFC GBC (hypothesis 1). We speculated that this failure may

be due to the limitations (see Supplemental Information) of the vertex-/voxel-wise interpretive analysis. To

rule out this possibility, we implemented a nodal strength predictive model (nS-PM), with 1,000 iterations of
iScience 23, 100800, January 24, 2020 3



Characteristics Sertraline (n = 99) Placebo (n = 103)

Demographic

Age, mean (SD) 38.5 (14.2) 37.1 (12.2)

Male 30.3% 35.9%

Years of education, mean

(SD)

15.2 (2.6) 15.2 (2.4)

Clinical features

Age of onset, mean (SD) 13.6 (5.4) 14.3 (5.5)

Chronic 55% 50%

Baseline HAMD, mean

(SD)

18.9 (4.4) 18.5 (4.3)

W1 HAMD, mean (SD) 16.1(5.5) 15.8(5.1)

W8 HAMD, mean (SD) 11.1(6.5) 11.8(7.3)

W1 response 9% 7%

W8 response 47% 35%a

Table 1. Demographics and Clinical Characteristics

W1, week 1; W8, week 8; HAMD, Hamilton Rating Scale for Depression.
aThere were no significant (p > 0.1) differences between treatment groups, except for response rate at week 8, which showed

a trend (chi square = 2.8, p = 0.096).
10 cross-validation (CV), to identify brain regions that significantly predict a continuous measure of

improvement following sertraline compared with placebo. Changes in nodal GBC (i.e., nS) at week 1 signif-

icantly predicted improvement at week 8 following sertraline compared with placebo (r = 0.23, CV = 10,

iterations = 1,000, p % 0.001). Enhanced antidepressant response was associated with increased nodal

GBC in bilateral caudate and left lateral PFC, along with other brain regions primarily located within the

central executive (CE) ICN (Figure 1B). Reduced nodal GBC in several regions within the visual (VI) and

sensorimotor (SM) ICNs also predicted better antidepressant response, compared with placebo

(Figure 1B).
Early Reduction in Default Mode Connectivity Predates the Antidepressant Response

Employing validated NRS methods (Akiki et al., 2018), we constructed a general linear model examining

the effects of treatment, response, and treatment-by-response on changes in internal DM NRS

(i.e., week 1 minus pretreatment). We found a significant treatment-by-response interaction (F(1,195) =

5.0, p = 0.026), such that, compared with placebo, reduction in DM NRS at week 1 predicted better

response to sertraline at week 8. There were no significant response or treatment effects (p > 0.1).

These results confirmed the predictions of hypothesis 2. Yet, to better characterize the DM findings and

inform future studies, we conducted a follow-up analysis, with FDR correction, examining internal and

external connectivity of all cortical ICNs (Figure 2A, i.e., DM, CE, dorsal salience [DS], ventral salience

[VS], SM, and VI). Following correction for multiple comparisons, there was significant treatment-by-

response interactive effect on the CE-SM edge (F(1,195) = 10.4, p = 0.001), reflecting increased connectivity

predicts better response to sertraline compared with placebo. There was also significant treatment effect

on the CE-SM edge (F(1,195) = 11.0, p = 0.001), reflecting increased connectivity at week 1 following sertra-

line, compared with placebo (Figure S2). There were no other significant treatment, response, or treat-

ment-by-response effects (q > 0.05).
The Whole-Brain Hierarchical Atlas Reveals the Subcortical Affiliation of GBC Findings

To identify the ICN affiliation of the subcortical GBC findings and to extend the cortical NRS to subcortical

and cerebellar regions, we next aimed to determine the hierarchical architecture of the whole brain using
4 iScience 23, 100800, January 24, 2020



Figure 1. Early Global Functional Connectivity Changes Predict Response to Sertraline

(A) Whole-brain interpretive analysis showed a significant interaction between treatment and response, such that

increased global brain connectivity (GBC) in the bilateral caudate and right rostral anterior cingulate (red circles) and

decreased GBC in sensorimotor cortices (blue circles) at week 1 predicted response to sertraline at week 8 post

treatment. The color bar represents the z values (threshold at p < 0.005, with circles denoting clusters that survived FDR

correction at q < 0.05).

(B) Nodal strength (nS; i.e., nodal GBC) predictive model analysis (p % 0.001) revealed widespread nS increase in central

executive and higher order association areas (red clusters) and decrease in nS within primary cortices (e.g., sensory,

motor, and visual; blue clusters) at week 1 as predictors of enhanced response to sertraline at week 8, compared with

placebo.
subject-level clustering of functional networks from 1,003 adult healthy subjects (Van Essen et al., 2013).

Using consistent definition of community across cortical, subcortical, and cerebellar structures, the

whole-brain subject-level clustering and consensus community detection algorithm identified 136 signifi-

cant architecture (Figures 3 and S3). The hierarchical atlas, here termed Akiki-Abdallah (AA) atlas, delin-

eated architectures ranging from 3 to 150 modules. The cortical modules remained largely consistent

with the cortex-only atlases in our previous work (Akiki and Abdallah, 2019) and in the literature (Yeo

et al., 2011), as shown in Figures 2A versus 2C. The AA architecture at 24 modules (AA-24) largely matches

the cortical 22 modules architecture (see Supplemental Information and Figure S4) while adding the affil-

iation of subcortical and cerebellar nodes. AA-50 is the architecture with the highest similarity to subject-

specific modularity (Figures 3B and S3D). Notably, the ICN affiliations of the positive predictive GBC nodes

findings were within the CE and global-pallidus-putamen subcortical (GPu SC) modules, whereas the nega-

tive predictive GBC nodes were within the SM and VI networks (see Figures 1B versus 3C).
A Connectome Fingerprint Predates and Predicts Enhanced Antidepressant Response

Following ICN hierarchical parcellation, we aimed to determine whether a whole-brain connectome finger-

print predates and predicts response to sertraline, compared with placebo. As shown in Figure S5B, the

whole-brain NRS-PM predicted the antidepressant response across AA-4 to AA-150 architectures

(following FDR correction), with a peak at AA-58 (r = 0.27, CV = 10, iterations = 1,000, p = 0.003). Indepen-

dently, the positive predictive edges peaked at AA-58 (r = 0.29, CV = 10, iterations = 1,000, p = 0.001) and
iScience 23, 100800, January 24, 2020 5



Figure 2. Early Changes in Network-Restricted Connectivity Predict Response to Sertraline

(A) The networks nodal affiliation based on the Akiki-Abdallah cortical (AAc) hierarchical atlas at 6 modules (AAc-6)

(Akiki and Abdallah, 2019), which includes the default mode (DM), central executive (CE), dorsal salience (DS), ventral

salience (VS), sensorimotor (SM), and visual (VI) networks.

(B) The network-restricted strength (NRS) pentagon. Internal NRS is depicted as filled circles, whereas inter-networks

external NRS is depicted as edges. * was used for p < 0.05, ** for p < 0.01, *** for p < 0.001. Interactions that survived FDR

correction were denoted with squares (i.e., CE-SM edge). Filled circles and edges were colored gray for non-significant

effects, blue for negative effects, and red for positive effects. The NRS interpretive analysis examining the interactive

effects between treatment and response showed significant increase in connectivity between CE and SM at week 1 that

predicts response to sertraline at week 8. This figure was adapted with permission from the Emerge Research Program

(http://emerge.care).
the negative predictive edges peaked at AA-26 (r = 0.25, CV = 10, iterations = 1,000, p = 0.003). Compared

with cortical NRS-PM, the inclusion of subcortical structure appears to have enhanced models, particularly

positive predictions that were more consistent in independently predicting antidepressant response

across architectures (Figure S5).

To further assess the whole-brain NRS-PM results, the AA-24 and AA-50 were visualized in Figures 4A and

4B, respectively. Predictive edges were comparable with findings with cortical atlas (see Supplemental In-

formation and Figure S4), with richer connectomic signature and two highlights: (1) Modules within the CE

and GPu SC ICNs showed reduced internal connectivity among each other but increased connectivity to

the rest of the brain as predictors of enhanced antidepressant response. (2) Reduction in internal connec-

tivity within the remaining ICNs, particularly SM and VI, also predicted better sertraline response. Modules

containing the amygdala and insula also showed a shift from connection with primary cortices (e.g., sen-

sory, motor, and visual) to increased connectivity with higher order association areas (Figure 4).
The Full Connectome Predicts Response but Yields Undiscernible Connectomic Signature

We next investigated whether a nodal based (i.e., 424x424 nodes) full connectome PM (FC-PM) would yield

comparable or differing results, compared with whole-brain NRS-PM. The FC-PM significantly predicted

the antidepressant response (r = 0.27, CV = 10, iterations = 1,000, p = 0.005). However, considering the

large number of predictive edges, visualizing the PM is unable to discern the underlying connectomic

signature (Figure 4C). Retaining the nodes with the highest degree (i.e., top 2.5% of each of positive

and negative predictive edges) showed a pattern of reduced internal connectivity among nodes in the

SM and VI network, but at the expense of discarding 95% of the model, and failed to reveal the internal-

to-external shift within the CE network (Figure 4D).
Quantifying a Clinically Relevant Internal to External Connectivity Shift

Together, the network-restricted interpretative and predictive results supported the nS-PM GBC findings

of increased connectivity in nodes within the CE and GPu SC but reduced connectivity in the SM and VI

networks as predictor of response (Figures 1, 2, 3, and 4). However, the CE shift from internal to external

connectivity cannot be captured by GBC measures, as the latter is an average of both internal and external

connectivity. Therefore, to quantify the NRS shift, we deconstructed nS (i.e., nodal GBC) into two comple-

mentary measures: (1) nodal internal NRS (niNRS) calculated as the average connectivity between each

node and all other nodes within the same ICN and (2) nodal external NRS (neNRS) calculated as the average
6 iScience 23, 100800, January 24, 2020
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Figure 3. Whole-Brain Hierarchical Brain Architecture of Functional Connectivity Networks

(A) Co-classification matrix summarizing the results of the whole-brain clustering atlas in 1,003 healthy subjects, here termed Akiki-Abdallah (AA) atlas. The

dendrogram represents the hierarchical organization of the nested communities. The background colors represent the network affiliation at 7 modules

architecture (i.e., AA-7).

(B) Similarity plot showing the mean similarity between the partitioning in each consensus hierarchical level (i.e., from AA-3 to AA-150) and the subject-level

clustering quantified by Z score of the Rand coefficient (blue line); the Rand score peaked at AA-50. The dashed red lines denote the brain architecture levels

for Figures 3D and S3D.

(C and D) These maps show the whole-brain networks nodal affiliation at AA-7 (corresponds to the six main cortical networks) and AA-24 (corresponds to the

peak subject-level similarity in the cortical atlas). The module abbreviations of AA-24, along with further details about the affiliation of each node, are

reported in Table S1. The figures were adapted with permission from the Emerge Research Program (http://emerge.care). The hierarchical atlas maps and

codes will be made publicly available at https://github.com/emergelab.
connectivity between each node and all other nodes outside its ICN. Here, we used AA-7, which comprises

the main brain networks while incorporating subcortical structures, including CE, DM, VS, DS, SC, SM, and

VI networks (Figure 3C). Changes in neNRS at week 1 significantly predicted improvement at week 8

following sertraline treatment compared with placebo (r = 0.28, CV = 10, iterations = 1,000, p % 0.001).

Enhanced antidepressant response was associated with increased neNRS in brain regions primarily located

within the CE and GPu SC networks (Figures 5A and 5B). Similarly, changes in niNRS significantly predicted

the antidepressant response (r = 0.24, CV = 10, iterations = 1,000, p = 0.005). Enhanced antidepressant

response was associated with reduced niNRS in brain regions primarily located within the CE, GPu SC,

SM, and VI networks (Figures 5C and 5D). These results quantitatively demonstrated the internal-to-

external NRS shift as predictor of antidepressant response. The cortical and whole-brain neNRS-PMs

and niNRS-PMs across all architectures are provided in Supplemental Information (Figures S6 and S7).

Similar to the NRS-PMs, including subcortical structures resulted in more consistent neNRS-PMs and

niNRS-PMs across architectures (Figures S6 and S7).
The Predictive Models Partially Generalize to the Rapid Acting Antidepressant Ketamine

Encouraged by the robust NRS-PM findings, we conducted a pilot follow-up analysis to investigate the

generalizability of the identifiedwhole-brainmodels in predicting the antidepressant response to ketamine,

a well-established rapid acting antidepressant (Abdallah et al., 2018b). Here, we useddata froma previously

published pharmacoimaging study, which examined brain functional connectivity at a period that predates
iScience 23, 100800, January 24, 2020 7
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Figure 4. A Unique Brain Functional Connectome Fingerprint Predates and Predicts Response to Sertraline

(A and B) Network-restricted strength (NRS) predictive models (NRS-PMs; p = 0.032 and p = 0.033, respectively) revealed a specific connectomic signature

evident at week 1 post treatment, at a time of no clinically meaningful antidepressant effects, that predicts enhanced response to sertraline at week 8,

compared with placebo. An overall pattern emerged consistent of reduced connectivity between modules within the central executive (CE) and globus-

pallidus-putamen subcortical (GPu SC) networks, along with increased connectivity between these two networks (CE/GPu SC) and the rest of the brain as

predictors of enhanced response to sertraline. The connectome fingerprint (CFP) also showed reduction in internal connectivity within the visual and

sensorimotor networks, as well as reduced interference on these two networks from modules within the default mode and salience networks.

(C) The full connectome predictive model (FC-PM; p = 0.005) predicted response to sertraline, but it was not possible to visually discern the underlying

signature considering the large number of edges retained in the PM.

(D) Using nodal strength within the FC-PM as cutoff to retain the highest top 2.5% negative predictive edges and top 2.5% positive predictive edges showed

a pattern consistent with the NRS-PM findings, but at the expense of discarding 95% of the data, and did not fully depict the shift from internal to external

strength within the CE and GPu SC networks. Notes: The circular graphs in 4A, 4C, and 4D are labeled based on the Akiki-Abdallah (AA) whole-brain

architecture at 24 modules (AA-24; see Figure 3D; Table S1), whereas 4B is based on AA-50 (see Figure S3D; Table S1). Modules are colored according to

their AA-7 network affiliation (see Figure 3C). Edges are colored based on the initiating module using a counter-clockwise path starting at 12 o’clock. Internal

edges (i.e., within module NRS) are depicted as outer circles around the corresponding module. Thickness of edges reflects their corresponding weight in

the predictive model. The module abbreviations of AA-24 and AA-50, along with further details about the affiliation of each node, are reported in Table S1.

The predictive models will be made publicly available at https://github.com/emergelab.
the antidepressant effects of ketamine (i.e., during infusion) (Abdallah et al., 2018a; Downey et al., 2016). In

this study, 56 patients with MDD were randomized to ketamine, lanicemine, or normal saline. The antide-

pressant effects of ketamine often arise within hours of its administration. Thus, we examined whether

connectivity changes during ketamine infusion predates and predicts response at 24h post treatment, using

lanicemine and normal saline as active and inactive control arms, respectively. Ketamine and lanicemine are

both N-methyl-D-aspartate (NMDA) receptor antagonists; therefore, the lanicemine arm provided control

for both the milieu effect (assessments, infusion, scans, etc.) as well as the acute non-specific NMDA mod-

ulation of connectivity networks during infusion (Abdallah et al., 2018a; Downey et al., 2016).

Following FDR correction for multiple comparisons, the three whole-brain predictive models established in

the sertraline study—here termed sertraline connectome fingerprint (CFP)—predicted ketamine

response compared with lanicemine at AA-24-CFP (r = 0.52, n = 38, p = 0.0008), AA-50-CFP (r = 0.57,

n = 38, p = 0.0002) and full connectome FC-CFP (r = 0.55, n = 38, p = 0.0003). All three sertraline CFPs failed

to predict ketamine response, compared with placebo (p > 0.05).

To further characterize the ketamine versus lanicemine findings, we conducted whole-brain NRS-PM at

AA-24 and AA-50, as well as FC-PM. All three models significantly predicted treatment response to
8 iScience 23, 100800, January 24, 2020
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Figure 5. Quantifying the Internal to External Connectivity Shift

(A and B) A predictive model (p % 0.001) using nodal external network-restricted strength (neNRS) as input, based on

Akiki-Abdallah (AA) whole-brain atlas at the architecture with 7 modules (AA-7), predicted enhanced response to

sertraline. The model showed increased global external connectivity in brain regions within the central executive (CE) and

globus-pallidus-putamen subcortical (GPu SC) networks. There were no reductions in global external connectivity.

(C and D) A predictive model (p = 0.005) using nodal internal network-restricted strength (niNRS) as input, based on AA-7,

predicted enhanced response to sertraline. The model showed reduced internal connectivity in brain regions within the

CE, GPu SC, sensorimotor, and visual networks. There were no increases in internal connectivity. Red arrows point to

regions that showed both reduced niNRS and increase neNRS, all of which located within the CE and GPu SC networks,

consistent with the internal-to-external connectivity shift observed in previous analyses and quantitively supporting the

observed pattern of a shift toward increased higher order control over primary cortices.
ketamine, compared with lanicemine (r = 0.41 to 0.48, CV = 10, iterations = 1,000, p < 0.05). As shown in

Figure 6, the identified models were largely comparable with those found in the sertraline versus placebo

results.
DISCUSSION

Using a set of traditional statistics and machine learning approaches, the study results provided strong ev-

idence of a specific connectome fingerprint (CFP) that predates and predicts response to the slow acting

antidepressant, sertraline. The study established a whole-brain hierarchical ICNs atlas and provided evi-

dence of its relevance to the study of psychopathology and to clinical neuroscience discovery. It also pre-

sented specializedmeasures and tested the robustness of innovative approaches, i.e., NRS-PM, niNRS-PM,

and neNRS-PM. The impact of these atlases, measures, and approaches is expected to go beyond the

current findings, as similar approaches could be used to identify the CFPs of various brain functions in

health and disease. Finally, the study provided pilot evidence about the potential generalizability, albeit

at a much shorter timescale, of the identified CFP to the mechanisms of rapid acting antidepressants.

Partially supporting hypothesis 1, bilateral caudate clusters of increased global connectivity at week 1 post

treatment predicted better response to sertraline compared with placebo at week 8 (Figure 1A). Treatment

response was also associated with decreased global connectivity in the sensory motor area but increased
iScience 23, 100800, January 24, 2020 9



Figure 6. A Comparable Brain Functional Connectome Signature Predates and Predicts Response to Ketamine

(A and B) Network-restricted strength (NRS) predictive models (NRS-PMs; p = 0.003 and p = 0.002, respectively) revealed a comparable connectome

fingerprint evident at 20 min during infusion, which predicts enhanced response to ketamine at 24 h, compared with active control. The overall pattern is

consistent with findings in the sertraline models (Figure 4), but at a significantly shorter scale (i.e., at 20 min compared with at 7 days).

(C) The full connectome predictive model (FC-PM) predicted response to ketamine compared with active control, but it was not possible to visually discern

the underlying signature considering the large number of edges retained in the PM.

(D) Using nodal strength within the FC-PM as cutoff to retain the highest top 2.5% negative predictive edges and top 2.5% positive predictive edges showed

a pattern consistent with the NRS-PM findings, but at the expense of discarding 95% of the data. Notes: The circular graphs in 6A, 6C, and 6D are labeled

based on the Akiki-Abdallah (AA) whole-brain architecture at 24 modules (AA-24; see Figure 3D; Table S1), whereas 6B is based on AA-50 (see Figure S3D;

Table S1). Modules are colored according to their AA-7 network affiliation (see Figure 3C). Edges are colored based on the initiatingmodule using a counter-

clockwise path starting at 12 o’clock. Internal edges (i.e., within module NRS) are depicted as outer circles around the corresponding module. Thickness of

edges reflect their corresponding weight in the predictive model. The module abbreviations of AA-24 and AA-50, along with further details about the

affiliation of each node are reported in Table S1. The predictive models will be made publicly available at https://github.com/emergelab.
connectivity in the rostral anterior cingulate cortex (ACC; Figure 1A). However, the latter finding lost sig-

nificance in the predictive model analysis (Figure 1B). Intriguingly, although GBC is a whole-brain based

measure and not network restricted, the positive predictive GBC nodes were primarily located within

the CE and GPu SC modules. Similarly, the negative predictive GBC nodes were primarily within the SM

and VI networks (see Figures 1B vs. 3C). Although the primary analysis failed to show increased GBC in

the lateral PFC as predicted by hypothesis 1, this may be due to limitations of the used vertex-/

voxel-wise approach (see below) Supplemental Information.

The interpretive NRS model confirmed the predictions of hypothesis 2, showing significant association be-

tween better response to sertraline at week 8 and earlier reduction in internal DM connectivity at week 1

post treatment. Follow-up analyses revealed increased CE-SM connectivity as early predictor of enhanced

response to sertraline (Figure 2B).

Compared with placebo, the NRS-PMs significantly predicted response to sertraline, supporting hypoth-

esis 3, while revealing dynamic shifts in the brain circuits, critically underlying the negative and positive pre-

dictions of treatment effects (Figures 4 and 5). In particular, three patterns of connectivity shifts have

emerged as predictors of response to antidepressant treatment: (1) A reduction in internal connectivity

among the CE and GPu SC modules, along with increased external connectivity between these modules

and the rest of the brain (most evident in AA-50, but also in AA-24, and niNRS/neNRS). (2) Reduced internal

connectivity among modules within the SM and VI networks. (3) In DM/VS modules containing the
10 iScience 23, 100800, January 24, 2020
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amygdala and insula (i.e., affective DM and inferior VS, respectively), there was reduced connectivity with

perceptual and motor areas (i.e., SM and VI) but increased connectivity with higher order association re-

gions, suggesting an early shift toward enhanced executive control Supplemental Information.

The current study focused on the changes overtime in brain functional connectivity and in psychopa-

thology as reflected by antidepressant scores. This focused approach provided a powerful comprehen-

sive assessment of brain connectivity in relation to treatment response. However, future complemen-

tary and follow-up studies are still required to determine whether pretreatment connectivity, as well

as clinical features (e.g., early life stress or symptom clusters) would be associated with specific

CFPs or would predict response to antidepressants. Notably, an outstanding recent study has investi-

gated pretreatment connectivity and clinical features in the EMBARC cohort (Yu et al., 2019). Before

treatment, it was reported that various brain networks correlated with early life stressors and that

MDD was characterized by increased NRS in intrinsic networks, including DM, but reduced NRS in

task-positive networks, including CE (Yu et al., 2019). Importantly, these pretreatment findings of

altered DM and CE connectivity in MDD suggest that the antidepressant CFP identified in the current

study may reflect an early pattern of normalization detectable biologically at week 1 but not evident

behaviorally until week 8.

In the context of inconsistent patterns in the literature, we did not a priori predict the widespread role of the

CE network at multiple hierarchical architectures, even though previous results from our own studies have

associated increased GBC in the lateral PFC and caudate with enhanced antidepressant response (Abdal-

lah et al., 2017b, 2018a). Better understanding of this oversight may be essential to enhance reproducibility

in psychiatric neuroimaging studies. We believe that this oversight was primarily due to two common lim-

itations of neuroimaging work. The first is that vertex-/voxel-wise traditional statistics (i.e., interpretive

models, e.g., regression) are subject to overfitting owing to the lack of cross-validation and to type II error

owing to the needed correction for multiple comparison. For example, an increase in vertex-wise GBC in

the rostral ACC was identified in the interpretive analysis (Figure 1A) but did not hold when subjected to

cross-validation procedures (Figure 1B). Moreover, the vertex-/voxel-wise interpretive model identifies

only the peak effect (i.e., the vertices/voxels with the highest effect size), without the ability to fully map

the behavioral brain effects (see Figures 1A vs. 1B). The second limitation is that the majority of ICN atlases

were not multiscale hierarchical (i.e., lacking the information about the upstream ICN architecture) and

were limited to the cortex (e.g., Yeo et al., 2011). The few ICN atlases that included subcortical structures

were mostly post hoc (i.e., projecting the cortical ICNs on the subcortical regions without the use of a uni-

fied definition of ICN community; e.g., Choi et al., 2012) or were meta-analytically based missing important

subcortical structures (e.g., the amygdala in Power et al., 2011). Thus, it was not commonly viewed that the

caudate and frontoparietal cortex share the same upstreamCE architecture. Furthermore, the biased focus

of the literature on few key seeds and ICNs (e.g., DM) may have contributed to the apparent inconsistency

across studies. In the current study, the full assessment of the connectome along with combined use of pre-

dictive models, hierarchical ICN architecture, and unified definition of ICN across cortical and subcortical

nodes led to the robust identification of the CE ICN as critical predictor of treatment response using mul-

tiple data-driven analytical approaches.

In summary, based on the behavioral assessment of depression, there was no clinically meaningful behav-

ioral response at week 1 (�2 points reduction on HAMD) and there were no significant differences between

the treatment arms. In contrast, the biological functional connectivity investigation at week 1 showed a

robust connectomic signature that predates and predicts response to sertraline at week 8. The identified

biosignature was evident using three distinct, yet overlapping and complimentary, approaches. A main

impact of the findings is the identification of an antidepressant-related dynamic shift in brain networks con-

nectivity, which is consistent with early increase in executive control weeks prior to the full therapeutic

behavioral effects. Some features of the identified connectomic signature are reminiscent of findings

with ketamine, and the predictive models at least partially generalized to ketamine treatment, raising

the possibility that the discovered connectome fingerprint may generalize to antidepressants with differing

mechanism of action.

Future studies can capitalize on the established set of approaches that combine the strengths of consensus

hierarchical architecture of the brain, along with neuroscience-informed features engineering and machine

learning to fully assess the functional connectome and successfully identify psychopathology-relevant
iScience 23, 100800, January 24, 2020 11



reproducible fingerprint. These data-driven approaches are likely to have impact beyond answering the

research question of the current study, by allowing the full assessment of functional connectivity in relation

to behavior without the reliance on a limited number of seeds or networks. Together, the study findings

enriched our understanding of the neurobiology of depression and revealed a previously unknown connec-

tomic signature that may serve as a treatment target, as a biological indicator of response to optimize treat-

ment regimen, or as a surrogate for early stages in drug development.
Limitation of the Study

The relatively small sample in the ketamine study is considered a limitation. Thus, the generalizability

finding of the identified monoaminergic CFP to glutamatergic rapid acting antidepressants should be

considered pilot evidence. In particular, using an active control, we found that ketamine induced a

CFP highly comparable with the one identified with sertraline, which predated and predicted the rapid

acting antidepressant effects (Figures 4 and 6). However, this was not the case when normal saline was

used as control. It is plausible that the direct NMDA antagonism effects on pyramidal neurons are not

fully required for the antidepressant properties of ketamine; thus, removing these non-specific effects us-

ing an active comparator may have facilitated the identification of the unique connectivity signature.

This hypothesis would be consistent with accumulating evidence underscoring the role of the ketamine

metabolite, (2R-6R)-hydroxynorketamine, which does not exert direct NMDA antagonistic effects

(Riggs et al., 2019; Zanos et al., 2016, 2019). Yet, it remains important to highlight the pilot nature of

this follow-up analysis and the need for replication in a larger sample prior to making any firm

conclusions.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
DATA AND CODE AVAILABILITY

The study data are available through the Human Connectome Project (https://www.humanconnectome.

org) and the National Institute of Mental Health (NIMH) Data Archive (NDA; https://nda.nih.gov/). The

developed Akiki-Abdallah hierarchical modularity atlas, the network-restricted strength function, and

the predictive model codes will be made publicly available at https://github.com/emergelab along with

the predictive models established in the current paper.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.100800.
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SUPPLEMENTAL INFORMATION 

Transparent Methods 

The data used in this study were collected as part of the Establishing Moderators and Biosignatures of 
Antidepressant Response in Clinical Care (EMBARC) trial (Trivedi et al., 2016), the Human Connectome Project 
(HCP) (Van Essen et al., 2013), and a previously published pharmacoimaging study (Abdallah et al., 2018; 
Downey et al., 2016). All studies were approved by Institutional Review Boards, and all participants signed 
informed consents. 

Participants and Procedures of Sertraline Study 

The current study included data from 202 individuals with MDD for whom the fMRI and behavioral assessments 
were available (Table 1). Participants were randomized to an 8-week course of up to 200 mg daily sertraline or 
to placebo. Depression severity was rated on the 17-item Hamilton Depression Rating Scale (HAMD) before and 
after treatment (Hamilton, 1967). The primary clinical outcome of the parent trial was treatment response which 
was defined as 50% reduction in HAMD score at week 8. Randomized participants were scanned and assessed at 
both baseline and week 1 of treatment. Then, they continued to take medication for a total of 8 weeks. Their 
HAMD scores were assessed again at the end of week 8. 

Eligible participants between 18 and 65 years old, met criteria for nonpsychotic MDD as per the Structured 
Clinical Interview for DSM-IV-TR (SCID) criteria (First et al., 2002), had a Quick Inventory of Depressive 
Symptomatology (QIDS) (Rush et al., 2003) score equal or above 14, and were unmedicated for at least 3 weeks 
prior to the study (Trivedi et al., 2016). 

Participants and Procedures of Ketamine Study 

The current study included data from 56 individuals with MDD for whom the fMRI and behavioral assessments 
were available. Participants were randomized to a single intravenous infusion of normal saline (inactive control; 
n = 18), lanicemine (100mg; active control; n = 19), or ketamine (0.5mg/kg; n = 19). Depression severity was 
rated on the Beck Depression Inventory (BDI) before and at 24h after treatment (Beck, 1996). Randomized 
participants were scanned and assessed at both baseline and during infusion of the study drugs. Further details 
can be found at the following references (Abdallah et al., 2018; Downey et al., 2016). 

Neuroimaging Acquisition and Processing 

Sertraline study structural (1x1x1 mm3) and functional (3.2x3.2x3.1 mm3; TR=2000 ms.; TE=28 ms.; 12 min. at 
baseline and week 1) scans, and ketamine study structural (1x1x1 mm3) and functional (3x3x2.5 mm3; TR=3000 
ms.; TE=30 ms.; 5min. immediately prior to infusion and 20 min. during infusion starting at 20 min post 
administration) scans were acquired using 3.0 T magnets (Abdallah et al., 2018; Downey et al., 2016; Greenberg 
et al., 2015). Brain scans from both studies underwent the same surface-based preprocessing using pipeline 
adapted from the HCP (https://github.com/Washington-University/HCPpipelines) (Glasser et al., 2013), as 
reported elsewhere (Abdallah et al., 2019a; Abdallah et al., 2019b; Abdallah et al., 2018). Briefly, the 
preprocessing pipeline included FreeSurfer parcellation of structural scans, slice timing correction, motion 
correction, intensity normalization, brain masking, and registration of fMRI images to structural MRI and standard 
template. Then, the cortical gray matter ribbon voxels and each subcortical parcel were projected to a standard 
Connectivity Informatics Technology Initiative (CIFTI) 2mm grayordinate space. ICA-FIX was run to identify 
and remove artifacts (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), followed by mean grayordinate time 
series regression (MGTR). The latter two processing steps (FIX+MGTR) have been found to significantly reduce 
motion-correlated artifacts (Burgess et al., 2016). Global brain connectivity (GBC) was computed voxel/vertex-



wise (Abdallah et al., 2019b); i.e., the average correlation of each voxel/vertex with all other gray matter voxels 
and vertices (Cole et al., 2011). 

Nodal Parcellation and Network Restriction 

The brain nodes were defined using previously established multimodal parcellation atlases that divide the cerebral 
cortex (Glasser et al., 2016), subcortical regions (Fan et al., 2016), and the cerebellum (Diedrichsen et al., 2009) 
into 424 nodes within the grayordinate (Table S1), here termed A424. Within each node, an averaged time series 
of all voxels/vertices was calculated. The full connectome was computed as the pairwise Pearson correlation 
coefficients between these averaged time series, and subsequently transformed using a Fisher-z function. Nodal 
strength (nS) was computed as the average connectivity between each node and all other nodes within the full 
connectome. 

To define the network modules, we used the Akiki-Abdallah cortical (AAc) atlas (Akiki and Abdallah, 2019), a 
recently described hierarchical modular organization of the cortex based on the same parcellation atlas used in 
the current study. The AAc atlas provided an extensive characterization of the cortical modules at multiple scales, 
ranging from three communities at the first hierarchical split to 126 communities at the finest-grained level. 

To test the hypothesis that the connectivity in the canonical networks can predict treatment response, we used the 
AAc architecture at 6 modules (AAc-6), i.e., the level that fully map the default mode (DM; i.e., the target network 
for hypothesis #2), and which also comprises modules for the central executive (CE), dorsal salience (DS), ventral 
salience (VS), somatomotor (SM), and visual (VI) networks (Akiki and Abdallah, 2019). For each network (a.k.a., 
module or community), the internal network-restricted strength (NRS) was calculated as the mean weight of edges 
within a given network (Akiki et al., 2018a, b). The external pairwise network-to-network (e.g., DM-to-CE) NRS 
was also calculated as the mean edge weight between the two respective networks. 

Since the modular organization (a.k.a., intrinsic connectivity networks; ICNs) is primarily defined in the cerebral 
cortex (Schaefer et al., 2018; Yeo et al., 2011), the initial NRS analyses were limited to the cortical surface (i.e., 
360 nodes (Glasser et al., 2016)). However, considering the essential role of non-cortical brain structures in 
pathophysiology of depression (Drevets, 1998), and that the GBC findings spanned several subcortical structures, 
we pursued complementary NRS analyses including the whole-brain grayordinate (i.e., A424 atlas (Diedrichsen 
et al., 2009; Fan et al., 2016; Glasser et al., 2016)). Using the methods implemented in the AAc atlas (Akiki and 
Abdallah, 2019), we first determined the hierarchical architecture of the whole-brain using subject-level clustering 
of functional networks in 1003 healthy subjects from the HCP, here termed Akiki-Abdallah (AA) atlas. For full 
details of the scans preprocessing and modularity methods, please see (Akiki and Abdallah, 2019). Briefly, the 
processing included the preprocessed HCP data with FIX+MGTR (Glasser et al., 2013) and the modularity 
methods used a subject-level clustering approach followed by a recursive hierarchical method based on the 
Louvain algorithm to recover the community structure at multiple scales (Jeub et al., 2018; Jutla et al., 2011; 
MacMahon and Garlaschelli, 2013; Subelj and Bajec, 2011). A critical aspect is that all brain nodes were 
considered together, rather than projecting the cortical ICNs onto subcortical nodes. As previously implemented 
(Akiki and Abdallah, 2019), we used the z-score of the Rand coefficient to identify partition solutions in the 
consensus hierarchy that are highly expressed at the level of individual subjects (Bassett et al., 2013; Betzel et al., 
2015; Doron et al., 2012; Traud et al., 2011). 

Predictive Modeling 

Traditional interpretative analyses are informative in that they can highlight links between brain and behavior. 
However, they may not be adequate to predict outcomes and could suffer from over-fitting (Scheinost et al., 
2019). The connectome predictive model (CPM) described by Shen et al. (Shen et al., 2017), takes full 
connectome matrices as inputs and its utility has been well validated in multiple studies (e.g., (Finn et al., 2015)). 
Building on the strengths of CPM, we here implemented 4 comparable approaches, 1) termed nodal strength 



predictive model (nS PM); 2) termed NRS predictive model (NRS-PM) – Please see “hypothesis 2” and 
“hypothesis 3” in the supplemental information (SI) for rationale and justification; 3) termed nodal external NRS-
PM (neNRS-PM), and 4) termed nodal internal NRS-PM (niNRS-PM).  

The NRS-PM builds a predictive model of the behavioral data based on NRS edges (i.e., internal and external 
connectivity). The first step serves as feature selection: the within- and between-network connectivity values (i.e., 
edges) from the training subset of the data (described below) are used in regression models (Pearson correlation) 
to identify NRS edges that positively or negatively predict the behavioral measure of interest (p < 0.05). The 
weighted sum of positive edges minus the weighted sum of negative edges generate a summary statistic for each 
subject that is then included in a linear predictive model (Shen et al., 2017). Next, as described by Shen et al. 
(Shen et al., 2017), the resulting coefficients are applied to the test dataset to predict the outcome. The correlations 
between the predicted and actual outcomes (r values) were used to judge the model’s performance (Shen et al., 
2017). To ensure the stability of the models and to determine the significance of the predictive power, we used 
1000 iterations of ten-fold cross-validation (CV), which splits the original sample into 10 random equal sized 
subsamples. In each iteration, one subsample (10% of subjects) is retained as the validation data for testing the 
model, and the remaining 9 subsamples (90% of subjects) are used as training data. The cross-validation process 
is then repeated 10 times (covering all subsamples). Then, the predicted outcome was separately correlated with 
the true outcome (i.e., true prediction) and with a random permutation of the true outcome (i.e., random 
prediction). This process was repeated 1000 times to generate empirical true and null distributions of the test 
statistics (i.e., r). The p values were then computed as the proportion of random predictions that are equal to or 
greater than the average of true predictions. 

The a priori hierarchical level was the AAc brain architecture with 22 modules (AAc-22), based on evidence that 
this organization is the most expressed at the level of individuals (Akiki and Abdallah, 2019). At this relatively 
fine-grained modular organization (Table S1), there are five visual communities (medial, inferolateral, para, 
midlateral, superolateral), four somatomotor communities (central, paracentral, inferior, auditory), three ventral 
salience communities (superior, posterior, inferior), two dorsal salience communities (superior, inferior), four 
central executive communities (right, left, limbic, dorsal anterior cingulate), and four default mode communities 
(medial, temporal, limbic, language). The AAc-22 NRS generates 22 within network edges (i.e., internal 
connectivity), and 231 unique module-to-module edges (i.e., upper triangle of pairwise external undirected 
connectivity; 22*21/2=231), for a total of 253 features. To assess the robustness of the findings, we applied the 
same analyses across all hierarchical levels.  

The nS-PM, neNRS-PM, niNRS-PM, and full connectome PM (FC-PM) used the same approach described above 
for the NRS-PM, with the only difference is in the dimensionality reduction step. For nS-PM, the dimensionality 
reduction step was computing the average correlation between each node and all other nodes in the full 
connectome, which generates 424 features. For neNRS-PM, the dimensionality reduction step was computing the 
average correlation between each node and all other nodes outside its ICN, which generates 424 features. For 
niNRS-PM, the dimensionality reduction step was computing the average correlation between each node and all 
other nodes within the same ICN, which generates 424 features. For neNRS-PM and niNRS-PM, we first 
investigated the PMs at AA-7, then applied the same analyses to all hierarchical levels. For the FC-PM, the 
dimensionality reduction step was using the upper triangle of the full connectome, which includes 89676 
(424*423/2) unique features. 

Statistical analyses 

The normality of outcome measures was checked and confirmed through normal probability plots and test 
statistics. The standard deviations of the sampling distribution of the mean were considered as estimates of 
variation. Chi-squares and t-tests were used to determine the difference in demographic data between the sertraline 
and placebo groups. For the GBC and interpretative NRS analyses, we used a general linear model to examine 



the effect of treatment (sertraline vs. placebo), response (responder vs. non-responder), and their interaction on 
the connectivity changes from baseline to week one. Age, sex, and site were used as covariates. False Discovery 
Rate (FDR; q < 0.05) was used to correct for multiple comparisons. To assess the improvement-by-treatment 
interaction in the predictive models, the behavioral outcome was computed as the percent improvement in 
depression score (i.e., HAMD in the sertraline study and BDI in the ketamine study) multiplied by the treatment 
contrast (i.e., 1 for study drug and -1 for placebo control). The statistical significance threshold was set at 0.05 
(2-tailed tests). MATLAB (2017b; Mathworks Inc.) and the Statistical Package for the Social Sciences (version 
24; IBM) software were used for the analyses. 

Cortical Network-Restricted Strength Predictive Model (NRS-PM) 

Capitalizing on recent work determining the hierarchical ICNs architecture of the brain cortex (Akiki and 
Abdallah, 2019), we implemented a novel NRS-PM approach to establish a cortical connectomic signature that 
significantly predict improvement following sertraline compared to placebo. As the architecture with the highest 
similarity to subject-specific modularity (Akiki and Abdallah, 2019), the AAc-22 was selected for the initial 
analysis (Fig. S4). Changes in AAc-22 NRS at week-1 significantly predicted improvement at week-8 following 
sertraline compared to placebo (r = 0.25, CV = 10, iterations = 1000, p = 0.005). Increased external connectivity 
between modules within the CE and the rest of the cortex predicted better antidepressant response. Conversely, 
reduced internal connectivity between modules within the VI and SM ICNs predicted enhanced response to 
sertraline. Negative predictive edges were also found in DM-SM and VS-SM connections (Fig. S4).  

Next, we examined whether the a priori selection of AAc-22 may have biased the results. Here, we conducted 
comparable NRS-PM across all cortical architectures (i.e., AAc-3 to AAc-126). We also examined whether the 
negative and positive predicators would independently predict the antidepressant response. As shown in Fig. S5A, 
the NRS-PM predicted the antidepressant response across all architectures, with a peak at AAc-21 (r = 0.25, CV 
= 10, iterations = 1000, p = 0.003). Independently, the positive predictive edges peaked at AAc-30 (r = 0.21, CV 
= 10, iterations = 1000, p = 0.009) and the negative predictive edges peaked at AAc-21 (r = 0.25, CV = 10, 
iterations = 1000, p = 0.003). 



 

 

Figure S1. The Effect of Treatment and Response on Global Brain Connectivity (GBC). Related to Figure 
1A. Cortical and subcortical results of the GBC analyses showing clusters that were different (A) in the sertraline 
vs. placebo groups and (B) in the responder vs. non-responder groups. The scale represents the z values (here 
showing voxels/vertices with p < 0.005, uncorrected). The circles represent clusters that survived FDR correction 
(q < 0.05). 



 

Figure S2. Interpretive Network-Restricted Strength (NRS) Analyses Showing the Effect of Treatment. 
Related to Figure 2. The network-restricted strength (NRS) pentagon. Internal NRS is depicted as filled circles, 
while inter-networks external NRS is depicted as edges. * was used for p < 0.05, ** for p < 0.01, *** for p < 
0.001. Effects that survived FDR correction were denoted with squares (i.e., CE-SM edge). Filled circles and 
edges were colored gray for non-significant effects, blue for negative effects, and red for positive effects. 



 

Figure S3. Co-classification Matrix and Dendrogram. Related to Figure 3. The dendrogram background 
colors (A) represent the whole-brain Akiki-Abdallah (AA) network affiliation at 24 modules architecture (i.e., 
AA-24; B) and at AA-50 (C-D). The module abbreviations of AA-24 and AA-50, along with further details about 
the affiliation of each node are reported in Table S1. 

 



 

Figure S4. A Shift from Internal to External Connectivity Predicts Enhanced Antidepressant Response. 
Related to Figure 4. Lower panel shows the cortical networks nodal affiliation based on the Akiki-Abdallah 
hierarchical atlas at 22 modules (AAc-22; see Table S1 for abbreviations and further details) (Akiki and Abdallah, 
2019). The top panel circular graphs depict the results of the cortical NRS predictive model (NRS-PM; p = 0.005). 
The modules are labeled based on the AAc-22 brain architecture. Modules are colored according to their AAc-6 
network affiliation (Figure 2A). Edges are colored based on the initiating module using a counter-clockwise path 
starting at 12 o’clock. Internal edges (i.e., within module NRS; e.g., para SM to para SM edge) are depicted as 
outer circles around the corresponding module. Thickness of edges reflect their corresponding weight in the 
predictive model. The module abbreviations of AAc-22, along with further details about the affiliation of each 
node are reported in Table S1. Reduced internal connectivity among edges within SM and VI networks and 
increased connectivity between CE and the rest of the brain at week-1 predicted better response to sertraline at 
week-8, compared to placebo. Enhanced response to sertraline was also predicted by a shift from DM-SM and 
VS-SM to increased DM-CE and VS-CE. An overall pattern emerged, that is consistent with increased top down 
control and reduced affective interference with primary cortices. The NRS computation and predictive model 
codes will be made publicly available at https://github.com/emergelab. 



 

Figure S5. Robustness Analyses for the Network-Restricted Strength Predictive Models (NRS-PMs). 
Related to Figure 4. The performance of NRS-PM at all hierarchical levels using the cortical (A) and 
cortical/subcortical/cerebellar (B) modularity atlases. The vertical axes represent the performance of the models 
(quantified using r values) in predicting the response to sertraline and the horizontal axes represent the spatial 
scales (number of modules). The dashed line represents the r value corresponding to p = 0.05. Values set at 0 
correspond to architectures that were not significant based on the permutation analysis.  

 



 

Figure S6. Robustness Analyses for the nodal external Network-Restricted Strength Predictive Models 
(neNRS-PMs). Related to Figure 5A-B. The performance of neNRS-PM at all hierarchical levels using the 
cortical (A) and cortical/subcortical (B) modularity atlases. The vertical axes represent the performance of the 
models (quantified using r values) in predicting the response to sertraline and the horizontal axes represent the 
spatial scales (number of modules). The dashed line represents the r value corresponding to p = 0.05. Values set 
at 0 correspond to architectures that were not significant based on the permutation analysis.  



 

Figure S7. Robustness Analyses for the nodal internal Network-Restricted Strength Predictive Models 
(niNRS-PMs). Related to Figure 5C-D. The performance of niNRS-PM at all hierarchical levels using the 
cortical (A) and cortical/subcortical (B) modularity atlases. The vertical axes represent the performance of the 
models (quantified using r values) in predicting the response to sertraline and the horizontal axes represent the 
spatial scales (number of modules). The dashed line represents the r value corresponding to p = 0.05. Values set 
at 0 correspond to architectures that were not significant based on the permutation analysis. 
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