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In brief

The SARS-CoV-2 variant B.1.1.7 was

introduced to the US in early December

2020 and soon became established

within many communities. The primary

points of entry into the US are identified

as New York, California, and Florida, and

exponential growth in these states

resulted in spread to neighboring states.
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SUMMARY
The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has
become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases
associated with this variant have been detected in the United States (US) since December 2020, but the
extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight
that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore,
we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed
by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in
many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs
to be enhanced to better inform the public health response.
INTRODUCTION

The rise of SARS-CoV-2 infections to unprecedented levels in

the final months of 2020 has led to the evolution of several vari-

ants with concerning mutations or traits (Lauring and Hodcroft,

2021). One such variant, designated B.1.1.7 (also 501Y.V1),

was identified in the United Kingdom (UK) during the fall of

2020 and proceeded to predominate circulation in the region

by early 2021 (Davies et al., 2021). Subsequent analyses sug-
gested that B.1.1.7 quickly rose in frequency because it was

�43%–90% more transmissible than other circulating lineages

(Davies et al., 2021), resulting in a 0.4–0.7 increase in the effec-

tive reproductive rate in the UK (Volz et al., 2021). Further anal-

ysis of contact tracing data suggested that infections with the

B.1.1.7 variant resulted in a 30%–50% higher secondary attack

rate (PHE, 2020). The B.1.1.7 SARS-CoV-2 variant is defined by

17 amino acid changes, including 8 changes in the spike protein

(Rambaut et al., 2020). Of particular note is the N501Y mutation
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Figure 1. Identification of regions in the

United States at risk for importation of B.1.1.7

(A) County-level risk assessment of B.1.1.7 in-

troductions from air passenger travelers entering

US airports from the UK during December 2020.

Labeled are the top 15 airports in the US for pas-

senger volumes from the UK (shown in (C). The

county-level heatmap represents the probability of

where passengers travel to after arriving at each

airport (i.e., the airport catchment area, estimated

using the Huff model multiplied by the total number

of travelers entering each airport; see STAR

Methods).

(B) An expanded view of the counties in New York,

New Jersey, and Connecticut is shown to highlight

the catchment of the large numbers of UK travelers

entering the New York JFK and Newark Liberty

airports. The same legend in (A) applies to (B).

(C) The total number of passengers entering the top

15 US airports from the UK during December 2020.

See also Table S1.
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in the receptor-binding domain of the spike protein, which is pre-

dicted to increase binding to human angiotensin-converting

enzyme 2 (ACE2) receptors (Starr et al., 2020) and is also a

defining feature of other variants of concern, such as B.1.351

and P.1 (Faria et al., 2021; Lauring and Hodcroft, 2021; Tegally

et al., 2020). In addition, B.1.1.7 variants have a deletion in the

spike gene (D69/70 HV) that may increase cell infectivity (Kemp

et al., 2021) and has provided a serendipitous tracking

method for B.1.1.7 by causing a ‘‘spike gene target failure’’

(SGTF) in the commonly used Thermo Fisher TaqPath COVID-

19 Combo Kit (Borges et al., 2021; Volz et al., 2021). As of March

6, 2021, B.1.1.7 has been detected in 94 countries (https://

cov-lineages.org/global_report.html), which raises concerns

that B.1.1.7 will follow the trajectory that it took in the UK and

in other places around the world.

Current virus genomic surveillance across the United States

(US) is uneven, creating uncertainty about the extent of interna-

tional introductions, domestic spread, and community transmis-

sion of the SARS-CoV-2 variant. There have been 2,672 reported

COVID-19 cases associated with B.1.1.7 from 48 states (as of

March 6, 2021) (CDC, 2021a), but these numbers are likely sub-

stantial underestimates. Approaches to enhance depth in certain

populations and geographies may be required to address such

uncertainty. Regardless, the existing framework limits the imple-

mentation of effective public health actions, such as targeted

public health messaging and enhanced mitigation (Grubaugh

et al., 2021), and allows B.1.1.7 to spread unimpeded (Galloway

et al., 2021). The continued rise in B.1.1.7 cases may increase
2596 Cell 184, 2595–2604, May 13, 2021
the burden on the US healthcare system

and enable further evolution of mutations

of public health concern (Wise, 2021).

Here, to investigate the locations of

B.1.1.7 introductions into the US, to iden-

tify significant surveillance gaps, and to

provide evidence for community transmis-

sion and domestic spread, we combined

data from UK air travel into US airports,
SARS-CoV-2 genomic sequencing, and clinical diagnostics.

We identified where B.1.1.7 introductions were most likely to

have occurred and where surveillance for B.1.1.7 cases could

be immediately supported. Combining our work with other ana-

lyses (Washington et al., 2021), we found that B.1.1.7 became

independently established in parts of the US starting in early

December 2020, and community transmission from some of

these sources has already led to interstate spread. Finally, our

TaqPath SGTF data indicate that the frequency of B.1.1.7 is

rapidly rising, and we project that it will become the dominant

SARS-CoV-2 lineage in many states by mid- to late March

2021. Thus, enhanced surveillance and control measures are ur-

gently needed to mitigate B.1.1.7 leading to a resurgence of co-

ronavirus disease 2019 (COVID-19) in the US.

RESULTS

Locations of potential B.1.1.7 introductions from
international travelers
Throughout the COVID-19 pandemic, international travel can

seed the local establishment of new SARS-CoV-2 variants.

Thus, to obtain a relative estimate of where B.1.1.7 introductions

were most likely to occur, we analyzed air passenger travel vol-

umes from December 2020 coming into all US airports from the

initial primary source of the variant, the UK (Figure 1; showing top

15 airports). This period, December 2020, is when B.1.1.7 was

rapidly expanding in the UK (Davies et al., 2021; Volz et al.,

2021) and when we expect the first introductions to be occurring

https://cov-lineages.org/global_report.html
https://cov-lineages.org/global_report.html
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within the US.We found that the airports with the largest passen-

ger volumes as a final destination from the UK were New York

JFK (7,687), Los Angeles (3,541), Newark Liberty (3,371), Boston

Logan (3,216), Washington Dulles (2,680), and Miami (2,604)

(Figure 1C; full list shown in Data S1). We then implemented a

probabilistic choice behavior model to estimate where air pas-

sengers may travel after reaching their final airport destination

(Huber et al., 2021). Thus, by estimating the catchment of each

airport, we created a county-level risk map for where early inter-

national B.1.1.7 introductions may have occurred within the US

(Figures 1A and 1B). After summing the risks across all counties,

we predict the highest importation risks in New York, California,

Florida, Texas, New Jersey, and Massachusetts.

We focused our analysis on travelers entering the US from the

UK. For completeness, however, we also obtained air passenger

volumes from other countries that also reported B.1.1.7 cases in

December 2020: Germany, Denmark, and the United Arab Emir-

ates (https://outbreak.info/situation-reports/; Table S1). The to-

tal number of air passenger travelers from the UK to the US in

December was 45,282, which is greater than the number coming

from Germany (31,486), Denmark (5,544), and the United Arab

Emirates (15,291); and the majority of the travelers arrived at

similar airports (New York JFK, Newark Liberty, Chicago

O’Hare, Washington Dulles, and Los Angeles). Finally, the fre-

quency of B.1.1.7 was likely higher in the UK compared to other

countries during this time, and thus the risk to travelers was

greater. Therefore, we did not include other countries of origin

in our flight-based importation risk assessment as they would

be unlikely to change our findings of where B.1.1.7 importations

would occur in the US (Figure 1).

Genomic surveillance gaps and potential
underreporting of B.1.1.7 cases
As of March 6, 2021, 2,672 B.1.1.7 cases from 48 states have

been identified in the US (CDC, 2021a). These numbers, howev-

er, are likely significantly underreported, as whole-genome

sequencing is needed for B.1.1.7 confirmation. To identify where

B.1.1.7 cases may be disproportionately underreported during

the early phases of B.1.1.7 emergence in the US (Figure 2), we

evaluated the intensity of SARS-CoV-2 genomic surveillance

for each state and compared that to our flight-based risk esti-

mates of where early B.1.1.7 outbreaks may have occurred

(Figure 1).

We started by evaluating the percentage of sequenced SARS-

CoV-2 clinical samples relative to the number of reported

COVID-19 cases (Figures 2A and S1). For this, we downloaded

(1) all SARS-CoV-2 genomes available on GISAID (https://

www.gisaid.org; accessed March 4, 2021) with ‘‘USA’’ listed as

a location and (2) the total number of new COVID-19 cases for

each state from December 2020 to February 2021 (https://

covidtracking.com; accessed on March 4, 2021; Data S1). For

this 3-month period, which was crucial for B.1.1.7 introductions

and establishment, we found that an average of only 0.43% of

theUSCOVID-19 caseswere sequenced and posted onGISAID.

As sample testing, transport, sequencing, analysis, and data

submission can take multiple days to weeks, more data from

this time period will likely be available in the near future. This

delay can be seen for most states, which have a relatively lower
percentage of sequenced cases available for February than

January (Figure S1). Still, there are 24 states with less than

0.43% of the COVID-19 cases with available SARS-CoV-2 se-

quences during December 2020 to February 2021, including 9

states that have not submitted any B.1.1.7 sequences (Figure 2A

and S1; Data S1).

While a low fraction of sequenced COVID-19 cases will

certainly hinder the detection of B.1.1.7 and other variants of

concern, these data alone may not indicate where B.1.1.7 may

be disproportionately underreported. Therefore, we compared

our risk estimates of B.1.1.7 introductions using air passenger

volumes from the UK to all SARS-CoV-2 (Figure 2B; Data S1)

and B.1.1.7 (Figure 2C; Data S1) genomes sequenced per state.

Of the states receiving more than 2,000 air passengers from the

UK, we found that COVID-19 cases from New Jersey (0.17% of

cases sequenced), Illinois (0.29%), Florida (0.32%), and Virginia

(0.37%) have been sequenced below the 0.43% national

average (Figure 2B). In Florida, many of the available SARS-

CoV-2 sequences were targeted using TaqPath SGTF results,

and thus, they have sequenced 373 B.1.1.7 genomes to date,

the most in the country (Figure 2C). In places like New Jersey, Il-

linois, and Virginia, however, if SARS-CoV-2 genomic surveil-

lance could be increased, it might determine if B.1.1.7 cases

are disproportionately underreported as compared to New

York and California.

Phylogenetic evidence for multiple B.1.1.7
introductions and interstate spread
Our travel data indicated that we should have observed many

separate and sustained B.1.1.7 introductions within the US

from the UK and perhaps other international locations where

the variant may be circulating. To investigate if some of these in-

troductions led to community transmission and/or interstate

spread within the US, we combined our SARS-CoV-2

sequencing data from the US Centers for Disease Control and

Prevention (CDC; 568 sequences), Yale University (116), Univer-

sity of Michigan (45), and New York State Department of Health

(41). Our phylogenetic analysis of these sequences suggests

that there were many separate introductions into the US that

led to secondary transmission and that some sustained intro-

ductions within states were likely from domestic spread

(Figure 3).

We generated or received permission to use 770 B.1.1.7 ge-

nomes collected from December 19, 2020 to February 14, 2021

from the following states: Florida (267), California (133), Illinois

(64), New York (49), Michigan (48), Connecticut (47), Texas (45),

New Jersey (35), Georgia (33), Pennsylvania (11), North Carolina

(10), Louisiana (9), Indiana (4), Massachusetts (4), Minnesota (3),

Tennessee (3), Oklahoma (2), Colorado (1), New Hampshire (1),

and Virginia (1). Froma larger dataset of 101,079B.1.1.7 genomes

available up to February 26, 2021, we generated a smaller set of

8,864 B.1.1.7 genomes from 59 countries (7,589 from interna-

tional locations and 1,275 from the US; Figure S2) using a sub-

sampling method based on COVID-19 incidence (see STAR

Methods). We further reduced this tree to a representative set

of 1,908 genomes, which included our data and 1,139 B.1.1.7 ge-

nomes available from the UK and other countries to infer a time-

scaled maximum-likelihood phylogenetic tree. We subsequently
Cell 184, 2595–2604, May 13, 2021 2597

https://outbreak.info/situation-reports/
https://www.gisaid.org
https://www.gisaid.org
https://covidtracking.com
https://covidtracking.com


California

FloridaIllinois

Massachusetts

New Jersey

New York

TexasVirginia

0.0%

0.4%

2.5%

1.25%

5.0%

7.5%

0 2000 4000 6000 8000
Number of passengers arriving

Pe
rc

en
t o

f t
ot

al
 C

O
VI

D
-1

9 
ca

se
s

th
at

 h
av

e 
be

en
 s

eq
ue

nc
ed

C

A B

California

Florida

Illinois

Massachusetts
New Jersey

New York

Texas

Virginia
0

100

200

300

0 2000 4000 6000 8000
Number of passengers arriving

N
um

be
r o

f B
.1

.1
.7

 S
AR

S−
C

oV
−2

se
qu

en
ce

s 
on

 G
IS

AI
D

0 100 200 300

Wyoming
Maine

New Mexico
Washington

Wisconsin
Oregon
Nevada

Maryland
Utah

New York
Delaware
Michigan

North Dakota
Minnesota

Vermont
Louisiana
California

Rhode Island
Massachusetts

Colorado
Texas

Arizona
New Hampshire

Kansas
Alabama

Connecticut
Virginia

Nebraska
Florida

Missouri
Illinois

Montana
North Carolina

Georgia
West Virginia
Pennsylvania

New Jersey
Iowa

Indiana
Arkansas
Kentucky

Mississippi
Ohio

South Carolina
Oklahoma

Idaho
Tennessee

South Dakota
USA average

0.0% 2.5% 5.0% 7.5%
Percent of total COVID−19 cases
that have been sequenced (bars)

Number of B.1.1.7 sequences on GISAID (dots)

0.4%

Figure 2. Identification of genomic surveillance gaps and regions that may be disproportionately underreporting B.1.1.7

(A) Bar plot represents the percentage of cases in each state fromDecember 2020 to February 2021 (bottom x axis; sourced from https://covidtracking.com/data/

) that have sequences uploaded to https://www.gisaid.org/ (accessed March 4, 2021). Bars are colored according to region (legend, top right). The number of

B.1.1.7 sequences for each state (top x axis; black dots) was determined by the Pangolin lineage assignment in the https://www.gisaid.org/ metadata.

(B) Total number of passengers arriving from the UK in Dec 2020 to each state in the continental US (data fromHuff model in Figure 1) is plotted against the percent

of sequenced COVID-19 cases. The horizontal dashed line represents the US average (0.43%) for sequenced cases. States sequencing below the US average

with more than 2,000 passengers (vertical dashed line) are at risk for underreporting B.1.1.7 (gray box).

(C) Number of B.1.1.7 SARS-CoV-2 sequences available on https://www.gisaid.org/ for each state. Points are colored according to region (legend from A). The
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See also Figure S1.
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conducted discrete phylogeographic analysis of our fixed time-

scaled maximum-likelihood tree using a Bayesian approach (Del-

licour et al., 2020; Lemey et al., 2009) to identify descending

clades that likely represent distinct introductions into US states

(Figure 3). Furthermore, to identify B.1.1.7 introductions that likely

led to secondary community transmission, we limited our analysis

to descending clades originating in the US with (1) three or more

sequences, (2) >70 bootstrap support, and (3) >70% discrete

state probability within the US at the most recent common

ancestor (MRCA). Based on these criteria and by performing

ancestral trait reconstruction using BEAST, we found 23 distinct
2598 Cell 184, 2595–2604, May 13, 2021
B.1.1.7 introductions in the US that led to secondary transmission

(Figure 3B). From these descending clades, we estimate that the

median times to the MRCA (tMRCA) and, by proxy, the estimated

times in which B.1.1.7 became locally established occurred

throughout early December to January (Figure 3B; Data S1). Spe-

cifically, from clades with more than 15 sequences, we estimate

B.1.1.7 establishment in Florida by early December (clade

size = 243; 90% confidence interval [CI] = 2020-11-25 to 2020-

12-11), New York by mid-December (38; 2020-12-16, 2020-12-

23), Texas by mid-December (36; 2020-12-16 to 2020-12-26),

Michigan by late December (18; 2020-12-24 to 2020-12-30),

https://covidtracking.com/data/
https://www.gisaid.org/
https://www.gisaid.org/
https://www.gisaid.org/
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and New Jersey/Connecticut by early January (34; 2020-12-28 to

2021-01-06; Data S1). By comparison, Washington et al. esti-

mated the tMRCA for the Florida clade to be December 3 (95%

highest posterior probability: 2020-11-22 to 2020-12-11) (Wash-

ington et al., 2021), which is within days of our estimate. They

also document a sustained B.1.1.7 introduction into California

during early December (Washington et al., 2021), a clade with

91 genomes that can be visualized in Figure 3A, which did not

get included as an introduction in our analysis as it did not meet

our criteria of >70 bootstrap support.

We also discovered several instances of likely B.1.1.7 inter-

state spread that occurred between December 2020 and

January 2021 (Figures 3C–3H). For example, we found regional

spread within New York, New Jersey, and Connecticut (Figures

3C and 3D), which is expected based on their connectedness

among travelers (Figure 1B), and that New York was a regional

‘‘hub’’ for SARS-CoV-2 spread during the early pandemic (Gon-

zalez-Reiche et al., 2020; Maurano et al., 2020). We also found

evidence for regional spread between Texas and Louisiana (Fig-

ure 3E) and from Florida to several other states in the Southeast

US (Figure 3G), which is further supported by independent find-

ings of a ‘‘Southeast’’ B.1.1.7 clade (Washington et al., 2021).

Finally, our data suggest that out-of-region spread has also

occurred from the New York/New Jersey/Connecticut region

to Michigan (Figure 3D; tMRCA 90% CI, 2020-12-24 to 2021-

01-07) and from Florida to Illinois (Figure 3H; 2020-12-25 to

2021-01-01). Additional examples can be found by exploring

our full dataset (https://nextstrain.org/community/grubaughlab/

CT-SARS-CoV-2/paper5).

Our estimates of international and domestic introductions, how-

ever, can be significantly influenced by sampling biases and gaps,

sequencing and processing errors, and the imperfection of esti-

mating transitions between locations among sequences with low

genetic diversity. Moreover, based on the low rate of sequencing

of COVID-19 cases in the US (Figure 2A), the true number of inter-

national and domestic introductions are likely significantly higher

than what we report. Importantly, though, our results inform us

that many sustained B.1.1.7 introductions occurred throughout

the country, with some likely occurring weeks before the first

COVID-19 cases associated with B.1.1.7 were reported in the

US during late December (Zimmer and Pietsch, 2020).

Diagnostic evidence for increased community
transmission of B.1.1.7
Our phylogenetic analysis and those by our colleagues (Wash-

ington et al., 2021) indicate that the B.1.1.7 introductions that

led to community transmission in the US began around early

December 2020 (Figure 3). To investigate if B.1.1.7 has

increased in frequency since these introductions, we used the
(B) Exploded tree layout, highlighting clades with three or more taxa, bootstrap va

0.7 (values at the root), representing independent international introductions of B.1

in (A). A list of international transitions to the US can be found in Data S1.

(C–H) Time-informedmaximum likelihood phylogeny of distinct B.1.1.7 clades sho

spread. The list of SARS-CoV-2 sequences used in this study and author acknow

found in Figures S2, S3, S4, and S5. For comparison, an interactive phylogenet

custom Nextstrain build: https://nextstrain.org/community/grubaughlab/CT-SAR

See also Figures S3, S4, and S5.
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TaqPath assay SGTF results from COVID-19 clinical samples

(Figure 4). As the spike gene D69/70 HV deletion in B.1.1.7 ge-

nomes causes SGTF results when using the TaqPath assay,

tracking the occurrence of SGTF can provide an indirect mea-

sure of changes in B.1.1.7 population frequency (Borges et al.,

2021; Volz et al., 2021). Our SGTF data suggest that B.1.1.7 is

increasing in frequency in all four states investigated (Connecti-

cut, New York, New Jersey, and Illinois) and will likely become

the majority SARS-CoV-2 lineage between mid- and late March

2021, in line with other estimates (Washington et al., 2021).

We obtained 422,330 TaqPath COVID-19 RT-PCR test results

performed by Tempus and Yale New Haven Hospital clinical

diagnostic laboratories from December 2020 through February

2021 on nasal swab samples collected from four states: Illinois

(183,077 tests), Connecticut (139,403), New Jersey (58,675),

and New York (41,175). The weekly SARS-CoV-2 test positivity

rate varied across the states and months, but all were high

(>8%) in late December to early January (Figure 4A; Data S1).

From our tested samples from Illinois and Connecticut, we saw

a notable decrease in the percentage of SARS-CoV-2-positive

test results that follow the national trends.

Among the positive test results, the frequency of SGTF results

remained low (<2%) until late January when they dramatically

rose to 10%–25% across all states by late February (Figure 4B).

During January 2021, only 47% (54/116) of the SGTF samples

presented in Figure 4B that we sequenced were identified as

B.1.1.7, while the majority were SARS-CoV-2 lineage B.1.375,

which also has the spike gene D69/70 HV deletion that causes

SGTF (Larsen and Worobey, 2020; Moreno et al., 2021). In

February, however, we found that 90% (254/282) of the SGTF

samples that we sequenced were B.1.1.7, including 100%

(147/147) from February 15 to 23. Thus, the proportion of

SARS-CoV-2-positive samples generating a SGTF result are

on the rise across several states, and SGTF is becoming a

near-direct measure of B.1.1.7.

Next, we wanted to estimate when we should expect B.1.1.7

to become the majority SARS-CoV-2 lineage among the tested

populations represented by our data. We fit our SGTF data to

a logistic regression model showing an exponential increase in

the percentage of SGTF results among the positive test results,

representing an exponential growth of B.1.1.7 across all sites

(Figure 4C). From this analysis, we estimate that SGTF results

will reach the 50% threshold during the week of March 7, 2021

in Connecticut, March 21 in New York, and March 28 in Illinois

and New Jersey. Furthermore, we estimate that SGTF results,

and by proxy B.1.1.7, will reach the 75% threshold of positive

cases �2 weeks later. Thus, by mid-April, parts of the COVID-

19 pandemic in the US will be dominated by the transmission

properties of B.1.1.7.
lues (UFBoot) >70 (small circles), and US ancestral state probability at MRCA >

.1.7 into distinct regions of the US, based on the same phylogenetic tree shown

wing instances of intra-region (C–E, and G) and inter-region (D andH) domestic

ledgments can be found in Data S2. Supporting phylogenetic analysis can be

ic tree, inferred using IQ-Tree and TreeTime only, can be accessed from our

S-CoV-2/paper5.

https://nextstrain.org/community/grubaughlab/CT-SARS-CoV-2/paper5
https://nextstrain.org/community/grubaughlab/CT-SARS-CoV-2/paper5
https://nextstrain.org/community/grubaughlab/CT-SARS-CoV-2/paper5
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Figure 4. Increasing frequency of weekly

spike gene target failure (SGTF) results

across four US states

(A) The weekly positivity rate of SARS-CoV-2

testing for four states (legend, B) since the first

week of December 2020, calculated as the number

of positive test results (including SGTF) divided by

total tests.

(B) The percentage of weekly positive test results

that have SGTF are shown for the same time period

and states from A (legend, top left).

(C) The weekly percentage of SGTF data from (B) fit

to a logistic regression model (see STAR Methods)

to project the week in which we estimate SGTF

results, and by proxy B.1.1.7, will cross the 50%

and 75% thresholds for each state population.

The color schemes shown in (A)–(C) match the color

schemes used in Figures 2 and 3. The data used to

create this figure are listed in Data S1.
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DISCUSSION

Despite travel restrictions and increased testing requirements,

we found evidence for a large number of independent B.1.1.7 in-

troductions into the US, many of which have led to secondary

community transmission. Incoming air passenger volumes

from the UK predict that New York, California, and Florida would

be at highest risk for importation, and finding the earliest B.1.1.7

introductions (Washington et al., 2021) and the high numbers of

B.1.1.7 sequences from these states agree with that hypothesis.
Indeed, our phylogenetic analyses

suggest that in addition to separate intro-

duction events, B.1.1.7 became indepen-

dently established across the country

starting in early December 2020, weeks

before the first reported case in the US

on December 29, 2020 (Zimmer and

Pietsch, 2020). Around the same time,

we found several examples of within-re-

gion interstate spread of B.1.1.7 in the

Northeast, Southeast, and Southern US

and some examples of out-of-region

spread from the Northeast and Southeast

to the Midwest. This period of ‘‘silent’’

spread across the US is reminiscent of

the early 2020 COVID-19 pandemic in

the US when diagnostic testing was low

(Fauver et al., 2020). Overall, our data

highlight the relative ease with which

SARS-CoV-2 variants can spread unde-

tected throughout the US, particularly in

areas where genomic surveillance efforts

are minimal.

COVID-19 cases associated with the

B.1.1.7 variant are likely significantly under-

reported across theUS. This is because, as

a whole, only �0.43% of the COVID-19

cases in the US were sequenced from
December 2020 to February 2021, which included the period

with the highest case rates in the country. The sequencing capac-

ity is highly variable across the country, and our travel data help to

identify regions that may be disproportionately underreporting

casesofB.1.1.7 andwhere itwould beprudent to immediately pri-

oritize variant surveillance.States suchasNewJersey, Illinois, and

Virginia receivedmoderately high levels ofUK travel yet reported a

low proportion of sequenced COVID-19 cases from recent

months, presenting the likelihood that B.1.1.7 is significantly

underdetected in these regions.
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It is estimated that 5% of the COVID-19 cases should be

sequenced to detect emerging variants when they exist at a

prevalence of 0.1% to 1.0% (Vavrek et al., 2021).With the nation-

wide decrease in COVID-19 cases since reaching a new peak in

early January 2021 and the initiatives to increase the capacity of

SARS-CoV-2 sequencing within state public health laboratories

(CDC, 2021b), there should be a considerable increase in the

proportion of COVID-19 cases sequenced in the US during com-

ing months. However, we should not expect an immediate jump

to that 5% threshold, and we will need to supplement

sequencing with other more conventional laboratory ap-

proaches. In the UK, the frequency of B.1.1.7 was primarily

tracked across locations using SGTF results from the TaqPath

COVID-19 PCR assay (Borges et al., 2021; Volz et al., 2021).

Here, we also demonstrate how SGTF data can help to provide

insights on B.1.1.7 population frequency changes and how these

results can help to prioritize samples for sequencing. In fact,

Florida also received a high volume of UK travel (ranked #3 in

the US) and has a low overall rate of virus sequencing (0.32%

of cases sequenced, ranked #29), but targeted sequencing of

SGTF samples has helped identify a large number of B.1.1.7

cases in this state (373, ranked #1) (Washington et al., 2021).

While TaqPath SGTF results are not definitive for B.1.1.7 (Larsen

and Worobey, 2020; Moreno et al., 2021), as its frequency

climbs, SGTF data become closer to a proxy for B.1.1.7 pres-

ence. Thus, the TaqPath clinical diagnostic assay, plus

research-use only PCR assays that are more specific for

B.1.1.7 detection (and can also detect other current variants of

concern) (Vogels et al., 2021), could provide immediate data to

guide public health decision-making, especially in areas where

B.1.1.7 cases may be disproportionately underestimated.

The SARS-CoV-2 B.1.1.7 variant of concern has become es-

tablished in many states within the US. Our data and those of

our colleagues (Washington et al., 2021) indicate that B.1.1.7 is

expanding at an exponential rate and that it will be the dominant

SARS-CoV-2 lineage in many places across the US by March or

April 2021. While surveillance gaps across the US mean that

some communities do not have direct evidence for local

B.1.1.7 emergence, it should be assumed that community

B.1.1.7 transmission is widespread. With several US states

announcing loosening restrictions on gatherings (including res-

taurants), restrictions on travel, and/or mask requirements, and

with sufficient COVID-19 vaccine coverage to reach population

immunity still many months away (summer/fall 2021), the near-

term impact of B.1.1.7 may be significant. We must use this

opportunity to reinforce communications and messaging sur-

rounding the importance of mitigation measures to prevent this

variant from exacerbating an already crippling pandemic (Gru-

baugh et al., 2021). In reality, it is difficult to implement newmea-

sures without supporting data, especially if they impact schools

or businesses. Thus, increasing surveillance for B.1.1.7 and

other variants through sequencing and more conventional

methods should be made a high priority (CDC, 2021b).

Limitations of the study
Our study has important limitations. First, our importation risk

analysis did not account for the likelihood of transmission among

the different regions in the US. As COVID-19 cases were at or
2602 Cell 184, 2595–2604, May 13, 2021
near their peak across the country, our assumption was that

transmission potential was high everywhere, and that the

numbers of potentially infected travelers were a more significant

factor. In reality, local conditions and behaviors play an impor-

tant role for B.1.1.7 establishment, and could explain why

B.1.1.7 cases are low in some states as opposed to surveillance

deficiencies. Second, while we provide substantial evidence for

several independent introductions, increased community trans-

mission, and domestic spread, the significant undersampling

that we discuss throughout this manuscript highlights that these

events are likely underestimated. As we generate more data, we

will be able to reveal additional insights into the patterns of

B.1.1.7 spread across the US and the level to which B.1.1.7

will achieve dominance in different regions.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Clinical samples Multiple labs, see Table S2 https://github.com/grubaughlab/

paper_2021_B117-US

Critical commercial assays

SuperScript IV VILO Master Mix ThermoFisher 11756050

Q5 High-Fidelity 2X Master Mix New England BioLabs M0492S

Qubit High Sensitivity dsDNA kit ThermoFisher Q32851

Mag-Bind TotalPure NGS Omega Bio-Tek M1378-01

Ligation Sequencing Kit Oxford Nanopore Tech SQK-LSK109

Native Barcoding Kit Oxford Nanopore Tech EXP-NBD114

R9.4.1 Flow cell Oxford Nanopore Tech FLO-MIN106D

Blunt/TA Ligase Master Mix New England BioLabs MO367L

NEBNext Ultra II End Repair/dA-

Tailing Module

New England BioLabs E7546S

NEBNext Quick Ligation Module New England BioLabs E6056S

Invitrogen PureLink Pro 96 Viral

RNA/DNA Purification Kit

ThermoFisher 12280096A

QIAamp Viral RNA Mini kit QIAGEN 52904

AMPure XP beads Beckman-Coulter A63881

MagMAX viral/pathogen

nucleic acid isolation kit

ThermoFisher A42352

NEBNext Ultra II DNA Library Prep Kit New England BioLabs E7645S

Viral NA Small Volume Kit Roche 06543588001

Quant-IT dsDNA Assay Kit ThermoFisher Q33232

Nextera DNA Flex Library Prep Kit Illumina 20018704

Applied Biosystems TaqPath

COVID-19 Combo Kit

ThermoFisher A47814

Deposited data

Data S1 and S2 This paper https://github.com/grubaughlab/

paper_2021_B117-US

Oligonucleotides

IDT V3 ARTIC primer set IDT N/A

Variant qPCR screening assay N/A Vogels et al., 2021

Software and algorithms

R CRAN https://cran.r-project.org/

IQ-Tree 1.6.12 http://www.iqtree.org/ Minh et al., 2020

TreeTime 0.8.0 https://github.com/neherlab/treetime Sagulenko et al., 2018

TempEst http://tree.bio.ed.ac.uk/software/tempest/ Rambaut et al., 2016

TreeAnnotator https://beast.community/treeannotator Rambaut et al., 2018

BEAST v1.10 http://beast.community Suchard et al., 2018

BWA https://github.com/lh3/bwa Li and Durbin, 2010

MAFFT https://mafft.cbrc.jp/alignment/software/ Katoh and Standley, 2013

iVar 1.2.1 https://github.com/andersen-lab/ivar Grubaugh et al., 2019

Samtools http://samtools.sourceforge.net/ Li et al., 2009

(Continued on next page)
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TrimGalore https://github.com/FelixKrueger/

TrimGalore

https://github.com/FelixKrueger/

TrimGalore

RAMPART ARTIC Network https://github.com/artic-network/rampart

ARTIC Network Bioinformatic protocol ARTIC Network https://artic.network/ncov-2019/

ncov2019-bioinformatics-sop.html

Nextstrain https://nextstrain.org/ Hadfield et al., 2018

Huff model N/A Huff, 1963, 2003

Subsampler This paper https://github.com/

andersonbrito/subsampler

baltic 0.1.5 https://github.com/evogytis/baltic https://github.com/evogytis/baltic

ggplot2 CRAN Wickham, 2016

choroplethr CRAN Lamstein et al., 2020

maps CRAN Becker et al., 2018

anytime CRAN https://cran.r-project.org/web/

packages/anytime/index.html

forcats CRAN https://cran.r-project.org/web/

packages/forcats/index.html

scales CRAN https://cran.r-project.org/web/

packages/scales/index.html

Other

Amplicon sequencing protocol PrimalSeq Quick et al., 2017

Flight volume data OAG Aviation Worldwide Ltd. OAG Traffic

Analyzer, Version 2.5.11 2020

https://analytics.oag.com/

analyzer-client/home
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for data, resources, and reagents should be directed to and will be fulfilled by the Lead Contact,

Nathan D. Grubaugh (nathan.grubaugh@yale.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data used to produce all of the figures are included in Data S1 and Data S2 and on http://github.com/grubaughlab/

paper_2021_B117-US along with all code used for analyses. The subsampling pipeline can be found on http://github.com/

andersonbrito/subsampler. Genomic data are available on GISAID (see Data S2 for accession numbers). The air passenger

data used in this study are proprietary and were purchased from OAG Aviation Worldwide Ltd. These data were used under

the United States Centers for Disease Control and Prevention license for the current study and so are not publicly available.

The authors are available to share the air passenger data upon reasonable request and with the permission of OAG Aviation

Worldwide Ltd.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
The Institutional Review Board from the Yale University Human Research Protection Program determined that the RT-qPCR testing

and sequencing of de-identified remnant COVID-19 clinical samples obtained from clinical partners conducted in this study is not

research involving human subjects (IRB Protocol ID: 2000028599).

Residual nasopharyngeal and saliva specimens from individuals who tested positive for SARS-CoV-2 by RT-PCR were obtained

from the Michigan Medicine Clinical Microbiology Laboratory, University (of Michigan) Health Services, and LynxDx (Ann Arbor, MI).

This work was approved by the University of Michigan Institutional Review Board (IRB Protocol ID: HUM185966), Expanded

sequencing in January 2020 was performed as part of a public health investigation.
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Residual portions of respiratory specimens from individuals who tested positive for SARS-CoV-2 by RT-PCR were obtained from

the Wadsworth Center and partnering clinical laboratories. This work was approved by the New York State Department of Health

Institutional Review Board, under study numbers 02-054 and 07-022.

This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy.

METHOD DETAILS

Flight volumes and maps
The flight travel volume data were provided by OAG Aviation Worldwide Ltd. OAG Traffic Analyzer, Version 2.5.11 2020 (http://

analytics.oag.com/analyzer-client/home; accessed 2020-02-22). Travel volume numbers are modeled estimates based on ticket

sales and reporting from airline carriers. Travel volume represents the aggregate number of passenger journeys, not necessarily

unique individuals. A subset of the available data was used only to capture flights whose origin was the UK and whose final desti-

nation was an airport in the US for flights that occurred in December 2020.The map presented in Figures 1A and 1B, which shows

the approximate final destinations of the estimated number of people per county who flew into the top 15 airports in the US on flights

inbound from the UK in December 2020 and overlaid onto a map of the US, was generated using R, with the maps, choroplethr, and

ggplot2 packages (Becker et al., 2018; Wickham, 2016). The UK inbound flight volume data per airport in the US are displayed in

Figure 1C. These data were also used to calculate the total travelers from the UK per state and was used to generate Figures 2B

and 2C.

Sample selection, screening, and sequencing
Yale University

Sample selection and RNA extraction. Samples were received in partnership with various clinical laboratories as either purified RNA

or original nasal swab in viral transport media. Samples were screened for S-gene target failure (SGFT) using the Thermo Fisher Taq-

Path COVID-19 Combo Kit diagnostic assay prior to receipt at Yale. Nucleic acid was extracted from original samples (300 mL) using

theMagMAX viral/pathogen nucleic acid isolation kit (Thermo Fisher) and eluted into 75 mL. All RNAwas then screened again using an

assay developed by our laboratory that is specific for variants of concern (Vogels et al., 2021). Samples identified by the screen as

potential variants were then prioritized for sequencing. Multiple extraction controls were included for each RNA extraction batch and

tested negative for SARS-CoV-2 RNA by the same assay.

Oxford Nanopore library preparation and sequencing. RNA extracted from positive samples served as the input for an amplicon-

based approach for sequencing on the Oxford Nanopore Technologies (ONT; Oxford, United Kingdom) MinION (Quick et al.,

2017). Sequencing libraries were prepared using the ONT Ligation Sequencing Kit (SQK-LSK109) and the ONT Native Barcoding

Expansion pack as described in the ARTIC Network’s protocol with V3 primers (IDT) (Quick, 2020) with the following modifications:

cDNA was generated with SuperScriptIV VILO Master Mix (Thermo Fisher Scientific, Waltham, MA, USA), all amplicons were gener-

ated using 35 cycles of amplification, amplicons were then normalized to 15 ng for each sample, end repair incubation time was

increased to 25 min followed by an additional bead-based clean up, and all clean up steps used a ratio of 1:1 beads:sample. No-

template controls were introduced for each run at the cDNA synthesis and amplicon synthesis steps and were taken through the

entire library preparation and sequencing protocol to detect any cross-contamination. For each control in each run, less than

1,000 total reads were observed. A subset of reads in control samples aligned to the SARS-CoV-2 genome, although no position

of the genome had greater than 20 reads i.e., enough data to influence the generation of a consensus genome. 25 ng of the final library

was loaded on a MinION R9.4.1 flow cell and sequenced for approximately 8-10 hours.

Bioinformatics processing. The RAMPART application from the ARTIC Network was used to monitor approximate genome

coverage for each sample and control in real time during the sequencing run (http://github.com/artic-network/rampart). Fast5

files were basecalled using the Guppy basecaller 4.4.0 fast model and consensus genomes were generated according to the

ARTIC bioinformatic pipeline (http://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html) which uses Nanopolish to call

variants (Loman et al., 2015). A threshold of 20x coverage was required for each amplicon to be included in the consensus

genome.

University of Michigan

Sample selection and amplicon generation. All available specimens in the month of January were prepared for sequencing. Resid-

ual transport media or saliva was centrifuged at 1200 x g. and aliquoted. For nasopharyngeal and sputum specimens, RNA was ex-

tracted with the Invitrogen PureLink Pro 96 Viral RNA/DNA Purification Kit (200 mL of input sample eluted in 100 mL) or the QIAamp

Viral RNAMini kit (140 mL of input sample eluted in 50 mL). For saliva specimens, RNAwas extracted with the Thermo Fisher MagMAX

Viral RNA Isolation Kit (200 mL of input sample eluted in 50 mL). Extracted RNA was reverse transcribed with SuperScript IV (Thermo

Fisher). For each sample, 1 mL of random hexamers and 1 mL of 10 mM dNTP were added to 11 mL of RNA, heated at 65�C for 5 min,

and placed on ice for 1 min. Then a reverse transcription master mix was added (4 mL of SuperScript IV buffer, 1 mL of 0.1M DTT, 1 mL

of RNaseOUT RNase inhibitor, and 1 mL of SSIV reverse transcriptase) and incubated at 42�C for 50 min, 70�C for 10 min, and held at

4�C. SARS-CoV-2 cDNA was amplified in two multiplex PCR reactions with the ARTIC Network version 3 primer pools and protocol.
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Viral cDNA was amplified with the Q5 Hot Start High-Fidelity DNA Polymerase (NEB) with the following thermocycler protocol: 98�C
for 30 s, then 35 cycles of 98�C for 15 s, 63�C for 5 min, and final hold at 4�C. Reaction products for a given sample were pooled

together in equal volumes.

Illumina library preparation and sequencing. Pooled PCR product was purified with 1X volume of AMPure beads (Beckman-

Coulter). Sequencing libraries were prepared with the NEBNext Ultra II DNA Library Prep Kit (NEB) according to the manufacturer’s

protocol. Barcoded libraries were pooled in equal volume and extracted with a 1% agarose gel to remove adaptor dimers. Pooled

libraries were quantified with the Qubit 1X dsDNA HS Assay Kit (Thermo Fisher). Libraries were sequenced on an Illumina MiSeq (v2

chemistry, 2x250 cycles) at the University of Michigan Microbiome Core facility. Reads were aligned to the Wuhan-Hu-1 reference

genome (GenBank MN908947.3) with BWA-MEM version 0.7.15. Sequencing adaptors and amplification primer sequences were

trimmed with iVar 1.2.1. Consensus sequences were called with iVar 1.2.1 by simple majority at each position (> 50% frequency),

placing an ambiguous N at positions with fewer than 10 reads.

Oxford Nanopore library preparation and sequencing. After multiplex PCR amplification, libraries were prepared for sequencing

with the Oxford Nanopore Technologies MinION using the ARTIC Network version 3 protocol (Quick, 2020). Samples were prepared

in batches of 24 with one-pot native barcoding. Pooled PCR products were diluted in nuclease-free water with a dilution factor of 10.

Amplicon ends were prepared for ligation with the NEBNext Ultra II End Repair/dA-Tailing Module (NEB). Unique barcodes (Oxford

Nanopore Native Barcoding Expansion kits) were ligated per sample with the NEB Blunt/TA Ligase Master Mix. After barcoding, re-

actions were pooled together in equal volumes and purified barcoded amplicons with 0.4X volume of AMPure beads. Oxford Nano-

pore sequencing adapters were ligated with the NEBNext Quick LigationModule (NEB) and the library was purified with 1X volume of

AMPure beads. Final libraries were quantified with the Qubit 1X dsDNA HS Assay Kit (Thermo Fisher). Each library (15-20 ng) was

loaded onto a flow cell (FLO-MIN106) and sequenced with the MinION.

Bioinformatics processing. Sequencing progress was monitored with RAMPART. Basecalling was performed with Guppy v4.0.14

and consensus genomes were called using the ARTIC Network bioinformatics pipeline (http://artic.network/ncov-2019/

ncov2019-bioinformatics-sop.html).

New York State Department of Health, Wadsworth Center

Sample selection andRNA extraction. Respiratory swabs in viral transport mediumpreviously identified as SARS-CoV-2 positive by

real-time RT-PCRwere selected for sequencing, and included specimens received and tested in theWadsworth Virology Laboratory

and those submitted by clinical laboratories. An enhanced surveillance program was initiated in December 2020 and included retro-

spective sequencing of positive samples dating back to September 2020. Samples were generally required to have real-time Ct

values less than 30 and minimal residual volumes of 100 mL. Most nucleic acid extractions were performed on a Roche MagNAPure

96 with the Viral NA Small Volume Kit (Roche, Indianapolis, IN) with 100mL sample input and 100mL eluate. Samples of special

concern with Ct values in the low 30 s were extracted on a NUCLISENS easyMAG instrument (bioMerieux, Durham, NC) with

1,000 mL sample input and 25 mL eluate.

Illumina library preparation and sequencing. Extracted RNA was processed for whole genome sequencing with a modified ARTIC

protocol (http://artic.network/ncov-2019) in the Applied Genomics Technology Core at the Wadsworth Center. Briefly, cDNA was

synthesized with SuperScript IV reverse transcriptase (Invitrogen, Carlsbad, CA, USA) and random hexamers. Amplicons were

generated by pooled PCR with two premixed ARTIC V3 primer pools (Integrated DNA Technologies, Coralville, IA, USA). Additional

primers to supplement those showing poor amplification efficiency (http://github.com/artic-network/artic-ncov2019/tree/master/

primer_schemes/nCoV-2019) were added separately to the pooled stocks. PCR conditions were 98�C for 30 s, 24 cycles of 98�C
for 15 s/63�C for 5 min, and a final 65�C extension for 5 min. Amplicons from pool 1 and pool 2 reactions were combined and purified

by AMPure XP beads (Beckman Coulter, Brea, CA, USA) with a 1X bead-to-sample ratio and eluted in 10mM Tris-HCl (pH 8.0). The

amplicons were quantified using Quant-IT dsDNA Assay Kit on an ARVO X3 Multimode Plate Reader (Perkin Elmer, Waltham, MA,

USA). Illumina sequencing libraries were generated using the Nextera DNA Flex Library Prep Kit with Illumina Index Adaptors and

sequenced on a MiSeq instrument (Illumina, San Diego, CA, USA).

Oxford Nanopore library preparation and sequencing. RNA was processed using the same ARTIC V3 protocol as described for Il-

lumina library preparation. MinION libraries for up to 24 samples were generated according to the COVID-19 PCR tiling protocol

(ONT). Native barcodes (ONT EXP-NBD104 and EXP-NBD114) were ligated to each DNA sample with NEB Blunt/TA Ligase Master

Mix. Amplicons were pooled and purified using 0.4X AMPure XP beads and short-fragment buffer (ONT EXP-SFB001). Oxford Nano-

pore sequencing adapters were ligated with NEBNext Quick Ligation Module (NEB) and libraries were purified with 0.4X AMPure XP

beads. About 15-25ng of each library was loaded on a FLO-MIN106 flowcell and sequenced with the MinION. Basecalling was per-

formed by Guppy v4.2.3.

Bioinformatics processing. Illumina libraries were processed with ARTIC nextflow pipeline (http://github.com/connor-lab/

ncov2019-artic-nf/tree/illumina, last updated April 2020). Briefly, reads were trimmed with TrimGalore (http://github.com/

FelixKrueger/TrimGalore) and aligned to the reference assembly MN908947.3 (strain Wuhan-Hu-1) by BWA (Li & Durbin 2010).

Primers were trimmed with iVar (Grubaugh et al., 2019) and variants were called with samtools mpileup function (Li et al., 2009),

the output of which was used by iVar to generate consensus sequences. Positions were required to be covered by a minimum depth

of 50 reads and variants were required to be present at a frequency R 0.75. Consensus sequences were generated by the ARTIC

bioinformatic pipeline v1.1.3 with Medaka variant calling (http://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html) for

Oxford Nanopore libraries.
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Centers for Disease Control and Prevention

COVID-19 clinical samples sequenced by the CDC or sponsored by the CDCwere generated for other purposes and shared with our

teams via GISAID (gisaid.org). See elsewhere for some of the sequencing methodology and data processing (Washington

et al., 2021).

COVID-19 PCR testing and SGTF determination

Routine clinical COVID-19 diagnostic testing was performed in Clinical Laboratory Improvement Amendments of 1988 (CLIA) regu-

lated laboratories at Yale University, Yale New Haven Hospital, and Tempus Labs following Emergency Use Authorization protocols

submitted to the US Food and Drug Administration for use of the Applied Biosystems TaqPath COVID-19 Combo Kit (catalog number

A47814). SGTF results were defined as any SARS-CoV-2 positive sample with N or ORF1AB Ct < 30 and S gene undetermined. The

data were aggregated on a week and state level for surveillance purposes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Airport catchment model
The Huff model is a probabilistic approach which is traditionally used to determine the probability that a given population will go to a

specific service location (Huff, 1963, 2003). Recently it has been applied to determine airport catchment areas, i.e., the location

someone will go after arriving at a certain airport (Huber et al., 2021). This approach incorporates the distance from an airport to sur-

rounding counties (or other geographical units such as census tract) and the attractiveness of that airport. The Huff model is repre-

sented as (Huff, 2003):

Pij =

Sa
j

Db

ij

Pn
i =1

Sa
j

Db

ij
Where Pij represents the probability that individuals that arrive at a
irport j will go to county i, Sj is ameasure of attractiveness for airport

j, Dij is the distance from county i to airport j,a is an airport attractiveness exponent, and b is the distance decay exponent. As a proxy

for Sj we use the number of passengers arriving at airport j from the United Kingdom in December 2020. Based on previous analysis

optimizing the Huff model for airport catchment models, we set a to 1 and b to 2.

Huber and Rinner recommended the use of a distance cut-off so that the catchment area represents a reasonable maximum dis-

tance that a person would be willing to travel from an airport (Huber and Rinner, 2020). We selected a distance cut-off of 200km,

because this represents a conservative estimate of which counties surrounding each airport are most likely for people to travel to

once they deplane (Huber et al., 2021). Using flight data from OAG, we selected airports in the US that received at least one percent

of the total passengers from the UK in December 2020. We utilized a Huff model for each of these airports, and combined these re-

sults to estimate the approximate number of people in the counties surrounding the airports that traveled from the UK. These results

are displayed in Figures 1A and 1B.

Phylogenetic analysis
To perform phylogenetic analyses, we initially built a dataset containing only B.1.1.7 genomes (genomes, n = 101,079) based on data

available up to February 26, 2021 on GISAID (gisaid.org). Since the proportion of B.1.1.7 cases is not known for most countries, we

subsampled this set of genomes according to the proportion of overall COVID-19 cases reported per epidemiological week in each

country, using data from the Johns Hopkins University, Center for Systems Science and Engineering (CSSE) (http://github.com/

CSSEGISandData/COVID-19). The subsampling was performed using the pipeline ‘subsampler’ (http://github.com/andersonbrito/

subsampler), which selected available genomes simulating a scenario of 0.1% of sequenced cases per epiweek, per country.

This allowed us to obtain a dataset with 8,864 B.1.1.7 genomes from 59 countries (7,589 international, and 1,275 from the US, all

with coverage above 70%), representative of the COVID-19 burden revealed by the epidemiological time series data from each

country. As part of this dataset, there were 770 genomes that we sequenced from 20 US states from 2020-12-19 to 2021-02-14, pro-

vided by the CDC (568), New York State Department of Health (41), University of Michigan (45), and Yale University (116). The B.1.1.7

samples sequenced by the CDC were generated for public health surveillance, and we received direct permission to download the

sequences from GISAID for primary analysis. The final dataset was composed by 8,864 B.1.1.7 genomes, and one P.1 genome to

root the tree, serving as an outgroup (Brazil/AM-20842882CA/2020). The complete list of genomes, with author acknowledgments,

can be found in Data S2.

Using an augur pipeline (Hadfield et al., 2018), we performed multiple sequence alignment (MSA) using MAFFT (Katoh and Stand-

ley, 2013), and the 50 and 30 ends of the MSA were masked alongside other problematic sites (De Maio et al., 2020) using a script

provided with the pipeline. A quick maximum likelihood analysis was performed using IQ-Tree (Minh et al., 2020) under a GTR nucle-

otide substitution model. Inference of divergence times and reconstruction of ancestral states were performed using TreeTime 0.8.0

(Sagulenko et al., 2018). This preliminary analysis aimed at determining the placement of the US B.1.1.7 genomes with respect to

international samples (Figure S2), and at removing major molecular clock outliers (n = 34) deviating more than 4 interquartile ranges

from the root-to-tip regression line. This phylogeny was then used for identifying large clades containing only genomes of European
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or Global origin, which were then individually pruned down to contain only three representatives per clade. This procedure dramat-

ically decreased the total number of genomes in the dataset from 8,864 to 1,913, while still keeping the same overall topology. The

smaller dataset (1,913 B.1.1.7 genomes) was then run through the same pipeline as described above, but with 1,000 UFBoot

replicates during tree inference using IQ-Tree (Minh et al., 2013). This tree served as input for a root-to-tip analysis using TempEst

(Rambaut et al., 2016), where 5 outliers with residual above ± 0.0002 subs/site were removed (Figure S3). With a clean set of 1,908

genomes, we proceeded with the inference of the final time-scaled tree using TreeTime (Sagulenko et al., 2018).

Finally, using the time-scaled maximum-likelihood tree as a fixed topology, we performed Bayesian inference of ancestral states

(discrete phylogeographic reconstruction) using BEAST v.1.10 (Suchard et al., 2018), for 15x106 generations, sampling every 1,000

generations, which led toMCMCconvergence and goodmixing, with all parameters showing ESS > 200when assessed using Tracer

1.7 (Rambaut et al., 2018). After discarding 10%of the sampled trees as burn-in, we used TreeAnnotator to obtain the final tree, iden-

tical to the TreeTime output, but with ancestral states inferred by BEAST. We visualized this time-scaled maximum-likelihood

phylogeny using auspice (Hadfield et al., 2018), which can be found on our custom nextstrain page: http://nextstrain.org/

community/grubaughlab/CT-SARS-CoV-2/paper5. We combined bootstrap support and Bayesian inference of ancestral states

with our time-scaled maximum-likelihood tree shown in Figure 3 using baltic (https://github.com/evogytis/baltic). To identify inde-

pendent, international introductions of B.1.1.7 in the US, we selected well supported clades (UFBoot > 70; MRCA discrete state

probability > 0.7) with 3 or more taxa and represented these clades in Figure 3B using the ‘‘exploded tree view’’ from baltic

(http://phylo-baltic.github.io/baltic-gallery/basic-exploded-tree-flu/), to highlight changes in ancestral state (International origin >

USA). The clades shown in Figures 3C–3G are zoom highlights from the large tree shown in Figure 3A.

To externally validate the timescale and tMRCA estimates from TreeTime, we utilized the dataset used in the inference of the

Bayesian MCC tree generated by Washington et al. (https://github.com/andersen-lab/paper_2021_early-b117-usa) to reconstruct

a similar time-resolved phylogeny using TreeTime for comparison. We analyzed 4 separate US clades using bothmethods and found

that they produced similar mean tMRCAs and overlapping temporal distributions (Figure S4).

Finally, in order to compare the discrete ancestral state reconstructions fully inferred using TreeTime 0.8.0 with inferences done

using BEAST v.1.10, we plotted the results from TimeTree using the same approach used to generate Figure 3, to create Figure S5,

to highlight that results obtained through maximum-likelihood analysis (using TreeTime) is equivalent to those obtained in more

computing intensive Bayesian analysis (using BEAST). The results presented in Figure 3 use BEAST for the discrete ancestral state

reconstructions.

Projection of SGTF data
A logistic growth model was fit to the weekly SGTF quantification for each state using the glm() function from the stats package in R.

Code is available on https://github.com/grubaughlab/paper_2021_B117-US.
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Figure S1. The percentage of total COVID-19 cases that were sequenced in December 2020 (Dec), January 2021 (Jan), and February 2021

(Feb) in each state of the continental US, related to Figure 2

Color legend is the same as in Figure 2A.
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Figure S2. Maximum likelihood phylogeny of B.1.1.7, including 8,829 representative genomes from the US, Europe, and other global loca-

tions, related to Figure 3

Phylogenetic inference was performed using IQ-Tree 1.6.12, with timescale and discrete state reconstruction inferred using TreeTime 0.8.0, and data visuali-

zation using baltic 0.1.5. US B.1.1.7 genomes are highlighted with circles at the tips, while international genomes are only represented as branches. The tree was

(legend continued on next page)
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rooted using a P.1 genome (Brazil/AM-20842882CA/2020) as an outgroup (not shown in this plot). This larger dataset was used to further subsample the ge-

nomes, removing redundant B.1.1.7 clades containing only genomes of international origin. From this phylogeny we created a succinct dataset containing 1,908

shown in Figure 3.
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Figure S3. Root-to-tip analysis of 1,908 B.1.1.7 genomes used to obtain the phylogenetic results shown in Figure 3

(A) Correlation between genetic divergence (subs/site) and time. Samples generated in this study are highlighted with colors, while background international

genomes are shown on gray.

(B) Distribution of genetic divergence residuals of genomes shown in (A). Any outliers with residuals above ± 0.0002 subs/site were removed from downstream

analyses.
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Figure S4. Re-analysis of phylogenetic results, Related to Figure 3

(A) Tree topology and bootstrap values (UFBoot > 70 represented by small black circles at the nodes) obtained using IQ-Tree 1.6.12, with timescale and discrete

state reconstruction inferred by TreeTime 0.8.0, and data integration and visualization using baltic 0.1.5. Like the original analysis, the tree was rooted using the

genome Wuhan/Hu-1/2019 as an outgroup (not shown in this plot).

(B–E) Four clades of US B.1.1.7 genomes selected for comparison of timescales.

(F–I) Comparison of median and confidence intervals of tMRCAs obtained in the original study by Washington et al. (2021) (at the top) and in our analysis using

TreeTime (at the bottom of each panel).
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Figure S5. Results obtained using TreeTime only, plotted using the same approach used for Figure 3, showing multiple introductions, do-

mestic spread, and community transmission of B.1.1.7 SARS-CoV-2 in the US, related to Figure 3

(A) Maximum likelihood phylogeny of B.1.1.7, including 1,908 representative genomes from the US, Europe, other global locations. Tree topology and bootstrap

values obtained using IQ-Tree 1.6.12, with timescale and discrete state reconstruction inferred by TreeTime 0.8.0, and data integration and visualization using

baltic 0.1.5. The tree was rooted using a P.1 genome (Brazil/AM-20842882CA/2020) as an outgroup (not shown in this plot).

(B) Exploded tree layout, highlighting cladeswith 3 ormore taxa, UFBoot > 70 (small circles), and US ancestral state probability at MRCA > 0.7 (values at the root),

representing independent international introductions of B.1.1.7 into distinct regions of the US, based on the same phylogenetic tree shown in (A). A list of in-

ternational transitions to the US can be found in Data S1.

(C–H) Time-informed maximum likelihood phylogeny of distinct B.1.1.7 clades showing instances of intra-region (C, D, E, G) and inter-region (D, H) domestic

spread. (C,E) and/or community transmission within NewYork (C), Connecticut (C), Michigan (C,D), and Illinois (E). The list of SARS-CoV-2 sequences used in this

study and author acknowledgments can be found in Data S2. Supporting phylogenetic analysis can be found in Figures S2, S3, S4, and S5. For comparison, an

interactive phylogenetic tree, inferred using IQ-Tree and TreeTime only, can be accessed from our custom Nextstrain build: https://nextstrain.org/community/

grubaughlab/CT-SARS-CoV-2/paper5
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