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Abstract
A substantial proportion of pathogenic variants associated with an increased risk of hereditary cancer are sequence variants 
affecting RNA splicing. The classification of these variants can be complex when both non-functional and functional tran-
scripts are produced from the variant allele. We present four BRCA2 splice site variants with complex variant interpretations 
(BRCA2 c.68-3T>G, c.68-2A>G, c.425G>T, c.8331+2T>C). Evidence supporting a pathogenic classification is available 
for each variant, including in silico models, absence in population databases, and published functional data. However, 
comprehensive RNA analysis showed that some functional transcript may be produced by each variant. BRCA2 c.68-3T>G 
results in a partial splice defect. For BRCA2 c.68-2A>G and c.425G>T, aberrant splicing was shown to produce a potentially 
functional, in-frame transcript. BRCA2 c.8331+2T>C may utilize a functional GC donor in place of the wild-type GT donor. 
The severity of cancer history for carriers of these variants was also assessed using a history weighting algorithm and was not 
consistent with pathogenic controls (carriers of known pathogenic variants in BRCA2). Due to the conflicting evidence, our 
laboratory classifies these BRCA2 variants as variants of uncertain significance. This highlights the importance of evaluating 
new and existing evidence to ensure accurate variant classification and appropriate patient care.
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Introduction

Pathogenic variants in BRCA1 and BRCA2 are associated 
with an increased risk of several cancers, including breast 
and ovarian cancer. Genetic testing is an important tool to 
identify individuals who may be at risk for developing can-
cer, for whom test results may have a considerable impact on 
clinical management. For example, carriers of a pathogenic 

variant in BRCA1 or BRCA2 are eligible for risk-reducing 
mastectomy and oophorectomy based on guidelines from 
the National Comprehensive Cancer Network (NCCN) [1]. 
Although the NCCN and other professional societies pro-
vide clear guidance for medical management based on the 
identification of pathogenic variants in cancer predisposition 
genes, the clinical significance of a variant is not always 
known at the time of testing.

The classification of some variants is evident based on 
a clear biological implication (i.e. protein truncation) that 
results in loss of function; however, that is not always the 
case. As a result, variant interpretation remains a challenge, 
even for genes as well-characterized as BRCA1 and BRCA2. 
One class of variants that may be difficult to interpret are 
those with the potential to affect RNA splicing. A substantial 
fraction of disease-causing variants in cancer predisposi-
tion genes impact splicing [2]. The consequences of aberrant 
splicing can include skipping of one or more exons, activa-
tion of cryptic acceptor or donor sites, or intron retention. 
In many cases, this causes premature truncation or deletion 
of critical functional domains. Although classification of 
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variants located within many canonical splice sites is often 
straightforward due to clear biological consequences, it is 
important that the impact on splicing of sequence variants 
outside the canonical sites be experimentally verified to 
ensure accurate variant classification.

A variety of computational tools have been developed to 
predict the effect a sequence variant may have on RNA splic-
ing [3]. Although these methods often achieve a moderate 
degree of sensitivity and accuracy, the predicted splicing 
outcomes cannot be assumed to be accurate without experi-
mental evidence. For example, in silico models cannot dis-
tinguish between a complete splice defect and a partial or 
“leaky” splice defect in which the variant allele produces 
some aberrant transcript and some normal transcript. Func-
tional studies that directly assess splicing outcomes can pro-
vide useful data to aid variant classification [2, 4]. These 
may be performed by reverse transcription-polymerase chain 
reaction (RT-PCR) of RNA extracted from patient blood or 
lymphoblastoid cell lines (e.g. Montalban et al. [5]). Arti-
ficial minigene assays have been reported in cases where 
patient samples were unavailable (e.g. Fraile-Bethencourt 
et al. [6]). More recently, RNA sequencing methods have 
been applied to characterize and quantify mRNA transcripts 
[7–10].

The American College of Medical Genetics and Genom-
ics and the Association for Molecular Pathology (ACMG/
AMP) and Evidence-based Network for the Interpretation of 
Germline Mutant Alleles (ENIGMA) have provided guide-
lines for the interpretation of sequence variants, including 
variants that impact splicing [4, 11]. Guidelines include the 
types of evidence that can be used to classify a variant as 
pathogenic, along with their relative strengths for classifica-
tion. The importance of functional analysis is emphasized 
for variants at a splice site, and several caveats are noted in 
relation to these variants. These include consideration of 
whether splicing variants lead to exon skipping that is in-
frame and the potential generation of alternative transcripts 
[4, 11], both of which may result in the production of enough 
transcript to support normal protein function.

Here we describe four case examples of splice variants 
in BRCA2 (BRCA2 c.68-3T>G, c.68-2A>G, c.425G>T, 
and c.8331+2T>C) with complex variant interpretation, 
including new evidence from functional RNA analysis. In 
each case, the ACMG guidelines could support a pathogenic 
classification; however, additional data generated by our 
laboratory provides evidence that these variants may not be 
pathogenic.

Materials and Methods

RNA analysis for variants predicted to impact splicing was 
performed using a research protocol approved by Quorum 
Review (now Advarra) independent review board (29678/1). 
Patients were eligible for this study if they were 18 or older 
at the time of hereditary cancer genetic testing (Myriad 
Genetic Laboratories), received testing as part of routine 
clinical care (i.e. not as part of a research study), and were 
found to carry a variant of interest. The health care pro-
vider was initially contacted regarding patient participa-
tion, followed by patient contact with a genetic counselor 
employed by the testing laboratory. Patients provided verbal 
informed consent before submitting a blood sample for RNA 
extraction.

Control blood samples were obtained from adult indi-
viduals who were not carriers of the variant of interest, had 
no history of cancer, and provided written informed consent. 
Control tissue samples utilized total RNA from human adult 
normal breast tissue purchased from BioChain Inc.

In addition to RNA analysis, other evidence relevant to 
variant classification was considered, including the results of 
a history weighting algorithm, in silico modeling, and rele-
vant literature. We also evaluated the ClinVar classifications 
for each variant as of April 30, 2020 in order to compare 
our laboratory’s classification with other submitted classi-
fications. The strength of the cited forms of evidence for 
pathogenicity was considered in light of the ACMG/AMP 
guidelines, which are utilized by clinical testing laboratories 
to guide variant classification in cancer predisposition genes.

RNA Extraction and RT‑PCR

Blood samples were collected in a Tempus Blood RNA tube 
(ThermoFisher Scientific) and total RNA was extracted 
using the Tempus Spin RNA Isolation kit (ThermoFisher 
Scientific) according to the manufacturer’s protocol. The 
extracted RNA was then quantified and stored at −80 °C. 
One to 2 μg of extracted total RNA was used to synthesize 
cDNA using the reverse transcriptase SuperScript IV VILO 
Master Mix with ezDNase enzyme (ThermoFisher Scien-
tific) according to the manufacturer’s protocol. The cDNA 
was used as template in a standard PCR reaction with Takara 
Taq, hot start DNA polymerase (Takara Bio) for qualitative 
assessment by gel electrophoresis or by digital electrophore-
sis using the Agilent 2200 TapeStation system with D1000 
ScreenTape (Agilent). Exon-specific primer sequences used 
for PCR amplification are shown in Table S1.
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Quantification of Allele‑Specific Transcripts

Allele-specific sequence traces were obtained by single 
molecule PCR and Sanger sequencing. Template cDNA was 
diluted to the limit of detection to yield, on average, <1 tem-
plate molecule per well in a multi-well plate. Primer pairs 
were combined into a 1 μM working stock and 2 μL of the 
stock was distributed to wells on a 384-well plate containing 
GoTaq HotStart DNA polymerase master mix (Promega). 
Template cDNA was diluted to 1–10 ng per reaction and 
distributed to wells. Each well was a separate PCR reac-
tion that was used directly for automated Sanger sequenc-
ing. When possible, PCR primers were designed to flank the 
exon affected by the variant of interest, as well as a region 
containing a known heterozygous exonic single-nucleotide 
polymorphism (SNP). Each primer sequence included an 
M13 forward or reverse tag for use in Sanger sequencing.

The sequence traces from each individual reaction were 
then evaluated. In a given experiment, some wells failed 
to produce sequence indicating absence of template, some 
wells produced heterozygous traces indicating multiple 
templates, and some wells produced isolated sequence 
traces with allele-specific sequence. Only isolated traces 
were counted for the analysis. A minimum of 100 isolated 
sequence traces were analyzed for patient samples and a 
minimum of 50 isolated sequence traces from controls.

History Weighting Algorithm

A history weighting-algorithm has been previously devel-
oped and validated by our laboratory for use in BRCA2 
varriant classification [32]. In brief, the history weighting 
algorithm assumed that personal and family cancer history 
for individuals with a pathogenic variant will be more severe 
than for carriers of a benign variant in the same gene [32]. 
A score was assigned to a variant based on the personal and 
family history of gene-associated cancers among all eligi-
ble carriers of that variant. For BRCA2, relevant cancers 
included female breast cancer (including ductal carcinoma 
in situ), ovarian cancer, male breast cancer, pancreatic can-
cer, and prostate cancer.

The variant score was compared to scores for pathogenic 
and benign control variants in the same gene. The history 
weighting algorithm called the variant benign if the vari-
ant score was well within the benign control curve and did 
not significantly overlap with the pathogenic control curve 
(Figure S1a). The history weighting algorithm called the 
variant pathogenic if the variant score was well within the 
pathogenic control curve and did not significantly overlap 
with the benign control curve (Figure S1b). If the variant 
score had some significant overlap with both the benign and 
pathogenic control curves, no call was made. For BRCA2, 

the algorithm has been validated to have a positive predictive 
value of 99.71% and a negative predictive value of 99.90%.

Results

BRCA2 c.68‑3T>G

BRCA2 c.68-3T>G is located three nucleotides upstream 
of exon 3, within the consensus splice acceptor site. Exon 
3 encodes the PALB2 binding domain important for the 
interaction between PALB2 and BRCA2 and for proper 
localization of BRCA2 to sites of DNA damage [12]. A T>G 
sequence change at the −3 position is often associated with 
aberrant splicing, as pyrimidines are highly preferred at the 
−3 position of the intron [13]. Consistent with this, in silico 
models predicted that the variant would abolish splicing 
at the native acceptor (ACMG/AMP supporting evidence, 
Table  1). However, this information alone does not reach 
the threshold for a pathogenic classification, and the variant 
was classified as a variant of uncertain significance (VUS) in 
ClinVar by three submitting laboratories at the time of this 
analysis.

RNA Analysis

The findings of RNA analysis for BRCA2 c.68-3T>G are 
summarized in Fig. 1 and Table S2. Quantification of allele 
specific transcripts in a heterozygous carrier detected normal 
transcript, as well as three aberrant splice products: in-frame 
deletion of exon 3 (Δ3), out-of-frame deletion of exons 3–4 
(Δ3–4), and utilization of the cryptic splice acceptor created 
by the variant (▼3p).

We analyzed 133 allele specific sequence traces and found 
that 57% (76/133) corresponded with normally spliced tran-
script, while 43% (57/133) were the result of aberrant splic-
ing. Because c.68-3T>G is in the intron, and not part of the 
mRNA sequence, the informative variant c.-26G>A in the 
5′ untranslated region was used as a proxy to distinguish 
transcripts produced by the variant allele (c.68-3G→c.-26G) 
from those produced by the wild-type allele (c.68-3T→c.-
26A). Of the normal transcripts, 88% (67/76) were produced 
by the wild-type allele and 12% (9/76) by the variant allele. 
Similar ratios were observed when specifically amplifying 
the normal transcript with a reverse primer placed within 
exon 3, where 84% (61/73) of transcripts were from the wild-
type allele and 16% (12/73) from the variant allele. Taken 
together, these data show that c.68-3T>G causes a partial 
splice defect.

Both wild-type and variant alleles also contributed to the 
aberrant transcripts. The patient’s wild-type allele produced 
5% (3/57) of the aberrant transcripts, including Δ3 and Δ3–4. 



10 P. Nix et al.

1 3

Ta
bl

e 
1 

 S
um

m
ar

y 
of

 e
vi

de
nc

e 
fo

r v
ar

ia
nt

 c
la

ss
ifi

ca
tio

n.
 It

em
s i

n 
bo

ld
 re

pr
es

en
t e

vi
de

nc
e 

th
at

 th
e 

va
ria

nt
 m

ay
 n

ot
 b

e 
pa

th
og

en
ic

a  V
ar

ia
nt

s 
be

in
g 

lo
ca

te
d 

at
 th

e 
±

1 
or

 2
 s

pl
ic

e 
si

te
 in

 a
 g

en
e 

w
he

re
 lo

ss
 o

f f
un

ct
io

n 
is

 a
 k

no
w

n 
m

ec
ha

ni
sm

 o
f d

is
ea

se
 is

 c
on

si
de

re
d 

ve
ry

 st
ro

ng
 e

vi
de

nc
e 

of
 p

at
ho

ge
ni

ci
ty

 p
er

 A
C

M
G

/A
M

P 
gu

id
e-

lin
es

 [4
] 

b  La
bo

ra
to

ry
-d

ev
el

op
ed

 sp
lic

e 
pr

ed
ic

tio
n 

to
ol

 b
as

ed
 o

n 
Sh

et
h 

et
 a

l. 
[3

3]
; s

pl
ic

e 
sc

or
e 

ra
ng

es
 fr

om
 0

 to
 1

c  In
 si

lic
o 

m
od

el
s t

ha
t p

re
di

ct
 a

 d
el

et
er

io
us

 e
ffe

ct
 a

re
 c

on
si

de
re

d 
su

pp
or

tin
g 

ev
id

en
ce

 o
f p

at
ho

ge
ni

ci
ty

 p
er

 A
C

M
G

/A
M

P 
gu

id
el

in
es

 [4
] 

d  Th
e 

ab
se

nc
e 

of
 a

 v
ar

ia
nt

 fr
om

 la
rg

e 
po

pu
la

tio
n 

da
ta

ba
se

s (
gn

om
A

D
) i

s c
on

si
de

re
d 

m
od

er
at

e 
ev

id
en

ce
 th

at
 th

e 
va

ria
nt

 m
ay

 b
e 

pa
th

og
en

ic
 p

er
 A

C
M

G
/A

M
P 

gu
id

el
in

es
 [4

] 

BR
CA

2 
va

ria
nt

Po
si

tio
na

In
 si

lic
o 

sp
lic

e 
 pr

ed
ic

tio
ns

b,
c

Pu
bl

is
he

d 
lit

er
at

ur
e

Po
pu

la
tio

n 
 fr

eq
ue

nc
yd

La
bo

ra
to

ry
 sp

lic
e 

an
al

ys
is

H
ist

or
y 

w
ei

gh
tin

g 
al

go
rit

hm
C

ur
re

nt
 la

bo
ra

-
to

ry
 c

la
ss

ifi
ca

-
tio

n

c.
68

-3
T>

G
In

tro
n 

2;
 c

on
se

ns
us

 
sp

lic
e 

ac
ce

pt
or

 fo
r 

ex
on

 3

A
bo

lis
h 

sp
lic

in
g 

at
 

na
tiv

e 
ac

ce
pt

or
 

(0
.0

5>
0)

; d
e 

no
vo

 
cr

yp
tic

 a
cc

ep
to

r 
(0

>
0.

08
); 

in
-f

ra
m

e 
cr

yp
tic

 a
cc

ep
to

r 
re

du
ce

d 
(0

.1
3 

>
 0

.0
7)

N
on

e
16

/2
44

,2
08

 c
hr

om
o-

so
m

es
; 0

.0
1%

 a
lle

le
 

fr
eq

ue
nc

y

Pa
rt

ia
l s

pl
ic

e 
de

fe
ct

; 
∆

3,
 ∆

3-
4,

 a
ct

iv
at

io
n 

of
 d

e 
no

vo
 si

te
, a

nd
 

no
rm

al
 tr

an
sc

rip
t 

pr
od

uc
ed

Be
ni

gn
V

U
S

c.
68

-2
A

>
G

In
tro

n 
2;

 c
an

on
ic

al
 

sp
lic

e 
ac

ce
pt

or
 fo

r 
ex

on
 3

A
bo

lis
h 

sp
lic

in
g 

at
 

na
tiv

e 
ac

ce
pt

or
 (0

.0
5 

>
 0

); 
in

-f
ra

m
e 

cr
yp

tic
 

ac
ce

pt
or

 6
nt

 in
to

 e
xo

n 
(0

.1
3)

N
on

e
1/

24
3,

41
6 

ch
ro

m
o-

so
m

es
; 0

%
 a

lle
le

 
fr

eq
ue

nc
y

In
-fr

am
e 

tr
an

sc
ri

pt
 

pr
od

uc
ed

: a
ct

iv
at

io
n 

of
 in

-f
ra

m
e 

al
te

rn
at

e 
ac

ce
pt

or
; n

on
-f

un
c-

tio
na

l t
ra

ns
cr

ip
ts

 ∆
3,

 
∆

3-
4

In
co

nc
lu

si
ve

 (t
re

nd
in

g 
be

ni
gn

)
V

U
S

c.
42

5G
>

T
La

st 
ba

se
 o

f e
xo

n 
4

Re
du

ce
 st

re
ng

th
 o

f 
na

tiv
e 

do
no

r (
0.

55
 >

 
0.

04
)

Fu
ll 

sp
lic

e 
de

fe
ct

; ∆
4 

[2
1]

N
ot

 p
re

se
nt

 in
 la

rg
e 

po
pu

la
tio

n 
da

ta
ba

se
s

In
-fr

am
e 

tr
an

sc
ri

pt
s 

pr
od

uc
ed

: ∆
4-

5,
 

∆
4-

7;
 n

on
-f

un
ct

io
na

l 
tra

ns
cr

ip
ts

 p
ro

du
ce

d:
 

∆
4,

 ∆
3-

4,
 ∆

3-
5,

 ∆
4-

6

Be
ni

gn
V

U
S

c.
83

31
+

2T
>

C
In

tro
n 

18
; c

an
on

ic
al

 
sp

lic
e 

do
no

r f
or

 e
xo

n 
18

A
bo

lis
h 

sp
lic

in
g 

at
 

na
tiv

e 
do

no
r (

0.
74

 >
 

0.
03

); 
in

-f
ra

m
e 

cr
yp

tic
 

do
no

r 2
1n

t i
nt

o 
in

tro
n 

(0
.1

)

C
om

pl
et

e 
∆

18
 [2

4]
; 

∆
18

, ∆
17

q-
18

 [1
5]

 
Pa

rti
al

 sp
lic

e 
de

fe
ct

 
∆

18
, ∆

17
-1

8,
 ∆

17
q-

18
 [2

3]
 

N
ot

 p
re

se
nt

 in
 la

rg
e 

po
pu

la
tio

n 
da

ta
ba

se
s

A
ct

iv
at

io
n 

of
 G

C
 sp

lic
e 

do
no

r:
 ∆

18
, ∆

17
-1

8,
 

∆
17

q-
18

, a
nd

 n
or

m
al

 
tra

ns
cr

ip
t p

ro
du

ce
d

Be
ni

gn
V

U
S



11Interpretation of BRCA2 Splicing Variants: A Case Series of Challenging Variant…

1 3

This result is not unexpected, as extensive alternative splic-
ing is known to naturally occur in this region of BRCA2 
[19, 20]. The remaining 95% of aberrant transcripts were 
produced by the variant allele and included Δ3 (53%, 30/57), 
Δ3–4 (2%, 1/57), and ▼3p (40%, 23/57), all of which are 
expected to be deleterious to protein function.

Variant Classification

In combination with in silico models, the identification 
of aberrant splicing could be considered sufficient for a 
pathogenic classification of c.68-3T>G. However, com-
prehensive RNA analysis revealed that c.68-3T>G results 
in a partial splicing defect, with some functional transcript 
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Fig. 1  Analysis of BRCA2 c.68-3T>G. (a) Schematic representation 
BRCA2 regions amplified and digital electrophoresis of control and 
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script detected in control and carrier samples determined by quanti-
fication of transcripts from isolated traces. (c) Representative isolated 

sequence traces of observed transcripts from the variant carrier. The 
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analysis based on 16 observations
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produced by the c.68-3G variant allele. Additional clini-
cal information was provided by the history weighting 
algorithm, which called this variant benign based on the 
relative severity of personal and family cancer history for 
c.68-3T>G carriers compared to negative controls (indi-
viduals with known benign variants in BRCA2) and posi-
tive controls (individuals with known pathogenic variants 
in BRCA2; Fig. 1d). This indicates that the approximately 
15% of normal transcript produced by the variant allele 
may be sufficient to support normal BRCA2 function. Con-
sidering this conflicting evidence, our laboratory classifies 
BRCA2 c.68-3T>G as VUS (Table 1).

BRCA2 c.68‑2A>G

BRCA2 c.68-2A>G is located two nucleotides upstream 
of exon 3, within the canonical splice acceptor site. The 
sequence change affects the invariant AG dinucleotide of 
the splice acceptor and is predicted to abolish usage of this 
splice site by in silico methods. At the time of this analysis, 
the variant was classified as likely pathogenic in ClinVar by 
three submitting laboratories. The evidence for classifica-
tion included the variant position at the −2 nucleotide of 
the intron (ACMG/AMP very strong evidence) and in silico 
models (ACMG/AMP supporting evidence; Table 1).

Upon initial observation of this variant, our laboratory 
classified c.68-2A>G as VUS due to the presence of an in-
frame cryptic acceptor six nucleotides into the exon. In silico 
predictions and manual review found that this cryptic splice 
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BRCA2 regions amplified and digital electrophoresis of control and 
carrier samples. (b) Fraction of total transcript detected in control and 
carrier samples determined by quantification of transcripts from iso-
lated traces. (c) Representative isolated sequence traces of observed 

transcripts from the variant carrier. The splice junction is indicated by 
a line. The 6 nucleotides missing from Δ3p are underlined in the nor-
mal transcript trace. (d) History weighting algorithm analysis based 
on 11 observations
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acceptor scored better than the normal splice acceptor site 
(Table 1). Utilization of the cryptic splice site would produce 
a transcript with the in-frame deletion of two amino acids 
(p.Asp23_Leu24del). Although these amino acids are con-
served within the PALB2 binding peptide, they are not part 
of the core binding motif that includes Trp31, Phe32 and 
Leu35, and structural modeling of the deleted amino acids 
is equivocal [14]. Therefore, the functional consequences of 
this deletion were considered uncertain.

RNA Analysis

The findings of RNA analysis for BRCA2 c.68-2A>G are 
summarized in Fig. 2 and Table S3. Quantification of tran-
scripts in a heterozygous carrier yielded normal transcript 
as well as three aberrantly spliced transcripts. We analyzed 
135 isolated sequence traces and found that 31% (42/135) 
corresponded with normal transcript. The remaining 69% 
(93/135) of transcripts were the result of aberrant splicing: 
39% (53/135) utilized the in-frame cryptic donor 6 nucleo-
tides into the exon (Δ3p), 27% (37/135) skipped exon 3 (Δ3), 
and 2% (3/135) skipped exons 3–4 (Δ3–4). A heterozygous 
SNP was not included in this analysis; however, a partial 
splice defect is unlikely due to the loss of the canonical AG.

Variant Classification

RNA analysis showed the production of the non-functional 
Δ3 and Δ3–4 splice isoforms. Use of the cryptic acceptor 
site 6 nucleotides into the exon was not observed in nor-
mal controls, nor has it been described in published stud-
ies assessing naturally occurring splice isoforms of BRCA2 
[19, 20]. Based on these data, the possibility remains that 
a significant portion of transcript produced by the variant 
c.68-2G allele may be functional due to utilization of the 
in-frame cryptic splice acceptor. BRCA2 c.68-2A>G did not 
meet the threshold to be classified as benign by the history 
weighting algorithm, though it was trending in that direction 
after 11 observations of the variant (Fig. 2d). As a result, our 
laboratory continues to classify BRCA2 c.68-2A>G as VUS.

BRCA2 c.425G>T

BRCA2 c.425G>T is a missense change located at the last 
base of exon 4, making it part of the consensus splice donor 
site. Variation at this position may cause aberrant splicing 
due to a decrease in the base pairing interactions between 
the U1 snRNP and the primary transcript. Consequently, in 
silico methods predicted that c.425G>T will significantly 
impact splicing (Table 1).

BRCA2 c.425G>T was classified as likely pathogenic in 
ClinVar by six submitting laboratories at the time of this 
analysis. The cited evidence included the variant position 

at the last nucleotide of the exon (ACMG/AMP moderate 
evidence), in silico models (ACMG/AMP supporting evi-
dence), absence of the variant from large population data-
bases (ACMG/AMP moderate evidence), and published 
RNA analysis showing skipping of exon 4 with predicted 
protein truncation (ACMG/AMP strong evidence) (Table 1). 
Brandao et al. demonstrated complete exon 4 skipping in a 
patient sample with no contribution of the variant allele to the 
normal transcript [21]. Based on this body of evidence, this 
variant was also classified as pathogenic by our laboratory.

RNA Analysis

The findings of RNA analysis for BRCA2 c.425G>T are 
summarized in Fig. 3 and Table S4. Quantification of RNA 
transcripts from three related individuals yielded normal 
transcript as well as multiple aberrantly spliced products. 
Similar results were observed in each of the variant carriers, 
with a combined total of 449 isolated sequence traces ana-
lyzed. Overall, 49% of traces (220/449) were from normal 
transcripts, which were produced exclusively by the wild-
type c.425G allele. This indicates that the variant allele only 
produces abnormally spliced mRNA. The remaining 51% 
of traces (229/449) showed abnormally spliced transcripts. 
Of the aberrantly spliced transcripts specifically affecting 
exon 4, a majority (62%, 143/229) showed skipping of exon 
4 (Δ4), which is expected to be pathogenic. The next most 
abundant product was Δ4–5 with 27% of traces (62/229), 
followed by Δ3–4 (6%, 13/229), Δ4–7 (3%, 7/229), Δ4–6 
(1%, 3/229), and finally, Δ3–5 (<1%, 1/229).

As stated previously, the region of BRCA2 including 
exons 3–7 is known to naturally undergo extensive alterna-
tive splicing [19, 20]. One of the most frequent alternative 
splice products is skipping of exon 5 (Δ5), which is pre-
sent in 2–3% of total BRCA2 transcript [19]. As a single 
exon-skipping event, ∆5 is predicted to result in frameshift 
and premature truncation. However, in the patient samples 
analyzed here, skipping of exon 4 caused by the c.425G>T 
variant in combination with skipping of exon 5 (i.e. Δ4–5) 
restored the reading frame. Similarly, Δ4–7 maintained the 
reading frame and was observed in patient samples.

Variant Classification

In total, 30% of the aberrant transcripts (69/229 traces) pro-
duced by the variant c.425T allele remain in frame. These in-
frame isoforms delete amino acids that are not known to be 
critical for BRCA2 function. Studies have shown that a tran-
script lacking exons 4–7 retains function since it rescues the 
lethality of BRCA2 null cells, shows normal sensitivity to DNA 
damaging agents, exhibits normal DNA repair activity, and ren-
ders engineered mice viable and fertile [16, 22]. This raises the 
possibility that in-frame, alternative mRNA isoforms associated 
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with BRCA2 c.425G>T (i.e. in-frame Δ4–5) may also retain 
function. Additional clinical evidence was provided by the his-
tory weighting algorithm, which called the BRCA2 c.425G>T 
variant benign (Fig. 3d). Taking this new evidence into consid-
eration, our laboratory reclassified BRCA2 c.425G>T to VUS. 
The ENIGMA consortium also recommends a VUS classifica-
tion for this variant based on a posterior probability of patho-
genicity of 0.92, which does not meet their threshold of 0.95 
for a likely pathogenic classification [17].

BRCA2 c.8331+2T>C

BRCA2 c.8331+2T>C is located two nucleotides 
downstream of exon 18, which affects the canonical GT 
dinucleotide of the splice donor site and is predicted to 
abolish splicing by in silico methods (Table 1). This variant 
was classified as pathogenic or likely pathogenic in ClinVar 
by six submitting laboratories at the time of this analysis. 
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The evidence for classification included the variant position 
at the +2 nucleotide of the intron (ACMG/AMP very strong 
evidence), in silico models (ACMG/AMP supporting 
evidence), absence of the variant from large population 
sequence databases (ACMG/AMP moderate evidence), and 
published RNA analysis showing skipping of exon 18 along 

with other aberrant transcripts that are predicted to cause 
protein truncation (ACMG/AMP strong evidence) (Table 1) 
[15, 23, 24]. Based on this evidence, our laboratory initially 
classified this variant as likely pathogenic.

RNA Analysis

The findings of RNA analysis for BRCA2 c.8331+2T>C 
are summarized in Fig. 4 and Table S5. Quantification of 
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RNA transcripts in a heterozygous carrier yielded normal 
transcript as well as three aberrantly spliced transcripts. We 
analyzed 119 isolated sequence traces and found that 54% 
(64/119) were from normal transcript and 46% (55/119) 
from aberrantly spliced transcripts. A majority (58%, 32/55) 
of aberrantly spliced transcripts showed skipping of exon 
18 (Δ18), which is expected to be pathogenic. Other aber-
rant transcripts included Δ17–18 (20%, 11/55) and Δ17q-18 
(13%, 7/55), which resulted from use of a cryptic donor site 
within exon 17 causing the deletion of 151 nucleotides of 
exon 17 as well as deletion of exon 18. In a small number 
of traces (9%, 5/55), we observed miscellaneous transcripts 
using a non-canonical cryptic donor within exon 18 spliced 
to downstream intronic or exonic sequences.

Additional single molecule PCR was performed to spe-
cifically amplify the normal transcript encoding exon 18 
by pairing a reverse primer within exon 18 with a forward 
primer in exon 14 that encodes the informative heterozygous 
variant c.7242A>G (wild-type c.8331+2T → c.7242A; vari-
ant c.8331+2C → c.7242G). This allowed for allele-specific 
quantification of the normal transcript where we observed 
that 62% (62/100) of traces were produced by the wild-type 
allele and 38% (38/100) by the variant allele. These data 
suggest that the variant c.8331+2C allele contributes to a 
significant fraction of the normal transcript, in addition to 
causing a splicing defect resulting in the out-of-frame skip-
ping of exon 18 or exons 17–18.

Variant Classification

RNA analysis demonstrated that the splice defect associated 
with BRCA2 c.8331+2T>C produced a significant amount 
of aberrant splicing involving skipping of exon 18. Each of 
the alternative transcripts observed are predicted to result 
in a frameshift with premature truncation. However, exami-
nation of normal transcript encoding exon 18 showed that 
both the c.8331+2T wild-type allele and c.8331+2C variant 
allele produced normal transcript. These data demonstrate 
that the GC donor created by the variant is likely utilized and 
may produce sufficient levels of BRCA2 transcript for normal 
protein function. Additional evidence is provided by the his-
tory weighting algorithm, which provided a benign call for 
the c.8331+2T>C variant (Fig. 4d). Based on the collective 
evidence, BRCA2 c.8331+2T>C was reclassified to VUS. 
The ENIGMA consortium also recommends a classification 
of VUS based on a posterior probability of pathogenicity of 
0.86 [17].

Discussion

Here we present four BRCA2 variants predicted to impact 
RNA splicing. In each case, ACMG/AMP guidelines for 
variant interpretation could support a pathogenic or likely 
pathogenic classification. However, the interpretation of 
some splice site variants may be complicated if the vari-
ant allele produces transcript resulting in functional protein. 
This was the case for the variants examined, where some 
functional transcript was produced due to a partial splice 
defect, a functional in-frame deletion, or utilization of a GC 
donor site.

Overall, it is relatively uncommon for pathogenic variants 
to be downgraded based on a re-evaluation of the available 
evidence. For example, Mersch et al. showed that only 0.7% 
of variants in cancer predisposition genes initially classi-
fied as pathogenic by our laboratory were downgraded over 
a 10-year period [25]. Although uncommon, it is critical 
that new and existing evidence be carefully considered by 
testing laboratories in order to provide the most accurate 
variant classification and avoid unnecessary medical inter-
ventions. For the BRCA2 case examples presented here, our 
RNA analysis and history weighting algorithm provided 
contradictory evidence to the existing evidence that initially 
supported a pathogenic classification. As a result, the body 
of evidence now available for these variants is inconclusive 
and medical management for individuals carrying one of 
these variants should be based on personal and family his-
tory. Additional strong, clinical evidence, such as an in trans 
observation in a patient without features of Fanconi anemia 
[4], would be needed to rule out the possibility of increased 
cancer risk in order to reach a benign classification.

Variants Causing Incomplete Splice Defects May 
not be Pathogenic

The interpretation of variants with a partial splice defect 
can be especially problematic in variant classification. These 
variants produce aberrant transcripts with proven deleterious 
effects as well as normal transcripts. Importantly, it is not 
always possible to determine if the amount of normal tran-
script is sufficient for normal biological function from RNA 
analysis alone. Classification of variants with partial splice 
defects should be approached with caution in the absence of 
other strong supporting clinical evidence.

For BRCA2 c.68-3T>G, evidence from in silico models 
and published case studies are supportive of a pathogenic 
classification in accordance with ACMG/AMP guidelines. 
RNA analysis identifying a significant fraction of aber-
rant splice products with known pathogenic effects would 
meet the level of evidence considered sufficient for a likely 
pathogenic classification by many testing laboratories [8]. 
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However, it is important that RNA analysis be thorough 
when it is the primary line of evidence in clinical vari-
ant classification. In such cases, allele-specific transcripts 
should be fully quantified to rule out the possibility of a 
partial defect. This is especially relevant for intronic splice 
variants, which frequently cause partial splice defects but are 
not present in the coding sequence. In such cases, it is not 
possible to fully quantify the splice defect and determine if 
the variant allele also produces normal transcript without an 
informative exonic variant.

In the case of BRCA2 c.68-3T>G, the history weighting 
algorithm call of benign suggests that the expression of nor-
mal transcript from the variant allele may be sufficient for 
BRCA2 function. Similar observations were made following 
RNA analysis of BRCA2 c.68-5A>G by Gelli et al. and of 
BRCA2 c.68-7T>A by Colombo et al. [23, 26]. These studies 
demonstrated partial splice defects for these variants and the 
authors suggested that additional evidence is needed before 
concluding pathogenicity. More recently, Tubeuf et al. esti-
mated the threshold for transcript expression from a vari-
ant allele using BRCA2 exon 3 as a model [18]. Combined 
data from RNA analysis and functional studies in a mouse 
embryonic stem cell assay indicate that BRCA2 may be par-
ticularly tolerant to decreases in transcript expression. Based 
on evidence from variants in exon 3, Tubeuf et al. suggest 
a conservative threshold of 4% expression of the normal 
transcript from the variant allele and therefore any variant 
producing >4% would be considered VUS in the absence of 
additional supporting evidence [18].

Aberrant Splicing May Produce Functional, In‑Frame 
Transcripts

BRCA2 c.425G>T was shown by our analysis and by oth-
ers to cause a full splice defect, with no normal full-length 
transcript produced by the variant allele [21]. However, the 
in-frame ∆4–5 isoform affects a portion of BRCA2 with no 
known function and restored the reading frame in about 30% 
of transcripts produced by the variant allele. We conclude 
that this deletion may be functional based on previous bio-
chemical analysis showing that the larger in-frame ∆4–7 
deletion rescues the lethality of BRCA2 null cells [22]. 
Furthermore, Mesman et al. observed that cells expressing 
c.425G>T retain 66% activity in a homology directed repair 
assay [27].

De la Hoya et al. proposed a similar rescue mechanism 
for BRCA1 c.594-2A>C based on the production of the in-
frame Δ9–10 isoform, which retains the functional domains 
of BRCA1 [28]. The authors infer that BRCA1 can toler-
ate a substantial reduction in the amount of normal (i.e. 
full-length) transcript and still produce enough functional 
protein to support normal biological function. Specifically, 
the authors propose that any allele permitting 20–30% 

expression of functional BRCA1 should not be considered 
pathogenic [28]. This rescue mechanism for BRCA1 draws 
a striking parallel to the findings from Tubeuf et al., which 
shows tolerance to a substantial decrease in normal BRCA2 
transcript [18].

The history weighting algorithm call of benign for 
BRCA2 c.425G>T suggests that a variant allele producing 
as little as about 10% of functional transcript may not confer 
a high cancer risk. These data also have implications for 
other variants at the canonical +1/+2 donor sequence that 
would similarly abolish splicing, causing skipping of exon 
4 with potential rescue by the Δ4–5 transcript. The possibil-
ity of rescue by alternate in-frame transcripts additionally 
highlights the need for awareness of the full range of natu-
rally occurring splice isoforms for a given gene, as this will 
inform primer design. It may not be appropriate to design 
primers immediately flanking the exon of interest if those 
exons are subject to alternative splicing.

BRCA2 c.68-2A>G also showed potential rescue by an 
in-frame, aberrant transcript. In this case, nearly 60% of 
aberrant transcripts resulted from use of the in-frame cryptic 
splice site. Activation of this alternate acceptor results in the 
deletion of two amino acids (Asp23 and Leu24). Although 
the consequence of this deletion on protein function is 
uncertain, our results raise the possibility that a functional 
transcript could be produced. Tubeuf et al. also showed acti-
vation of the in-frame cryptic acceptor in a similar variant 
at this junction, c.68-1G>A [18]. Therefore, we believe that 
the classification of any −1/−2 variant at the BRCA2 exon 3 
splice acceptor should be a VUS in the absence of additional 
strong evidence of pathogenicity.

GT>GC Variants at the Consensus Donor May be 
Functional

The vast majority of splice donor sites encode GT at the first 
and second nucleotide of the intron sequence [29]. Sequence 
changes to the +1/+2 position are often considered likely 
pathogenic without confirmation from in vitro studies [4, 
30]. However, about 1% of human introns encode a nonca-
nonical GC at the splice donor site, implying that GC donors 
can be recognized and spliced appropriately in some cases 
[29].

Our analysis of BRCA2 c.8331+2T>C identified that 
the variant allele produced nearly 40% of the normal tran-
script. Gelli et al. also described splicing associated with 
c.8331+2T>C and observed biallelic expression of the 
normal transcript [23]. These data demonstrate that the 
GC donor created by the variant is likely utilized and may 
produce sufficient levels of BRCA2 transcript for normal 
protein function. Lin et al. recently estimated that 15–18% 
of GT>GC donors are capable of generating wild-type 
transcripts, with wild-type expression levels between 1% 
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and 84% [31]. These data indicate that functional GT>GC 
donors are not uncommon and are not invariably pathogenic. 
However, it is not possible to predict which GT>GC change 
will generate a transcript expressed at adequate levels with-
out experimental verification. With the addition of the his-
tory weighting algorithm call of benign, we agree with the 
conclusion from Gelli et al. that BRCA2 c.8331+2T>C be 
classified VUS.

Conclusion

ACMG/AMP guidelines provide direction on the types and 
strength of evidence supporting pathogenicity for variants 
predicted to affect RNA splicing [4]. However, these exam-
ples, as well as others cited in the literature, have under-
scored the need for caution in applying these guidelines to 
splice variant interpretation. In some cases, a variant that 
produces an aberrant transcript may also produce enough 
transcript to support normal protein function. As illustrated 
here, this may arise as part of a partial splice defect, an 
in-frame deletion, or utilization of a functional GC donor 
site. Thorough RNA analysis is an important tool to iden-
tify whether these scenarios are possible for an individual 
variant. The use of a history weighting algorithm to assess 
the severity of personal and family cancer history also pro-
vided supporting information for the four variants presented 
here. In the case of BRCA2 c.425G>T and c.8331+2T>C, a 
benign call from the history weighting algorithm highlighted 
the need for additional RNA analyses despite the evidence 
that those variants were pathogenic based on ACMG/AMP 
guidelines. The availability of new evidence will sometimes 
result in a meaningful change in variant classification that 
may impact medical management decisions. As such, clini-
cal testing laboratories must continue to evaluate all existing 
and new evidence to ensure accurate variant classifications 
to support appropriate medical management.
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