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Abstract
The biotechnology to immobilize biomolecules on material surfaces has been developed

vigorously due to its high potentials in medical applications. In this study, a simple and effec-

tive method was designed to immobilize biomolecules via amine-N-hydroxysuccinimide

(NHS) ester conjugation reaction using functionalized poly-p-xylylene coating on material

surfaces. The NHS ester functionalized coating is synthesized via chemical vapor deposi-

tion, a facile and solvent-less method, creating a surface which is ready to perform a one-

step conjugation reaction. Bone morphogenetic protein 2 (BMP-2) is immobilized onto

material surfaces by this coating method, forming an osteogenic environment. The immobili-

zation process is controlled at a low temperature which does not damage proteins. This

modified surface induces differentiation of preosteoblast into osteoblast, manifested by

alkaline phosphatase (ALP) activity assay, Alizarin Red S (ARS) staining and the expres-

sion of osteogenic gene markers, Alpl and Bglap3. With this coating technology, immobili-

zation of growth factors onto material surface can be achieved more simply and more

effectively.

Introduction
As the technology of material science progresses, not only the design of bulk materials but also
the technologies of surface modification have become more and more valued. The functionali-
ties of biomaterials with surface modification have made bioengineered implants more promis-
ing. Specific functions of biomaterials were achieved by surface modifications using different
biomolecules onto material surfaces. For instance, controlling fundamental cellular process on
material surfaces is one of the most essential functions for bioengineered implants. Growth fac-
tors are key factors in many fundamental cellular processes such as cell proliferation or differ-
entiation. As a result, growth factors are used widely for surface modifications. Yang et al.
applied physically-adsorbed fibronectin to surfaces of poly lactic acid (PLA) films and poly lac-
tic-co-glycolic acid (PLGA) scaffold and demonstrated that cells showed well adhesion and
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spreading on the fibronectin-adsorbed materials [1]. Karageorgiou et al. reported the cova-
lently-bonded bone morphogenetic protein-2 (BMP-2) on the surface of silk fibroin films suc-
cessfully induced osteogenic differentiation of human bone marrow stromal cells [2]. Among
those surface modification methods, immobilization of biomolecules has become one of the
most emerging fields of study due to the promising biological benefits for modified biomateri-
als. For instance, immobilized versions of proteins and growth factors have been shown to be
superior for prolonged availability to induce cellular outcomes (thus restricting delivery to the
local implant region) compared to the delivery of a direct injection or weakly bound proteins,
which are rapidly degraded through endocytosis pathways; in addition, the delivery of large
quantities increases cost and can damage cells and tissues [3–5]. Various immobilization
approaches are not applicable on different types of materials [5–8] and usually require complex
procedures to perform surface modifications [9, 10].

In this study, we introduce a facile and versatile approach to immobilize growth factor pro-
tein of BMP-2 by using N-hydroxysuccinimide (NHS) ester-functionalized poly-p-xylylene
coating, which is prepared via chemical vapor deposition (CVD) polymerization. Poly-p-xyly-
lene has been known as a coating material with robust adhesion and high biocompatibility, and
has been used for coating implantable medical devices [11–14]. Later, variable functionalized
poly-p-xylylene coatings were developed and used for immobilizing molecules onto material
surfaces [15]. Using CVD polymerization, functionalized poly-p-xylylene coatings can be
applied to various substrate materials [16]. NHS ester-amine coupling reaction is one of the
reactions used most widely to bind biomolecules, especially proteins, and thus becoming an
important binding mechanism for immobilization of biomolecules onto material surfaces [17–
19]. The resulting coating provides a one-step approach to install NHS ester anchoring sites to
material surfaces, and is equally applicable to various materials, including metals, polymers,
and silicon, similar to others from the poly-p-xylylene family [20, 21], and shows excellent sta-
bility and adhesion properties [22]. In addition, the modified material surfaces are readily
available to perform orthogonal conjugations of NHS ester-amine coupling reaction at a tem-
perature which does not damage proteins. This technique has provided the most straightfor-
ward route relying on the formation of an amide bond that is accessible for conjugation
without denaturing the protein [23–25]. The conjugation between this NHS ester-functiona-
lized coating and BMP-2 was confirmed by surface characterization with X-ray photoelectron
spectroscopy (XPS) and infrared reflection absorption spectroscopy (IRRAS), and the quantita-
tion of protein immobilization was measured by quartz crystal microbalancing (QCM) analy-
sis. The osteogenesis-inducing ability of the BMP-2 modified surface was proved by alkaline
phosphatase (ALP) activity assay, Alizarin Red S (ARS) staining and the expression of osteo-
genic gene markers, Alpl (ALP) and Bglap3 (osteocalcin), were also measured to verify the cell
differentiation from preosteoblast to osteoblast.

Materials and Methods

Materials
The following materials were obtained commercially and used as received unless otherwise
noted: [2,2]paracyclophane (Jiangsu Miaoqiao Synthesis Chemical Co., China, 98%), alumi-
num chloride (Alfa Aesar, 99%), dichloromethane (Macron Chemicals, USA), anhydrous mag-
nesium sulfate (J.T. Baker, USA, 99.5%), trifluoroacetic anhydride (Sigma-Aldrich, 99%),
Hydrochloric acid (Sigma-Aldrich, 37%), sodium hydroxide (Sigma-Aldrich, 99%), potassium
hydroxide (Showa Kako Corp., 85.5%), Tetrahydrofuran (Sigma-Aldrich, 99.9%), N,N’-dicy-
clohexylcarbodiimide (Sigma-Aldrich, 99%), N-Hydroxysuccinimide (Alfa Aesar, 98%),
recombinant human bone morphogenetic protein 2 (355-BM-050/CF, R&D systems, USA),

Osteogenic Surface Coating

PLOS ONE | DOI:10.1371/journal.pone.0137017 September 17, 2015 2 / 17

collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



and silicon wafers (Goldeninent Inc., Taiwan). Gold substrates were fabricated on a 4-inch sili-
con wafer by depositing a 300-Å layer of titanium followed by a 700-Å layer of gold with a ther-
mal evaporator (Kao Duen Technology Co., Taiwan). All silicon substrates were cleaned using
a piranha solution (3:1 v/v H2SO4:H2O2) before use.

Synthesis of 4-N-hydroxysuccinimide (NHS) ester-[2.2]paracyclophane
The schematic figure of the reactions was shown in Fig 1(A). 4-N-hydroxysuccinimide ester-
[2.2]paracyclophane 4 was synthesized via a three-step procedure. Commercially available
[2,2]paracyclophane 1 was first used to produce 4-trifluoroacetyl- [2,2]paracyclophane 2.
Before the reaction, [2,2]paracyclophane 1 and aluminum chloride (AlCl3) were dissolved in
dichloromethane separately and trifluoroacetic anhydride was added in the aluminum chloride
solution and after 15-mins stirring, [2,2]paracyclophane 1 solution was gently added in. The
reaction was kept at 0°C for 90 mins. 4-trifluoroacetyl- [2,2]paracyclophane 2 was obtained by
being subjected to Friedel-Crafts acrylation in the presence of trifluoroacetic anhydride and
aluminum chloride (AlCl3). The organic layer was wash with 3 M HCl (2 × 300 mL) and then
with deionized water (2 × 300 mL), and dried over MgSO4. The yield of this step is 95%. 4-tri-
fluoroacetyl- [2,2]paracyclophane 2 was subsequently hydrolyzed with 10% potassium hydrox-
ide (KOH) solution to produce 4-carboxyl-[2,2]paracyclophane 3. At the end of this step, HCl

Fig 1. Schematic figure of (a) synthesis of 4-N-hydroxysuccinimide (NHS) ester-[2.2]paracyclophane and (b) immobilization of BMP-2. (a) Synthetic
route of 4-N-hydroxysuccinimide ester-[2.2]paracyclophane 4. (b) CVD polymerization of 4 to poly(4-N-hydroxy-succinimide ester-p-xylylene-co-p-xylylene)
(coating 5) and immobilization of protein by forming an amide bond between protein and coating 5.

doi:10.1371/journal.pone.0137017.g001
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was gently added in and the 4-carboxyl-[2,2]paracyclophane 3 was precipitated. (85% yields).
Compound 3 and N,N’-dicyclohexylcarbodiimide (DCC) were then dissolved in tetrahydrofu-
ran (THF) and stirred for 20 minutes, followed by adding N-hydroxysuccinimide (NHS) to
react for 16 hours. The resulting product was 4-N-hydroxysuccinimide ester-[2.2]paracyclo-
phane 4.

Chemical vapor deposition (CVD) polymerization
The synthesis of 4-N-hydroxysuccinimide ester-[2.2]paracyclophane was included in Surp-
porting Information. Coating 5 was prepared from 4-N-hydroxysuccinimide ester-[2.2]paracy-
clophane 4 based on a custom-built system, which consists of a deposition chamber, a
pyrolysis zone, and a sublimation zone. The starting material, compound 4 was first sublimed
at the temperature of 100–120°C and then transported into the pyrolysis zone in which the
temperature was raised to 700°C by the introduction of argon carrier gas at a flow rate of 30
sccm. The subsequently formed radicals were transferred into the deposition chamber and the
polymerization process occurred on a rotating holder was maintained at 15°C to ensure uni-
form coating. Throughout the CVD process, a deposition rate at approximate 0.5 Å s-1 was
monitored on the basis of in situ quartz crystal microbalancing analysis (STM-100/MF, Sycon
Instruments, USA) and a reduced pressure of 75 mTorr was regulated to optimize the
polymerization.

Immobilization of bone morphorgenic protein 2 (BMP-2)
To immobilize BMP-2 on the coating 5modified surface, commercially obtained BMP-2
(355-BM-050/CF, molecular weight: 26 kDa, R&D systems, USA) was dissolved in deionized
water. The concentration of BMP-2 solution used throughout this study was 50 μg ml-1. The
BMP-2 solution was dropped on the coating 5modified surface directly after CVD polymeriza-
tion, and kept at 4°C overnight. At the end of the reaction, the treated surfaces were washed by
PBS solution at least three times.

Surface characterization
Infrared reflection absorption spectroscopy (IRRAS) was performed using a Perkin Elmer
Spectrum 100 FT-IR spectrometer equipped with a liquid nitrogen cooled MCT detector, and
the spectra were corrected for any residual baseline drift. X-ray photoelectron spectroscopy
(XPS) was characterized with a Theta Probe X-ray photoelectron spectrometer (Thermal Scien-
tific, UK) using a monochromatized AlKα as the X-ray source at an X-ray power of 150 kW.
For obtaining survey spectra, the pass energy of 200.0 eV was used. The XPS atomic analysis
was reported based on the atomic concentrations (%) and was compared to the theoretical val-
ues calculated on the basis of the structure.

To analyze the amount of protein immobilization on coating 5 quantitatively, a QCM
instrument (ANT Technologies, Taiwan) equipped with a flow injection analysis (FIA) device
and a continuous frequency variation recording device was employed. The flow rate was con-
trolled by a peristaltic pump connected to the FIA device. An AT-cut piezoelectric quartz disc
with a 9 MHz resonant frequency and a 0.1 cm2 total sensing area was used as the sensing ele-
ment of this instrument. BMP-2 or BMP-2 primary (MAB3551, R&D Systems) antibody solu-
tion was injected to the system with modified surfaces to analyze the quantity of BMP-2 or
BMP-2 primary antibody which immobilized or adsorbed on the surfaces. For the antibody
binding experiments, the pumping process was temporarily stopped for 25 min (10 min after
injection) to allow binding of BMP-2 and/or antibodies. The QCM analysis was performed at
25°C.
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Cell culture
Murine preosteoblasts (MC3T3-E1 subclone 4, CRL-2593, ATCC, USA) passage 20 were
plated at 4 � 104 cells cm-2 in 96-well cell culture plates using basal proliferation medium com-
prised of Minimum Essential Medium α (MEM α, nucleosides, no ascorbic acid, Life Technol-
ogies, USA) supplemented with 10% Fetal Bovine Serum (FBS, heat inactivated, qualified, US
origin, Life Technologies, USA) for 24 hours. Starting the next day, cells were incubated in
standard osteogenic medium comprised of MEM α supplemented with 10% FBS, 50 μg ml-1

ascorbic acid (Sigma-Aldrich, USA), 10 nM dexamethasone (Sigma-Aldrich, USA), and
10 mM β-glycerophosphate (Sigma-Aldrich, USA). Osteogenic media were changed twice per
week. As for all experiments, MC3T3-E1 cells were examined and quantified at 4, 7, 11, 14 and
21 d for ALP activity and matrix mineralization, as described in details below. For all the exam-
inations outlined below, two independent experiments were conducted with at least three
repeats in each experiment.

ALP activity assay and ARS staining
ALP activity of MC3T3-E1 cells were examined on days 4, 7 and 11. For ALP activity assay,
MC3T3-E1 cells were fixed in 4% paraformaldehyde (Sigma-Aldrich, USA) for 30 min, and
then rinsed with deionized water three times. Fixed cells were treated with nitro blue tetrazo-
lium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP solution, Sigma-Aldrich, USA) for
30 min. ALP positive cells were visualized as deep blue under the optical microscope. For quan-
tification of ALP activity, cells were washed once with PBS solution and 70μl Alkaline Phos-
phatase Yellow (pNPP) Liquid Substrate System for ELISA (Sigma-Aldrich, USA) was added.
The cells were then incubated for 5 min in the dark. Finally, ALP activity was analyzed by an
ELISA reader at 405nm wavelength.

Calcium deposits produced by tested MC3T3-E1 cells were examined on days 7, 14 and 21
by ARS staining assay. For Alizarin Red S staining, MC3T3-E1 cells were washed with PBS
solution and fixed in 4% paraformaldehyde for 30 min. Cells were then stained with 1% Aliza-
rin Red S (ARS, Sigma-Aldrich, USA) pH 4.1 for 30 min followed by washing with excess
deionized water. For the quantification of ARS staining, stained cells were destained for 15 min
with 10% cetylpyridinium chloride (Sigma-Aldrich, USA) and measured at 562 nm wavelength
using a microplate reader.

Gene expression assay
For analyzing the gene expression of MC3T3-E1 cells cultured on different surface, the total
RNA was prepared using the Direct-zol RNAMiniprep Kit (Zymo Research, USA) including
DNase digestion. RNA concentration was determined through photometric measurement on
the Nanodrop 1000 Spectrophotometer (Thermo, USA) and validated RNA quality through
formaldehyde-agarose gel electrophoresis [26]. Equal amounts of RNA (200 ng per sample)
were reverse transcribed using TaqMan Reverse Transcription Reagents (N8080234, Life Tech-
nologies, USA) for first-strand cDNA synthesis. The qRT-PCR were performed with the first-
strand cDNA corresponding to 20 ng of total RNA and the Taqman Universal PCR Master
Mix (Life Technologies, USA) as well as one of the following Taqman predeveloped assay
reagents for mouse:

1. Alpl (Mm00475834_m1, FAM/MGB probe, Life Technologies, USA)

2. Bglap3 (Mm00647982_gh, FAM/MGB probe, Life Technologies, USA)

3. Gapdh (Mm99999915_g1, FAM/MGB probe, Life Technologies, USA)
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Gene transcription levels of Alpl, OCN and Gapdh were analyzed by real-time PCR (Taq-
man gene expression assays) on ABI PRISM 7900HT Sequence Detection System (Life Tech-
nologies, USA). The housekeeping gene, Gapdh, was used as an endogenous control. Each PCR
reaction was run in triplicate, and no-template controls were included for each primer pair.
For data analysis of mRNA expression, the results from day 4, 7, 11, 14, and 21 were further
divided by the basal expression level on day 0. The fold-changes in the abundance of the Alpl
and Bglap3 transcripts between various samples were determined using the ΔΔCt method [27].

Statistical Analysis
Statistical analyses were performed with SPSS 20 (IBM, Chicago, IL, USA). One-way ANOVA
combined with a parametric paired t test was utilized to determine the significance of ALP
activity, matrix mineralization and gene expression. The level of significance was set at
�P< 0.05, and high significance was set at ��P< 0.01.

Results and Discussion

Surface modification method
The immobilization of growth factors can provide an improved interaction and stimulated cel-
lular activity between the host tissue and the biomaterials after implanting [3]. The physical
adsorption is the simple way for growth factors coating on the surface of the biomaterial. How-
ever, the approach may not be sufficient to promote long-term implantation. Since the mole-
cules are held by weak interactions by the process, many of the molecules will diffuse from the
surface without eliciting the desired response [3, 28–30]. Another approach is to design an
covalently immobilization scheme. The covalently immobilization technique is to chemically
attach the biomolecules to the surface of the implant. This way can promote a specific and con-
trollable interaction between the implant and the host tissue. The immobilization of a particu-
lar type of protein or biomolecules would be more likely to produce specific receptor-ligand
interactions that could be used to produce a desired outcome [31–36]. Here we report the
immobilization of rhBMP-2 on amine-NHS ester functionalized poly-p-xylylene coating to
assure marked osteogenic activity, which will be applied for bone-regeneration purposes.

In the experiment, the starting material was first prepared following the synthesis route
shown in Fig 1(A). The resulting 4-N-hydroxysuccinimide ester-[2.2]paracyclophane (com-
pound 4) present in the supernatant liquid was further purified through a column chromatog-
raphy process by introducing an eluent containing EA and hexane with the volume ratio of
1 to 2, and the overall yield was found to be 65%. The product was analyzed by nuclear mag-
netic resonance (NMR) spectroscopy. 1H NMR (500 MHz, CDCl3, TMS): δ = 2.86–2.92 (5H;
CH2), 3.00–3.08 (2H;CH2), 3.13–3.18 (4H;CH2), 3.97–4.02 (1H;CH2), 6.47–6.49 (1H;CH),
6.53–6.54 (2H;CH), 6.60–6.62 (1H;CH), 6.72–6.76 (2H;CH), 7.31 (1H;CH). The synthesis of
poly(4-N-hydroxy-succinimide ester-p-xylylene-co-p-xylylene) 5 (here after referred as coating
5) was performed by using a self-designed CVD system that constituted of a sublimation zone,
a pyrolysis zone, and a deposition chamber. Compound 4 was first sublimated at a temperature
of 100–120°C and was then transferred to the pyrolysis zone by a stream of argon carrier gas at
a flow rate of 30 sccm. The temperature in pyrolysis zone was adjusted to 600°C. After pyroly-
sis, the radicals were then transferred into the deposition chamber and polymerized onto mate-
rials of interest, where a uniform deposition of coating 5 was formed on material surfaces. A
pressure of 75 mTorr was preserved throughout the CVD polymerization process, and the
deposition rates were regulated at approximately 0.5–1 Å s-1. The substrate materials used
throughout this study were gold for surface analysis and cell culture plates for culturing
MC3T3-E1 preosteoblasts.
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With the NHS ester functionalized surface, proteins or other amine-derived molecules can
be anchored onto material surfaces easily under a mild reaction condition without any solvent
or high temperature that may make proteins denatured. The reaction temperature, which was
controlled at 4°C, protected the quality of proteins immobilized on material surface, and thus
maintained the function of proteins after the immobilization process.

Surface characterization
Characterizations using a combination of IRRAS and XPS have confirmed the characteristic
band vibrations and chemical compositions of coating 5. As shown in Fig 2(A), characteristic
peak at 1716 cm-1 1739 cm-1 and 1770 cm-1 were the carbonyl stretches from NHS ester

Fig 2. IRRAS characterization of (a) coating 5modified surface and (b) coating 5/BMP-2modified surface. Both of the modifications were on a gold-
coated silicon substrate. Three significant peaks, which are characters of asymmetric stretching bands of NHS ester C = O were detected as 1770, 1739, and
1716 cm-1 in S1(a). Peaks at 1217 cm-1 and 1072 cm-1 were attributed to N-O and C-O stretch, respectively. In S1 (b), peak of N-O (1207 cm-1) and C-O
(1067 cm-1) stretch were reduced and one of the C = O peak (1716 cm-1 in (a) and 1709 cm-1 in (b)) strongly reduced after immobilization of BMP-2. The
characterization peaks of BMP-2 appeared on the bands around 3247 cm-1 for N-H and 3490 cm-1 for O-H.

doi:10.1371/journal.pone.0137017.g002
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groups. The IRRAS results after immobilization of BMP-2 are shown in Fig 2(B). The ratio
between 1709 cm-1 and 1741 cm-1 carbonyl stretches declined and N-H and O-H characteristic
band around 3247 cm-1 and 3490 cm-1 were detected due to the proteins immobilized on sur-
face. The XPS data further confirmed the immobilization of BMP-2. As shown in Fig 3, the
atomic concentration of the coating 5 modified surface is 77.3 atom% for carbon, 4.5 atom%
for nitrogen and 18.2 atom% for oxygen. After immobilization of BMP-2 the atomic concentra-
tion became 65.0 atom% for carbon, 9.5 atom% for nitrogen and 25.5 atom% for oxygen. The
concentration of nitrogen and oxygen both increase because of the immobilization of BMP-2
on the surface.

The resulting conjugation efficacy of coating 5 toward BMP-2 and the binding affinity of
thereafter immobilized BMP-2 toward human BMP-2 antibody (primary antibody) were fur-
ther verified by quartz crystal microbalancing (QCM) analysis. The QCM analysis results are
demonstrated in Fig 4. BMP-2 or BMP-2 primary antibody solution was injected to the system
and flew through the testing surface, then adsorbed or immobilized onto the surface, which
caused the curves shifted. The results indicated that a surface concentration of (6.04±0.16)�
10−12 mol cm-2 of BMP-2 was found on coating 5 (Fig 4 curve (a)). On the other hand, low
amounts of BMP-2 were found on these controlled surfaces. As shown in curve (b) and (c), the
physically adsorbed non-reactive poly(chloro-p-xylylene) (parylene C) modified surfaces and
the physically repelled poly ethylene glycol (PEG)-modified antifouling surfaces, which are

Fig 3. XPS survey spectra of (a) coating 5 modified surface and (b) coating 5/BMP-2 modified surface. The atomic concentration of C, N and O are
77.3%, 4.55% and 18.22% on the coating 5modified surface and 65.0%, 9.5% and 25.5% on the coating 5/BMP-2 modified surface. The N composition
significantly increased due to immobilization of BMP-2.

doi:10.1371/journal.pone.0137017.g003
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(3.81±0.01)�10−12 mol cm-2 and (1.62±0.17)�10−14 mol cm-2, respectively. The binding affinity
with respected to the primary antibody was confirmed for the coating 5/BMP-2 modified sur-
faces (curve (d)), and compared also to the coating 5modified surfaces (curve (e)), which are
2.43�10−12 mol cm-2 and 2.35�10−12 mol cm-2. To compare curve (a) with (b), the concentration
of BMP-2 immobilized on coating 5modified surface was about 159% of those adsorbed on pary-
lene C surface. According to curve (a) and (e), the number of BMP-2 on coating 5modified sur-
face was about 3 times to the number of BMP-2 primary antibody on coating 5modified surface.
That is because the molecular size of BMP-2 primary antibody is relatively large to BMP-2, the
steric effects are a dominant factor which affected the proteins immobilized on the surfaces. Sev-
eral studies have demonstrated that crowding effects alter both the affinity and the kinetics of
binding of proteins to the surface [37, 38]. The factors of an order of magnitude affect the density
of macromolecules presenting on the surface. The results also suggested the binding affinity of
BMP-2 toward primary antibody was not influenced by the immobilization process.

ALP activity assay and ARS staining
The important biological assessment of the BMP-2 modified surface was finally performed by
culturing MC3T3-E1 preosteoblasts on such surfaces for 3 weeks. Separate experiments were

Fig 4. QCM analysis of coating 5 modified surface.Curve (a) is the result of BMP-2 solution injected and flowing through coating 5modified surface, and
at the end of the measurement, the amount of BMP-2 adsorption on coating 5modified surface is 6.04�10−12 mol cm-2. Curve (b) is the result of BMP-2
solution injected and flowing through parylene C-modified surface, and at the end of the measurement, the amount of BMP-2 adsorption on parylene C
surface is 3.81�10−12 mol cm-2. Curve (c) is the result of BMP-2 solution injected and flowing through PEG5000 modified surface, and at the end of the
measurement, only 1.62�10−14 mol cm-2 of BMP-2 adsorbed on the surface. Curve (d) is the result of BMP-2 primary antibody solution injected and flowing
through coating 5/BMP-2 modified surface, and at the end of the measurement, the amount of BMP-2 primary antibody adsorption on coating 5modified
surface is 2.43�10−12 mol cm-2. Curve (e) is the result of BMP-2 primary antibody solution injected and flowing through coating 5modified surface, and at the
end of the measurement, the amount of BMP-2 primary antibody adsorption on coating 5modified surface is 2.35�10−12 mol cm-2.

doi:10.1371/journal.pone.0137017.g004
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conducted either on modified or unmodified surfaces in osteogenic medium. Alkaline phos-
phatase (ALP) activity and concentration of calcium deposits were monitored. They are the
markers for osteogenesis process. The NBT-BCIP solution, a chromogenic phosphatase sub-
strate, which produces blue-colored precipitates, was employed to the ALP staining assay on
days 4, 7 and 11. A quantitative analysis was also verified by Alkaline Phosphatase Yellow
(pNPP) Liquid Substrate System for ELISA, a reagent develops a soluble yellow reaction prod-
uct, which can be read at 405 nm. As shown in Fig 5(A), ALP was stained in deep blue and the
coating 5/BMP-2 modified group was significantly darker than other groups from day 4 to day
11. Fig 5(B) displays the quantitative results of ALP staining assay. On day 4, all groups pre-
sented low ALP activities relative to other days, and the coating 5/BMP-2 modified group had
the highest ALP activity, signaling the early stage of osteogenesis. From day 7 to day 11, ALP
activities in all groups increased and the coating 5/BMP-2 modified group still expressed the
highest ALP activity, indicating that the function of the modified layer acted sustainably. Aliza-
rin Red S (ARS), which forms complex with calcium, was utilized to monitor the calcium
deposits on days 7, 14 and 21. ARS staining results are shown in Fig 5(C) and quantification
results are shown in Fig 5(D). Calcium deposits, which are important indications of the middle
stage of osteogenesis, were not detected by ARS staining on day 7 in any of the groups but
appeared in all groups from day 14. The concentration of calcium deposits continued to
increase till the end of the experiment period, indicating that the osteogenesis process was com-
ing into the middle stage. According to the results, the coating 5/BMP-2 modified group dis-
played the highest amount of calcium deposits among all groups, which represents a higher
degree of osteogenesis.

Gene expression assay
To measure the expression level of mRNAs for osteoblast differentiation marker, ALP and
osteocalcin, the expression of Alpl and Bglap3 in the MC3T3-E1 preosteoblasts were quantified
on days 0, 4, 7, 11 and 14 [39]. For analyzing the gene expression, total RNA of the MC3T3-E1
preosteoblasts was collected and the RNA concentration was determined through photometric
measurement. Gene transcription levels of Alpl (ALP), Bglap3 (osteocalcin) and Gapdh (house-
keeping gene) were analyzed by real-time quantitative reverse transcription polymerase chain
reaction (qRT-PCR) (Taqman gene expression assays). The housekeeping gene, Gapdh, was
used as an endogenous control. Data analysis was normalized to Gapdh expression, and the
results were performed as relative expression divided by the basal expression level on day 0.
The relative mRNA expressions of Alpl and Bglap3 were shown in Fig 6(A) and 6(B). On day 4,
the Alpl expression of the coating 5/BMP-2 modified group reached its highest value and sur-
passed other groups until day 7. After day 11, the Alpl expressions among all testing groups
were nearly the same. The Bglap3 expression of the coating 5/BMP-2 modified group surpassed
other groups from day 4, and then achieved its maximum on day 7. Bglap3 expressions were
also no significantly different among the testing groups after day 11. The Alpl and Bglap3
mRNA expressions were in accordance with the results of ALP activity and ARS staining, veri-
fying the osteogenesis-inducing ability of coating 5/BMP-2 modified surface. These findings
suggest that the amounts of BMP-2 immobilized on surface by CVDmethods should be suffi-
cient to induce bone formation.

Bone morphogenetic protein-2 (BMP-2) is a signaling protein in the bone healing process
and enhancing therapeutic efficacy [40, 41]. Therefore, coating or immobilizing BMP-2 onto
surfaces is reported to enhance the osseointegration of materials [42–47]. The physically coat-
ing of BMP-2 onto surfaces has been reported in some studies [48–50]. However, since the
molecules are held by weak interactions by the process, many of the molecules will diffuse from
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Fig 5. ALP activity assay and ARS staining. ALP activity and calcium deposits of MC3T3-E1 preosteoblasts were evaluated on coating 5/BMP-2 modified,
coating 5modified and unmodified surface. (a) ALP staining assay and (b) quantification results of ALP at day 4, 7, 11. (c) ARS staining and (d) quantification
of calcium deposits on days 7, 14 and 21. The asterisks indicate significant differences (*P<0.05 and **P<0.01) between coating 5/BMP-2 modified, coating
5modified and unmodified surface at each time point.

doi:10.1371/journal.pone.0137017.g005
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the surface without eliciting the desired response. In current clinical practice, collagen sponges
have been functionalized by the adsorption of several milligrams of BMP-2 (e.g., INFUSE1) to

Fig 6. Relative gene expression of (a) Alpl (genemarker of ALP) and (b) Bglap3 (genemarker of osteocalcin). The effect of coating 5/BMP-2 modified,
coating 5modified and unmodified surface on relative mRNA expression was assayed on days 0, 4, 7, 11, and 14. The asterisks indicate significant
differences (*P<0.05 and **P<0.01) between coating 5/BMP-2 modified, coating 5modified and unmodified surface at each time point.

doi:10.1371/journal.pone.0137017.g006
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promote the repair of large bony defects [51, 52]. However, this method is not satisfied to
induce a sustained osteogenic response at the site of implantation. Because the BMP-2 release
too rapidly from the surface-adsorbed depot in the collagen sponges. The difficulty cannot be
overcome simply by increasing the loaded dose of BMP-2. Since the transiently high local con-
centration of BMP-2 could induce serious side effects, such as an over-stimulation of local
bone resorption and an induction of bone formation at unintended sites [53–55]. To maximize
the osteogenic efficacy and reduce the side effects, BMP-2 must be delivered to the target site
gradually, at a low level and in a sustained manner, rather than in a single high-dose burst [56,
57]. Ccreating a stable covalent immobilization on the surface has been recognized as an effec-
tive way to modify orthopaedic implants. Some studies showed that there were preparations of
chitosan, dextran, or polymer layers on different materials (e.g., Ti6Al4V, Stainless Steel, etc.)
to covalently immobilize BMPs [58–61]. However, some methods were limited on the specific
materials, such as the method of self-assembled monolayer. Continuous efforts have been
devoted to the development of advanced surface coatings to realize the controlled amount of
BMP-2 and to maximize their osteoinductive efficacy [62]. Several studied have immobilized
BMP-2 on the surface using different methods, such as the self-assembled monolayer on gold-
coated surfaces [62] or polydopamine coating [63], and the surface coverage of BMP-2 were
estimated to be 70−80 ng/cm2 or 124±9 ng/cm2. The immobilization strategies have been
proved to be efficient in triggering both short- and long-term osteogenic signaling responses.
The experiments demonstrate that amounts as low as a nanogram of BMP-2 are effective for
promoting bone formation.

Our investigations indicated that immobilized rhBMP-2 by CVD methods exhibiting the
long-term effects after several days in culture, and trigger ALP expression and increase mineral
production. The induction of ALP and cell mineralization clearly proves that osteogenic differ-
entiation does not require release of the growth factor from the surface, when cells are exposed
to it in a manner which allows receptor activation as described here.

Conclusions
The immobilization of BMP-2 proteins was realized by using a novel coating of NHS ester-
functionalized poly-p-xylylene on material surfaces, and showed sustainable and effective oste-
ogenic activities for MC3T3-E1 preosteoblasts on such modified surfaces. The amount of
immobilized BMP-2 was analyzed by QCM, and the binding affinity toward primary antibody
was also examined. The coating technology based on CVD polymerization process is robust
and versatile, and is equally applicable to various substrate materials. In addition, the rationale
NHS ester side group is widely applicable for conjugations with proteins, enzymes, and other
amine-derived biomolecules. The extension to attach these molecules is anticipated beyond the
osteogenesis application demonstrated herein, and may be broadly applicable for a diverse
range of materials and devices according to the specific application. The proposed one-step
coating technology to install NHS ester functionality has provided a straightforward and prac-
tical approach for the design of advanced biomaterials, and is foreseeable to be applied to diag-
nostic devices, cellular assays, tissue engineering, and applications of regeneration medicine.
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