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derived pluripotent cells in joint
development and repair
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Abstract

Cartilage-derived pluripotent cells reside in hyaline cartilage and fibrocartilage. These cells have the potential for
multidirectional differentiation; can undergo adipogenesis, osteogenesis, and chondrogenesis; and have been
classified as mesenchymal stem cells (MSCs) conforming to the minimal criteria of the International Society for
Cellular Therapy. Cartilage tissue is prone to injury and is difficult to repair. As cartilage-derived pluripotent cells are
the closest cell source to cartilage tissue, they are expected to have the strongest ability to differentiate into
cartilage compared to other MSCs. This review focuses on the organizational distribution, expression, and function
of cartilage-derived pluripotent cells in joint development and repair to help explore the therapeutic potential of in
situ cartilage-derived pluripotent cells for joint cartilage repair.

Keywords: Cartilage-derived pluripotent cell, Chondroprogenitor cell, Stem cell-based therapy, Cartilage repair,
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Background
Articular cartilage in long bones is made up of hyaline
cartilage. The condylar cartilage (CC) located in the
temporomandibular joint (TMJ) is generally considered
fibrocartilage. The articular disc, including the meniscus
and the TMJ disc, is also composed of fibrocartilage.
Due to the lack of nerves, blood vessels, and lymphatic
vessels and the effect of its weight-bearing role, cartilage
tissue shows difficulty repairing itself when injured.
With the rise of regenerative medicine and tissue en-

gineering, cell-based approaches have been successfully
used in cartilage repair. Both autologous chondrocytes
and mesenchymal stem cells (MSCs) are currently used
as seed cells for repairing cartilage injury. However, the
amount of healthy cartilage available for chondrocyte
harvesting is often limited during autologous chondro-
cyte transplantation. Chondrocyte phenotypes are diffi-
cult to maintain during culture expansion, and these
cells are prone to dedifferentiating and losing their

capacity to form cartilage. Instead, MSCs are considered
a preferable cell source for cartilage repair because they
are easy to isolate, retain some stem cell properties
during in vitro expansion, and can differentiate into
chondrocytes.
MSCs can be isolated from the bone marrow [1], peri-

osteum [2], synovium [3], and adipose tissue [4]. Gener-
ally, the closer the cell source is to the injured cartilage
tissue, the more effective the differentiation into carti-
lage tissue is [5]. Therefore, if MSCs are also present in
the articular surface, they are expected to have the
strongest ability to differentiate into cartilage and repair
injured cartilage tissue.
Recent studies have found that articular cartilage con-

tains pluripotent cell populations that can undergo
chondrogenic, osteogenic, and adipogenic differentiation.
These cells have been classified as MSCs conforming to
the minimal criteria of the International Society for
Cellular Therapy, which include being plastic-adherent,
showing multipotentiality, and expressing an MSC
marker phenotype [6, 7]. Therefore, these populations
are expected to be potential cell sources for cartilage
repair, and in-depth and comprehensive studies on their
function in joint development and repair can help us
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explore ideal stem cell-based therapies for cartilage
repair. Since these cells had various names in different
studies, we named these cells cartilage-derived pluripo-
tent cells in our study.

Organizational distribution of cartilage-derived
pluripotent cells
In long bones
In hyaline cartilage
Hyaline cartilage is compartmentalized into the surface
zone, middle zone, deep zone, and calcified zone
(Fig. 1a), with biochemical and morphological variations
existing at different depths [8]. Multiple studies have
confirmed the presence of pluripotent cells with stem
cell characteristics in hyaline cartilage [6, 9, 10], and the
surface zone of the cartilage tissue, including the articu-
lar surface, is a relatively abundant source of these pluri-
potent cells. In the development of articular cartilage,
Hayes et al. [11] found that articular surface zone cells
from animal knee joints had a longer cell cycle than the
underlying transitional zone cells, and Hunziker et al.
[12] found that the superficial zone (SZ) consisted of
slowly dividing stem cells, which suggested the presence
of a chondroprogenitor or stem cell population in the
articular cartilage surface. Further, Dowthwaite et al. [8]
and Hattori et al. [9] both successfully isolated stem/pro-
genitor cells from the surface zone of calf/bovine articu-
lar cartilage, and the latter study reported that these
progenitors make up approximately 0.1% of all cells that
can be extracted from the surface zone of the articular
cartilage tissue. Grogan et al. [13] found that the fre-
quency of progenitor cells in full-thickness human ar-
ticular cartilage was 0.14%, and no difference was found
between the control and osteoarthritis (OA) groups.
Interestingly, Pretzel et al.’s [14] study indicated a much
higher percentage of CD105+/CD166+ progenitors in OA
(16.7%) cartilage compared to normal (15.3%) cartilage,

and the CD166+ cells were almost exclusively located in
the superficial and middle cartilage zones. A recent
study demonstrated that high-efficiency colony-
forming cells (HCCs) can also be isolated from the
deep zone of bovine articular cartilage, although the
SZ has significantly more progenitor cells than the
deep zone [15].

In meniscus
A recent study showed that multipotent stem cells are
present in the human meniscus and are phenotypically
similar to MSCs [16]. Shen et al. [17] identified and
characterized a population of meniscus-derived stem
cells (MeSCs) that displayed low immunogenicity and
possessed immunosuppressive functions. Then, this
team found that human meniscus stem/progenitor cells
(hMeSPCs) displayed both MSC characteristics and high
expression levels of type II collagen [18]. Similarly,
another study showed that MSCs isolated from rabbit
menisci have universal stem cell characteristics, includ-
ing clonogenicity, multipotency, self-renewal capacity,
and expression of stem cell markers, and a pronounced
tendency to chondrogenic differentiation appeared
both in vivo and in vitro compared to that of bone
marrow-derived stem cells (BMSCs) [19]. Gamer et al.
[20] isolated and localized stem/progenitor cells from
murine menisci grown in explant culture, and localization
studies suggested that endogenous progenitor cells may
reside in the superficial and outer regions of the meniscus
in vivo.

In TMJ fibrocartilage
Unlike hyaline cartilage, fibrocartilage in the TMJ con-
dyle consists of various proportions of both fibrous and
cartilaginous tissue and is divided into four distinct
zones (Fig. 1b): the fibrous SZ, a polymorphic zone, a
zone of chondrocytes, and a zone of hypertrophic

Fig. 1 Zonal structure of cartilage. a Hyaline cartilage is compartmentalized into the surface zone, middle zone, deep zone, and calcified zone. b
Fibrocartilage in TMJ condyle is divided into four distinct zones: the fibrous SZ, a polymorphic zone, a zone of chondrocytes, and a zone of
hypertrophic chondrocytes
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chondrocytes [21]. In the fibrocartilage of the TMJ,
Embree et al. [22] first showed that the fibrous SZ tissue
in the TMJ condyle is a niche that harbors fibrocartilage
stem cells (FCSCs). The skeletal stem/progenitor cell
marker αSMA was traced in transgenic mice [23] by
pedigree tracking studies, and the researchers found that
the mature col2a1+ chondrocyte progeny located in CC
tissues were differentiated from undifferentiated αSMA+
cells in the fibrous SZ, indicating that the fibrocartilage
stem cells in the SZ can produce mature chondrocytes
(Fig. 2).

Cytological features of cartilage-derived
pluripotent cells
Although cartilage-derived pluripotent cells currently
lack definitive biomarkers, these cells are generally char-
acterized according to several cytological features, such
as increased chondrogenic protein expression, specific
cell surface markers, a high colony-forming efficiency, a
pluripotent differentiation capacity, and migratory ability.

Increased chondrogenic protein expression during
cartilage development
Cartilage development is a continuous dynamic process
of cell differentiation and protein expression. In hyaline
cartilage, pluripotent cells at different stages of differen-
tiation exhibit expression of different genes, including
fibronectin, hyaluronan, tenascin, type I collagen, type II
collagen, minor type IX and XI collagens, proteoglycans,
matrilins, and cartilage oligomeric protein (COMP)
[24–27], which participate in the formation of abundant
extracellular matrix (ECM). In this process, undifferen-
tiated mesenchymal cells eventually differentiate into

chondrocytes. In mature articular cartilage, the cells of the
surface zone produce high quantities of SZ protein (SZP/
proteoglycan 4), encoding lubricin for surface lubrication
[28, 29]. In the middle and deep zones, the cartilage ECM
is composed mainly of type II collagen, aggrecan, and hya-
luronan [30]. Assays of these chondrogenic proteins and
their corresponding mRNA/gene levels, especially those of
type II collagen, aggrecan, and COMP, can be used to
measure the chondrogenic differentiation potential of
specific cell populations.

Surface markers
Cartilage-derived pluripotent cells are generally charac-
terized according to MSC-related surface markers, which
can effectively distinguish them from chondrocytes.
These pluripotent cells express the classical MSC
markers CD105, CD73, and CD90 and lack expression
of CD45, CD34, CD14 or CD11b, CD79a, or CD19, ac-
cording to the International Society for Cellular Therapy
[7]. CD10 and CD166 (ALCAM) are also regarded as
distinctive markers for MSCs [31, 32]. In addition, these
pluripotent cells express stem cell markers, such as Stro-
1, Notch1, VCAM-1 (CD106), and Integrin β1 (CD29)
[8, 10, 13, 33], and chondrogenic markers, such as Sox9
[6, 10]. These surface markers were also expressed in
combinations, including CD9+/CD90+/CD166+ for OA
[34], CD166+/CD90+ for normal [35], and CD105+/
CD166+ for both normal and OA samples from human
articular cartilage [14].
Recent studies have shown that cartilage-derived pluri-

potent cells also express specific surface markers. Gro-
gan et al.’s [36] study found that in normal human knee
joints, chondrocytes with a high chondrogenic capacity

Fig. 2 Organizational distribution of cartilage-derived pluripotent cells. Cartilage-derived pluripotent cells are mainly isolated from human, bovine,
murine, and rabbit, where these pluripotent cells are located in each species is shown
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expressed increased levels of CD44, CD49c, CD49f, and
CD151. CD90 and CD166 were also highly expressed,
which suggests that these highly chondrogenic subpopu-
lations might correspond to those with progenitor
characteristics. Williams et al. [6] found that CD49e
might be utilized as a specific marker for the cartilage
progenitor cell population in normal human articular
cartilage from femoral condyles. In knee joints from
late-stage OA, CD146 might be a new cell surface
marker for the cartilage progenitor cell population [37].
Another study compared protein changes between
human bone marrow MSCs and chondrogenic progeni-
tor cells (CPCs) from knee articular cartilage from OA
samples, and 4 cell surface proteins were found with
significantly increased expression in the CPCs: AMPN
(CD13), CD109 antigen, CADM1, and CD49b [38].
However, as these studies examined cartilage-derived

pluripotent cells from different species and with a differ-
ent cell origin and cartilage status (normal or OA), the
surface markers currently used for identification are not
unified. Therefore, the identification of specific markers
to effectively distinguish cells that can differentiate into
cartilage is needed.

Colony formation
Colony-forming ability is a well-recognized trait of stem/
progenitor cells that has been used extensively to
perform quantitative and functional analysis of clonal
populations of progenitors [39], and cartilage-derived
pluripotent cells have a strong clonogenic potency.
In hyaline cartilage, Dowthwaite et al. [8] defined a

colony as more than four cells and found that articular
surface cells with high affinity for fibronectin showed a
significantly enhanced colony-forming efficiency (CFE)
relative to all other cohorts. Compared to nonclonal
dedifferentiated chondrocytes, immature bovine chon-
droprogenitor cells from the metacarpophalangeal
(MCP) joints showed 2.6-fold greater telomerase activity
and significantly longer telomere lengths of chromo-
somes during long-term clonal expansion in a mono-
layer culture [40]. Williams et al. [6] found that clonal
cartilage progenitor cells isolated from human articular
cartilage could proliferate to over 60 population
doublings (PD) cultured in monolayers, taking over 200
days. Similarly, in the TMJ condyle, FCSCs formed sixfold
more colonies than CC cells [22].
Interestingly, CPCs from articular cartilage of the later

stages of human OA were also found to undergo 60 PD
in monolayer culture, with incrementally increasing time
for each doubling event [10]. Another study showed that
articular cartilage-derived CPCs from cartilage from OA
samples can be subdivided into two populations: an early
senescent population (ES-OA-CPCs) that underwent
replicative exhaustion by 30 PD and a late senescent

population (LS-OA-CPCs) that was capable of prolonged
expansion and displayed similar growth rates compared
to stem cells from normal cartilage [39]. These findings
suggested that although early senescence is an inherent
property of a subset of activated progenitors, there is
also a pool of progenitors with extended viability and
regenerative potential residing within cartilage from OA
samples.

Pluripotent differentiation
The potential for chondrogenic, osteogenic, and adipo-
genic differentiation has become a defining feature of
cartilage-derived pluripotent cells that distinguishes
them from mature chondrocytes. Progenitors from the
articular cartilage surface treated with bone morpho-
genic protein-7 (BMP-7) showed robust chondrogenesis
and produced ECM for cartilage [9]. Studies have also
found that CPCs from both normal articular cartilage
and OA-derived stem cell populations demonstrate trili-
neage differentiation into adipogenic, osteogenic, and
chondrogenic [6, 41] lineages, suggesting that stem cells
from human OA cartilage also have the potential for
cartilage repair. Koelling et al. [10] observed that CPCs
from knee joints from late-stage OA regained a round
chondrocyte-like phenotype and exhibited collagen type
II mRNA expression as well as collagen type II protein
expression 3 weeks after transfer to a 3D-alginate culture
without any chondrogenic supplementation. High
mRNA levels of sox-9 and collagen type II and low levels
of runx-2 and collagen type I were also identified in
these cells. Moreover, CPCs adhere to and are influ-
enced by ECM components, and downregulation of
runx-2 enhances their chondrogenic potential. Subse-
quently, another study showed that CD146+ chondro-
progenitors from knee joints of late-stage OA showed a
lower potential for adipogenesis and osteogenesis but a
much higher potential for chondrogenesis compared to
unsorted chondrocytes and adipose-derived MSCs, as
these CD146+ cell subpopulations showed increased
type II collagen, aggrecan, and Sox9 expression [37].
In TMJ condyles, FCSCs underwent adipogenesis,
chondrogenesis, and osteogenesis, and their individual
colonies showed heterogeneous differentiation poten-
tial (22.5% trilineage, 64.5% bilineage, and 12.9%
single lineage) [22].

Migratory ability
Migratory ability enables cartilage-derived pluripotent
cells to migrate to the injured site and repair cartilage
damage. Koellings et al. [10] detected CPCs in degener-
ated cartilage sites in late-stage OA and found that CPCs
not only migrated in vitro but also populated diseased
tissue ex vivo. Seol et al. [42] observed that CPCs mi-
grated to the site of injury caused by blunt impact or
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scratching in healthy cartilage explants from mature
cattle, and these migrating cells were highly clonogenic
and multipotent and expressed CPC-associated markers,
including CD105, CD73, CD90, CD29, CD44, Notch-1,
and Sox9. The latter study also suggested that migratory
cartilage-derived pluripotent cells might exist in healthy
cartilage.

In situ cartilage-derived pluripotent cell-based
therapies for joint cartilage repair
Articular cartilage is a type of tissue that is easily dam-
aged and difficult to repair. Currently, MSC-based ther-
apies, mainly BMSCs, are widely used to effectively
repair cartilage defects [43]. In recent years, researchers
have discovered a special population of stem cells, in situ
cartilage-derived pluripotent cells, which reside in both
healthy and injured joint cartilage/fibrocartilage tissues
and exhibit strong repair capabilities. There are two
main strategies for in situ cartilage-derived pluripotent
cell-based therapies for joint cartilage repair. One is to
transplant cartilage-derived pluripotent cell-containing
grafts into the cartilage defect, and the other is the intra-
articular injection of pluripotent cells (Table 1). Never-
theless, in situ cartilage-derived pluripotent cells display
different reparative characteristics in hyaline cartilage,
meniscus, and TMJ condyle.
When hyaline cartilage-derived pluripotent cells are

transplanted into artificially constructed cartilage defects
of the femur, high expression of type II collagen, and
cartilage-like repair tissue formation were observed, and
these results have been successfully verified in equine
[44] and goat models [6]. However, this conclusion may
not hold in some cases [45, 46]. Marcus et al. [46] dem-
onstrated that when bovine articular cartilage-derived
pluripotent cells were intramuscularly injected into a
severe-combined immunodeficient (SCID) mouse, these
cells could survive within the muscle mass but failed to
produce cartilage-like tissue despite expressing Sox9 and
type II collagen. These findings suggest that the cells
may require further signals and a more favorable envir-
onment for chondrogenic differentiation.
In culture of man-made injured meniscus explants

in vitro, meniscus-derived pluripotent cells could bridge
and reintegrate torn meniscal fibrocartilage along the
tear channel, as evidenced by the migratory ability in
response to the chemokine signaling stromal-derived
factor-1/stromal-derived factor-1 receptor (SDF-1/
CXCR4) axis, a pronounced tendency toward chondro-
genic differentiation, a greater than 100% increase in
fibrochondrocyte proliferation, the elevated expression
of Sox9 and decreased expression of type X collagen,
and the resistance to cellular hypertrophy and terminal
differentiation during the tissue repair process in a rat
[47] and a rabbit [19] model. On this basis, Jayasuriya

et al. [47] proposed that the initiation of the observed
meniscal tissue repair is possible without first forming a
blood clot, provided that an influx of stem cells is readily
available near the damage site. Furthermore, the intra-
articular injection of meniscus-derived pluripotent cells
can enhance the regeneration of the injured meniscus at
an early stage of OA, promoting neotissue formation
with an improved shape and increased mature ECM and
resulting in reduced expression of OA markers such as
type I collagen, type X collagen, and hypoxia-inducible
factor 2a (HIF-2a) but increased expression of collagen
II [17, 18]. Notably, Jiang et al. [48] discovered a class of
human chondrocyte-derived progenitor cells (CDPCs)
and transplanted them into patients with large knee car-
tilage defects, leading to reduced knee pain and swelling
and eliminating the locking sensation, which supported
the possibility of cartilage-derived pluripotent cell-based
therapies for human joint cartilage repair.
In addition to transplantation and intra-articular injec-

tion of cartilage-derived pluripotent cells, endogenous
CPCs can be exploited to initiate cartilage regeneration
and repair with drugs. Embree et al. [22] demonstrated
the therapeutic application of sclerostin (SOST) in a
rabbit model of injury to the TMJ disc and secondary
OA; this molecule is an exogeneous canonical Wnt
inhibitor, as canonical Wnt signals may be enhanced in
diseased human TMJ condylar fibrocartilage.
However, there are some drawbacks of the current

studies on cartilage-derived pluripotent cell-based ther-
apies for joint cartilage repair. One is the use of stable
cell lines because these cell lines may deviate from the
primary cells that were used to generate them in vitro.
The other is that animal cartilage is different from
human cartilage in terms of its main structural features,
including cellular distribution, vascularity, and collagen
structure. Therefore, future research should focus on the
application of cartilage-derived pluripotent cells in the
treatment of human joint cartilage diseases.

Conclusions
Stem cell-based therapy is a promising approach for
joint cartilage repair. Currently used cell sources include
autologous chondrocytes and MSCs, while in situ
cartilage-derived pluripotent cell populations, present at
target sites for cartilage repair, have become a research
hotspot in recent years to determine whether they show
improved repair of cartilage injury. These studies have
determined and analyzed the cytological features and
functions of cartilage-derived pluripotent cells, including
increased chondrogenic protein expression during cartil-
age development, surface markers, colony formation,
pluripotent differentiation, and migratory ability, to pro-
vide evidence for their ability to repair cartilage injury
compared to that of autologous chondrocytes or MSCs.
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Although many studies have demonstrated the joint car-
tilage reparative capability of in situ cartilage-derived
pluripotent cells residing in hyaline cartilage, meniscus,
and TMJ condyle, evidence from clinical trials is lacking.
Hence, the effectiveness and mechanisms of cartilage-
derived pluripotent cell-based therapies for human joint
cartilage repair remain to be further elucidated.
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