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Abstract

It is prevailingly thought that the antiestrogens tamoxifen and ICI 182, 780 are competitive antagonists of the estrogen-
binding site of the estrogen receptor-alpha (ER-a). However, a plethora of evidence demonstrated both antiestrogens
exhibit agonist activities in different systems such as activation of the membrane-initiated signaling pathways. The
mechanisms by which antiestrogens mediate estrogen-like activities have not been fully established. Previously, a variant of
ER-a, EP–a36, has been cloned and showed to mediate membrane-initiated estrogen and antiestrogen signaling in cells
only expressing ER-a36. Here, we investigated the molecular mechanisms underlying the antiestrogen signaling in ER-
negative breast cancer MDA-MB-231 and MDA-MB-436 cells that express high levels of endogenous ER-a36. We found that
the effects of both 4-hydoxytamoxifen (4-OHT) and ICI 182, 780 (ICI) exhibited a non-monotonic, or biphasic dose response
curve; antiestrogens at low concentrations, elicited a mitogenic signaling pathway to stimulate cell proliferation while at
high concentrations, antiestrogens inhibited cell growth. Antiestrogens at l nM induced the phosphorylation of the Src-Y416
residue, an event to activate Src, while at 5 mM induced Src-Y527 phosphorylation that inactivates Src. Antiestrogens at
1 nM also induced phosphorylation of the MAPK/ERK and activated the Cyclin D1 promoter activity through the Src/EGFR/
STAT5 pathways but not at 5 mM. Knock-down of ER-a36 abrogated the biphasic antiestrogen signaling in these cells. Our
results thus indicated that ER-a36 mediates biphasic antiestrogen signaling in the ER-negative breast cancer cells and Src
functions as a switch of antiestrogen signaling dependent on concentrations of antiestrogens through the EGFR/STAT5
pathway.
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Introduction

The diverse physiological functions of estrogens are mediated by

estrogen receptors ER-a and ER-b, both of which are ligand-

activated transcription factors that stimulate target gene transcrip-

tion [1]. Estrogen-induced transcription regulation has been

prevailingly thought as the only mechanism of estrogen action.

However, it became apparent now that not all of the physiological

effects mediated by estrogens are accomplished through a direct

effect on gene transcription. Another signaling pathway (also

known as a ‘non-classic,’ ‘non-genomic’ or ‘membrane-initiated’

signaling pathway) exists that involves cytoplasmic signaling

proteins, growth factor receptors and components of other

membrane-initiated signaling pathways [2,3].

Since mitogenic estrogen signaling plays a pivotal role in

development and progression of ER-positive breast cancer,

treatment with antiestrogens such as tamoxifen (TAM) has

become a first-line therapy for advanced ER-positive breast

cancer. However, laboratory and clinical evidence indicated

that TAM and its metabolites such as 4-hydroxytamoxifen (4-

OHT) have mixed agonist/antagonist or estrogenic/anti-

estrogenic actions depending on cell and tissue context, and

the agonist activity of tamoxifen may contribute to tamoxifen

resistance observed in almost all patients treated with tamoxifen

[4,5,6]. As a consequence, a more potent and ‘‘pure’’

antiestrogen, ICI 182, 780 (Fulvestrant, Faslodex) has been

developed [7].

TAM and 4-OHT are thought to function as antagonists by

competing with 17-b-estradiol (E2b) and other estrogens for

binding to ERs. Further structural studies revealed that TAM

induces an ER-a conformation that does not recruit coactivators

to trans-activate target genes but recruits co-repressors [8],

suggesting that TAM- and 4-OHT-bounded ER-a is unable to

effectively activate genes involved in cell growth and breast cancer

development. On the other hand, ICI 182, 780, a ‘pure’

antiestrogen, works in a different mechanism. ICI 182, 780 binds

to ERs, impairs receptor dimerization and inhibits nuclear

localization of receptor [9,10]. Furthermore, ICI 182, 780 also

accelerates degradation of the ER-a protein without a reduction of

ER-a mRNA [10,11]. Thus, ICI 182, 780 binds ER-a and

accelerates degradation of ER-a protein, resulting in a complete

inhibition of estrogen signaling mediated by ER-a.
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Although ICI 182, 780 has been depicted as a non-agonist or

‘full’ or ‘pure’ antiestrogen, a number of laboratories reported

estrogenic agonist activities of ICI 182, 780 in different systems.

Estrogenic agonist activity of ICI 182, 780 has been reported in

hippocampal neurons and in bone cells where ICI 182, 780

promoted bone growth [12,13]. Agonist-like activities of ICI 182,

780 have also been reported in human breast cancer cells [14],

sheep uterus [15] and yeast [16]. The molecular mechanisms by

which ICI 182, 780 acts as an estrogenic agonist have never been

elucidated. Studies from several laboratories suggested that a

membrane-associated estrogen-binding receptor mediates the

agonist actions of ICI 182, 780 in neurons [17,18,19,20].

Previously, we identified and cloned a 36-kDa variant of ER-a,

ER-a36 [21]. ER-a36 lacks both transcription activation domains

AF-1 and AF-2 of the 66 kDa ER-a (ER-a66), consistent with the

fact that ER-a36 has no intrinsic transcriptional activity [21,22]

ER-a36 transcripts are generated from a promoter located in the

first intron of the ER-a66 gene [23], indicating that ER-a36

expression is regulated differently from ER-a66. Indeed, ER-a36

is expressed in specimens from ER-negative patients and ER-

negative breast cancer cells that lack ER-a66 expression

[24,25,26]. ER-a36 is mainly expressed on the plasma membrane

and mediates membrane-initiated estrogen signaling [22,27].

Antiestrogens such as TAM and ICI 182, 780 at 10 nM induced

phosphorylation of the MAPK/ERK in HEK/293 cells expressing

recombinant ER-a36 [22]. ER-a36 also mediates agonist activity

of tamoxifen in endometrial cancer cells [28]. These results

suggested that ER-a36-mediated non-genomic signaling pathway

is involved in agonist activities of antiestrogens.

Recently, we reported that ER-a36 mediated mitogenic

estrogen signaling in ER-negative breast cancer cells such as

MDA-MB-231 and MDA-MB-436 cells that lack expression of

ER-a66 but highly express ER-a36 [29]. To exclude the

involvement of ER-a66, we used these cells to study the effects

and the underlying mechanisms of pharmacological high concen-

trations and clinical relevant low concentrations of antiestrogens.

In addition, although MDA-MB-231 cells express the full-length

ER-b, MDA-MB-436 cells express undetectable levels of full-

length ER-b [29], which will then exclude the possible

involvement of ER-b.

In the current study, we examined the agonist activities of

antiestrogens ICI 182, 780 and 4-OHT in the ER-negative breast

cancer MDA-MB-231 and MDA-MB-436 cells and found that the

ER-negative breast cancer cells exhibited biphasic growth

response curves in response to these antiestrogens. We also found

that ER-a36-mediated Src/EGFR/STAT5 signaling pathway

plays an important role in the biphasic antiestrogen signaling.

Results

Antiestrogens stimulates proliferation of ER-negative
breast cancer cells

To test if antiestrogens such as ICI 182, 780 (ICI) and 4-OHT

act as agonists in the ER-negative breast cancer cells, the growth

rate of each cell line was determined by counting the number of

cells cultured in different concentrations of ICI and 4-OHT. As

shown in Figure 1A, the ER-negative breast cancer cells treated

with low concentrations (,1 nM) antiestrogens exhibited an

increased growth rate compared with cells treated with vehicle.

The dose-response curves of these cells to antiestrogens exhibited a

non-monotonic or biphasic pattern; increasing concentrations of

antiestrogens that initially stimulated cell growth but inhibited cell

growth at higher concentrations (Figure 1A). Our data indicated

that antiestrogens induced proliferation of ER-negative breast

cancer cells in a biphasic pattern.

Antiestrogens induces biphasic activation of the MAPK/
ERK and Cyclin D1 expression in ER-negative breast
cancer cells

To determine whether antiestrogens induced phosphorylation

of the MAPK/ERK1/2, a typical non-genomic estrogen-signaling

event, in these two cell lines, we treated cells with ICI and 4-OHT

at different concentrations (1 nM and 5 mM) for 10 min. These

concentrations were chosen to reflect physiological estrogen

concentration and pharmacological antiestrogens concentration,

respectively. Western blot analysis with a phospho-specific ERK1/

2 antibody was performed to assess the phosphorylation levels of

the ERK1/2. As shown in Figure 1B, we found that both ICI and

4-OHT were able to induce the activation of the MAPK/ERK at

a low concentration (1 nM) in both cell lines. However, the

activation of the MAPK/ERK was not observed in cells treated

with a high concentration (5 mM) of ICI and 4-OHT (Figure 1B),

consistent with the biphasic pattern of the dose-response curves of

these cells to ICI and 4-OHT. To determine whether high

concentrations of antiestrogens failed to activate the MAPK/ERK

or inhibited the ERK activation, we examined the effects of high

concentrations of ICI and 4-OHT on the ERK activation induced

by EGF. We found that antiestrogens failed to inhibit ERK

activation induced by EGF (data not shown), suggesting that high

concentrations of antiestrogens may fail to activate the MAPK/

ERK.

It is well known that induction of the growth-promoting gene

Cyclin D1 by estrogen contributes to estrogen-stimulated prolif-

eration of ER-positive breast cancer cells. Previously, we reported

that E2b was also able to induce expression of c-Myc and Cyclin

D1 in the ER-negative breast cancer cells [22]. To assess whether

antiestrogens were also able to induce expression of Cyclin D1, we

treated cells with two concentrations (1 nM or 5 mM) of

antiestrogens for six hours, and Western blot analysis was

performed to examine Cyclin D1 expression. We found that at

1 nM, both ICI and 4-OHT up-regulated expression levels of

Cyclin D1 (Figure 1C) whereas at 5 mM, both antiestrogens failed

to induce Cyclin D1 expression (Figure 1C). Thus, antiestrogens

elicited a biphasic induction of Cyclin D1 expression in these ER-

negative breast cancer cells.

Src/EGFR/STAT5 are involved in biphasic antiestrogen
signaling in ER-negative breast cancer cells

Recently, we reported that E2b induced phosphorylation of Src-

Tyr-416 and activated Src activity, which then induced phos-

phorylation of EGFR-Tyr-845 in these ER-negative breast cancer

cells [22]. We then examined the phosphorylation status of Src-

Tyr-416 and EGFR-Tyr-845 in the cells treated with different

concentrations of antiestrogens. Figure 2 shows that in both cell

lines, 1 nM of ICI and 4-OHT elicited phosphorylation of Src-

Tyr-416 and EGFR-Tyr-845 while failed to do so at 5 mM.

Intriguingly, 5 mM of ICI and 4-OHT strongly induced

phosphorylation of Src-Tyr-527, an event associated with

inactivation of Src activity, which was not observed in the cells

treated with 1 nM of antiestrogens. These results suggested that

antiestrogens at low concentrations induced phosphorylation of

Src-Y-416 and activated Src whereas at high concentrations,

antiestrogens induced Src-Y-527 phosphorylation and inactivated

Src activity.

It was reported that signal transducer and activator of

transcription 5 (STAT5), Src and EGFR play important roles in
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estrogen-stimulated proliferation of ER-positive breast cancer cells

[30]; estrogen-induced Src activation and Src-dependent phos-

phorylation of EGFR-Tyr-845 recruit STAT5 as a downstream

effector of phosphorylated EGFR-Tyr-845 [30]. To examine

whether STAT5 is involved in the observed biphasic antiestrogen

signaling, we transfected MDA-MB-231 and MDA-MB-436 cells

with the 4 X M67 pTATA-TK-luciferase reporter plasmid that

contains four copies of STAT-binding site and treated with

antiestrogens at 1 nM and 5 mM. We found that 1 nM of

antiestrogens activated the promoter activity of the reporter

plasmid while 5 mM of antiestrogens failed to do so (Figure 3A),

suggesting that antiestrogens at low concentrations were able to

activate STAT-mediated transcription. To confirm the involve-

ment of STAT5, we included two dominant-negative mutants of

STAT5a (STAT5aD713 and STAT5aD740) that inhibit tran-

scription activation mediated by STAT5a/b [31]. We found that

both dominant-negative mutants of STAT5a potently inhibited

1 nM of both ICI and 4-OHT induced promoter activity of the 4

X M67 pTATA-TK-luciferase reporter plasmid (Figure 3B & C),

indicating that STAT5 is involved in the biphasic antiestrogen

signaling.

Src is involved in biphasic Cyclin D1 expression induced
by different concentrations of antiestrogens

In the experiments described above, we observed that the cells

treated with different concentrations of antiestrogens also

exhibited biphasic patterns of Cyclin D1 expression. We decided

to examine whether the Src signaling pathway is involved in the

induction of Cyclin D1 expression by low concentrations of

antiestrogens. We first tested if the Src inhibitors PP2 and

dasatinib were able to inhibit Cyclin D1 induction by 1 nM of

antiestrogens. Cells were treated with 1 nM of either ICI or 4-

OHT and together with the Src inhibitors PP2 and dasatinib, the

EGFR inhibitor AG1478 or the PI3K inhibitor LY294002, and

Western blot analysis was performed to examine Cyclin D1

expression. Figure 4A shows that 1 nM antiestrogen-induced

Cyclin D1 expression was blocked by the Src inhibitors but not by

AG1478 and LY294002, suggesting that Src is involved in Cyclin

D1 expression induced by low concentrations of antiestrogens in

these ER-negative breast cancer cells. To confirm Src function in

Cyclin D1 induction by antiestrogens, we transiently transfected

both cell lines with a human Cyclin D1 promoter-luciferase

construct and then treated transfected cells with 1 nM or 5 mM

Figure 1. ER-negative breast cancer cells exhibit biphasic antistrogen signaling. (A). The effects of 4-OHT and ICI 182, 780 on the
proliferation rate of MDA-MB-231 and MDA-MB-436 cells. Cells maintained for three days in phenol red-free DMEM plus 2.5% dextran-charcoal-
stripped fetal calf serum were treated with indicated concentrations of 4-OHT, ICI or ethanol vehicle as a control. The cell numbers were determined
using an automatic cell counter after 12 days. Five dishes were used for each concentration and experiments were repeated more than three times.
The mean cell number 6 SE are shown. (B). The dose-dependent phosphorylation pattern of the MAPK/ERK1/2 in MDA-MB-231 and MDA-MB-436
cells treated with different concentrations of antiestrogens. Starved cells were treated with indicated doses of 4-OHT or ICI 182, 780 (ICI) for 10 min.
Western blot analysis was performed to assess induction of ERK1/2 phosphorylation. The experiment was repeated more than three times. The
representative results are shown. (C). The dose dependent induction Cyclin D1 by antiestrogens in MDA-MB-231 and MDA-MB-436 cells. The
experiment was repeated more than three times. The representative results are shown.
doi:10.1371/journal.pone.0030174.g001
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antiestrogens. We found that 1 nM of both antiestrogens was able

to induce Cyclin D1 promoter activity whereas at 5 mM, both

antiestrogens failed to induce Cyclin D1 promoter activity

(Figure 4B), indicating the biphasic effects of antiestrogens on

induction of Cyclin D1 expression is through regulation of its

promoter activity. The Cyclin D1 promoter activity induced by

1 nM of antiestrogens was inhibited by the Src inhibitors PP2 and

dasatinib but not by AG1478 (Figure 4B). To further confirm the

involvement of Src in the antiestrogen-induced Cyclin D1

expression, these ER-negative breast cancer cells were transiently

co-transfected with the Cyclin D1 promoter reporter plasmid and

pCMV5/SrcK295M, a dominant-negative mutant of Src, or

pCMV5/SrcY527F, a constitutively active mutant of Src,

respectively. We found that co-transfection of the dominant-

negative mutant of Src abrogated the Cyclin D1 promoter activity

induced by 1 nM estrogen while had no effects in cells treated with

5 mM antiestrogens (Figure 4C). On the contrary, the constitu-

tively active mutant of Src (SrcY527F) released the Cyclin D1

promoter activity suppressed by 5 mM antiestrogens (Figure 4C).

These results indicated Src plays an integral role in biphasic

response of Cyclin D1 to different concentrations of antiestrogens.

STAT5 is involved in antiestrogen induced Cyclin D1
promoter activity

Previously, it was reported that prolactin induces Cyclin D1

promoter activity through activation of STAT proteins and their

interaction with the consensus gamma-interferon-activation sites

(GAS) located in the Cyclin D1 promoter [32]. We decided to

examine whether antiestrogens function the same as prolactin in

these ER-negative breast cancer cells. Two dominant-negative

mutants of STAT5a were co-transfected with the Cyclin D1

promoter reporter plasmid, and the transfected cells were treated

with 1 nM of ICI or 4-OHT. We found that inclusion of the two

mutants of STAT5a strongly suppressed the Cyclin D1 promoter

activity induced by 1 nM of antiestrogens (Figure 5A), indicating

that 1 nM of antiestrogens induced the Cyclin D1 promoter

activity through STAT5 in ER-negative breast cancer cells.

In human cyclin D1 promoter, there are two GAS consensus

sequences at 2457 (GAS1) and 2224 (GAS2) (relative to the

transcription initiation site) that have been previously shown to be

sites for STAT protein binding induced by prolactin [32]. To

assess involvement of the two GAS sequences in antiestrogen-

induced Cyclin D1 promoter activity, we transiently transfected

these ER-negative breast cancer cells with two mutants of the

Cyclin D1 promoter/reporter constructs, GAS1mut and GAS2-

mut that mutated the two GAS sequences respectively to prevent

STAT protein binding. The Cyclin D1 promoter containing the

GAS1 mutation failed to respond to 1 nM of ICI or 4-OHT while

GAS2 mutant retained the ability to response to 1 nM of both

antiestrogens (Figure 5B), indicating that the STAT-binding GAS1

site is involved in the increase of Cyclin D1 promoter activity

induced by low-concentrations of antiestrogens.

ER-a36 mediates mitogenic antiestrogen signaling in ER-
negative breast cancer cells

Previously, we reported that ER-a36 mediates mitogenic

estrogen signaling in ER-negative breast cancer MDA-MB-231

and MDA-MB-436 cells using shRNA method [29]. To determine

the involvement of ER-a36 in the antiestrogen signaling of these

breast cancer cells, we tested antiestrogen signaling in the cell lines

derived from MDA-MB-231 and MDA-MB-436 that carrying

knocked-down levels of ER-(36 expression by the shRNA method.

Cells derived from both cell lines with ER-(36 expression knocked-

down by shRNA failed to increase cell proliferation in response to

low-concentrations of antiestrogens (Figure 6A), suggesting that

ER-(36 mediates mitogenic antiestrogen signaling in these ER-

negative breast cancer cells. However, at 5 mM, both antiestrogens

potently inhibited proliferation of MDA-MB-231 and MDA-MB-

436 cells with knocked-down levels of ER-a36 expression

(Figure 6A).

We found that 1 nM antiestrogens failed to induce Src-Tyr-416

and EGFR-Tyr-845 phosphorylation in MDA-MB-231 and

MDA-MB-436 cells with knocked-down level of ER-a36 expres-

sion (Figure 6B). However, the basal levels of Src-Tyr-527

phosphorylation were dramatically increased in MDA-MB-231

and –436 cells transfected with ER-a36 shRNA expression vector

compared to control cells transfected with the empty expression

vector (Figure 6B), which was not further induced by 5 mM of

antiestrogens (Figure 6B). We also tested whether antiestrogensare

able to induce Cyclin D1 promoter activity in the cells with ER-

a36 knock-down. Both antiestrogens at 1 nM failed to induce

Cyclin D1 promoter activity (Figure 6C).

Different concentrations of antiestrogens affect the
association of ER-a36 and Src differently

To elucidate the molecular mechanism by which different

concentrations of antiestrogens influence Src phosphorylation in

ER-negative breast cancer cells, we examined the effects of

different concentrations of antiestrogens on the association of ER-

a36 with Src as we reported before [29]. MDA-MB-231 cells were

transiently transfected with an expression vector for HA-tagged

Figure 2. Different concentrations of antiestrogens induce Src phosphorylation at distinct residues. Western blot analysis of the effects
of different concentrations of antiestrogens on the phosphorylation levels of EGFR-Y845, Src-Y416 and Src-Y527 in MDA-MB-231 and MDA-MB-436
cells.
doi:10.1371/journal.pone.0030174.g002
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Figure 3. Antiestrogens induce biphasic STAT5 activities in ER-negative breast cancer cells. (A). ER-negative breast cancer cells were
transfected with the luciferase reported plasmid 4XM67 TATA-TK-Luc that containing four copies of STAT-binding sites upstream of the minimal TK
promoter. Transfected cells were treated with vehicle (ethanol), 1 nM or 5 mM of 4-OHT or ICI 182, 780. The luciferase activities were assayed and
normalized using a cytomegalovirus-driven Renilla luciferase plasmid. Columns: means of the relative luciferase activity from four independent
experiments. Luciferase activity in transfected cells treated with vehicle is arbitrarily set as 1.0; bars, SE. *, p,0.05, for cells treated with vehicle (V) vs
1 nM of antiestrogens. #, p,0.05, for cells treated with 5 mM vs 1 nM of antiestrogens. (B&C). Cells were transfected with the 4XM67 TATA-TK-Luc
reporter together with an empty expression vector (vector) and the expression vectors of two dominant-negative STAT5a mutants carrying
truncations at their C-terminal (STAT5aD713 and STAT5aD740) before treated with vehicle (ethanol), 1 nM or 5 mM of antiestrogens. Columns: means
of the relative luciferase activity from three independent experiments. Luciferase activity of cells co-transfected with an empty expression vector and
treated with vehicle is arbitrarily set as 1.0; bars, SE. *, p,0.05, for cells treated with vehicle (V) vs 1 nM of antiestrogens.
doi:10.1371/journal.pone.0030174.g003
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ER-a36 and treated with different concentrations of antiestrogens

for 10 min. Cell lysates were immunoprecipitated with pre-

immune and anti-HA antibodies, and blotted by anti-HA and

anti-Src antibodies. Figure 7 shows that at l nM, antiestrogens

induced association of ER-a36 and Src, which was decreased

when treated with 5 mM of antiestrogens (Figure 7). This result

demonstrated that antiestrogens at 1 nM induced interaction

between ER-a36 and Src but failed to do so at 5 mM.

Discussion

Here, we used ER-negative breast cancer MDA-MB-231 and

MDA-MB-436 cells as models to study the effects and the

underlying mechanisms of the rapid, non-genomic antiestrogen

signaling mediated by ER-a36. We found that these ER-negative

breast cancer cells exhibited a biphasic growth response curve to

antiestrogens ICI 182, 780 and 4-OHT; antiestrogens stimulated

cell proliferation at sub-nM range while inhibited cell growth at

mM range.

Antiestrogens such as tamoxifen and ICI 182, 780 are widely

used for the treatment of advanced breast cancer, especially ER-

positive breast cancer. It is prevailingly thought that ER-negative

breast cancer is less or no responsive to antiestrogen therapy.

However, it has also been reported that about 45% ER2/PR+
breast tumor patients and 10% ER2/PR2 tumor patients

responded to tamoxifen treatment (Reviewed in [33]), suggesting

that a subset of ER-negative breast cancer still responses to

antiestrogen therapy. Previously, several in vitro studies showed that

tamoxifen and 4-OHT can cross-talk with other signaling

pathways such as the p38/MAPK and the SAPK/JNK pathways,

and induce apoptosis in both ER-positive breast cancer cells such

as MCF7 and ER-negative cells such as MDA-MB-231

[33,34,35,36]. However, we did not observe significant apoptosis

in antiestrogen treated ER-negative breast cancer cells at 5 mM,

Figure 4. Src is involved in antiestrogen-induced Cyclin D1 expression. (A). Western blot analysis of Cyclin D1 expression in MDA-MB-231
and -436 cells. Cells were treated with vehicle (ethanol) and antiestrogens alone or together with the Src inhibitors PP2 and dasatinib, the EGFR
inhibitor AG1478 and PI3K inhibitor LY294002. Cell lysates were analyzed with anti-Cyclin D1 antibody and anti-Acin antibody was used to ensure
equal loading. The experiment was repeated three times, and the representative results are shown. (B). Src inhibitors inhibit antiestrogen-induced
Cyclin D1 promoter activity. ER-negative breast cancer cells were transfected with the luciferase reported plasmid Cyclin D1 pl-963 that containing a
luciferase gene driven by the Cyclin D1 promoter. Transfected cells were treated with vehicle (ethanol), 1 nM or 5 mM of antiestrogens, and 1 nM of
antiestrogens together with different inhibitors. The luciferase activities were assayed and normalized using a cytomegalovirus promoter-driven
Renilla luciferase plasmid. Columns: means of the relative luciferase activity in cells treated with vehicle that is arbitrarily set as 1.0 from four
independent experiments; bars, SE. *, p,0.05, for cells treated with vehicle (V) vs 1 nM of antiestrogens, or vehicle (V) vs 1 nM of antiestrogens plus
AG1478. (C). The involvement of Src in antiestrogen-induced Cyclin D1 promoter activity. Cells were transfected with the luciferase reported plasmid
Cyclin D1 pl-963 together with an empty expression vector or Src mutants, a dominant-negative mutant (SrcK295R) and a constitutively active
mutant (SrcY527F). Transfected cells were treated with vehicle (ethanol), 1 nM or 5 mM of antiestrogens. The luciferase activities were assayed and
normalized using a cytomegalovirus-driven Renilla luciferase plasmid. Columns: means of the relative luciferase activity from four independent
experiments. Luciferase activity in transfected cells treated with vehicle is arbitrarily set as 1.0; bars, SE. *, p,0.05, for cells treated with vehicle (V) vs
1 nM of antiestrogens. #, p,0.05, for cells treated with vehicle (V) vs 5 mM of antiestrogens.
doi:10.1371/journal.pone.0030174.g004
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the highest concentration we used, presumably because much

higher concentrations of 4-OHT ($10–20 mM) were required to

induce apoptosis in ER-negative breast cancer cells [33].

It is well-known that tamoxifen and its metabolite 4-OHT act as

both agonists and antagonists in a tissue specific fashion. However,

the mechanisms underlying the paradox effects of tamoxfen have

never been fully elucidated. Different patterns of co-regulators

expression and different post-translation modifications of ER have

been proposed to be involved in tissue specific agonist/antagonist

properties of tamoxifen (Reviewed in [37]). We recently reported

that ER-a36 mediates the agonist activity of tamoxifen by

activation of the MAPK/ERK and PI3K/AKT signaling

pathways in endometrial cancer cells that lack expression of ER-

a66 [28]. Our current results thus suggested that the agonist/

antagonist activities of tamoxifen are concentration dependent and

ER-a36 is involved in the agonist/antagonist activities of

tamoxifen.

ICI 182, 780 has been portrayed as a ‘‘pure’’ antiestrogen

without any estrogenic activity [7]. Here, we found that ICI 182,

780 worked just like 4-OHT and exhibited concentration-

dependent agonist/antagonist activities in cells expressing ER-

a36. Recently, we reported that ICI 182, 780 failed to induce

degradation of ER-a36 [38], presumably because ER-a36 has a

truncated ligand-binding domain that lacks the last 4 helixes (helix

9–12) of ER-a66 [22]. The helix-12 domain is critical in protein

degradation induced by ICI 182, 780 and different positioning of

the helix 12 and the F domain of ER-a66 regulates functional

differences between agonists and antagonists [39,40,41]. This may

provide a molecular explanation for the failure of ICI 182, 780 to

induce ER-a36 degradation and inhibited ER-a36 activity.

Previously, low concentrations of ICI 182, 780 were found to

stimulate the growth of tamoxifen-resistant KPL-1 human breast

cancer cells [42] and to induce phosphorylation of the MAPK/

ERK in neonatal rat cerebellar neurons [12]. Thus, like

tamoxifen, ICI 182, 780 also has concentration-dependent

agonist/antagonist activities.

It is worth noting that the earlier version of ER-a66/knockout

mice that was generated by insertion of a Neo cassette into the first

coding exon of the mouse ER-a gene [43] (the exon that is sipped

in the generation of the transcript encoding ER-a36) retains ER-

a36 expression (Elliot Sharon, personal communication). This

version of ER-a66 deficient mice also retained ICI 182, 780

insensitive non-genomic estrogen-signaling in different tissues

[44,45,46]. Our current results suggested that ER-a36 may be

involved in the ICI 182, 780 resistant non-genomic estrogen

signaling observed in the early version of ER-a66 deficient mice.

The involvement of Src in rapid estrogen signaling has been

reported in the mouse neocortex, ER-positive breast cancer cells,

and prostate cancer cells [47,48,49]. It has also been reported that

antiestrogen tamoxifen promotes phosphorylation of the adhesion

molecules, p130Cas/BCAR1, FAK and Src [50]. In the present

study, we found that at 1 nM, antiestrogens induced phosphor-

ylation of Src at Tyr-416 and the downstream MAPK/ERK1/2.

Intriguingly, we found that 5 mM antiestrogenstriggered phos-

phorylation of Src-Tyr-527 and failed to induce phosphorylation

of Src-Tyr-416 and the MAPK/ERK1/2. Src can be switched

from an inactive to an active state through control of its

phosphorylation state [51]. Src-Tyr-416 can be auto-phosphory-

lated, which activates Src by displacing the P-Tyr-416 from the

binding pocket, allowing the substrate to gain access. However,

phosphorylation of Tyr-527 inactivates Src through the interaction

of P-Tyr-527 with a SH2 domain, which effectively folds Src up

into a closed, inactive state. Our results thus demonstrated, for the

first time, that phosphorylation state of Src-Y-416 and-Y-527 acts

as a switch of concentration dependent agonist/antagonist

activities of antiestrogens.

Previously, we reported that E2b induced the physical

interaction of ER-a36 and Src, and consequently the auto-

phosphorylation of Src-Y-416 in the ER-negative breast cancer

cells [29]. Here, we found that ER-a36 knock-down diminished

the Src-Y-416 phosphorylation induced by 1 nM of antiestrogens,

indicating ER-a36 is involved in the auto-phosphorylation of Src-

Y-416 induced by low-concentrations of antiestrogens. However,

the cells with ER-a36 knock-down exhibited high basal levels of

Src-Tyr-527 phosphorylation, which was not further induced by

antiestrogens at 5 mM, indicating that abrogation of ER-a36

activity increased basal levels of Src-Tyr-527 phosphorylation and

silenced Src activity, consistent with our previous findings that the

ER-negative breast cancer cells with ER-a36 knock-down failed to

form xenograft tumors [29]. Furthermore, in the co-immunopre-

cipitation assays, we found that antiestrogens at low concentration

(1 nM) induced interaction between ER-a36 and Src, suggesting

that like estrogen, both antiestrogens are able to induce association

of ER-a36 and Src as well as auto-phosphorylation of Src. At high

concentration (5 mM), antiestrogens failed to induce the interac-

tion of ER-a36 and Src. It is possible that different concentrations

of antiestrogens may trigger different conformations of ER-a36,

which regulates ER-a36 accessibility for Src binding. The failure

of the interaction between ER-a36 and Src may increase the basal

levels of Src-Tyr-527 phosphorylation to silence Src as we

observed in the cells with ER-a36 expression knocked-down.

The present study demonstrated that Cyclin D1 expression also

exhibited biphasic response to antiestrogens in these ER-negative

breast cancer cells through the Src/EGFR/STAT5 pathway. The

low concentrations of antiestrogens induced Src-mediated phos-

phorylation of the EGFR-Tyr-845 residue, which then recruits

STAT5 as a downstream effector to induce Cyclin D1 expression

through the GAS site located in the Cyclin D1 promoter. Src-

dependent phosphorylation of EGFR-Tyr-845 is required for

DNA synthesis induced by transactivating agonists of EGFR, such

as endothelin, lysophosphatidic acid, cytokines and growth

hormones [52]. It was reported that STAT5b, c-Src and EGFR

play important roles in estrogen-stimulated proliferation of ER-

positive breast cancer cells [30]. Introduction of dominant-

negative STAT5a mutants into ER-positive T47D breast cancer

cells inhibits estrogen-stimulated cell growth and induces apoptosis

Figure 5. STAT5 is involved in antiestrogen-induced Cyclin D1 promoter activity. (A). The involvement of STAT5 in antiestrogens-induced
Cyclin D1 promoter activity. Cells were transfected with the luciferase reported plasmid Cyclin D1 pl-963 together with an empty expression vector or
two dominant-negative STAT5a mutants, STAT5aD713 and STAT5aD740, respectively. Transfected cells were treated with vehicle (ethanol), 1 nM or
5 mM of antiestrogens. Columns: means of the relative luciferase activity from four independent experiments. Luciferase activity in the cells
transfected with an empty expression vector and treated with vehicle is arbitrarily set as 1.0; bars, SE. *, p,0.05, for cells treated with vehicle (V) vs
1 nM of antiestrogens. (B). The GAS1 is involved in induction of the Cyclin D1 promoter activity by antiestrogens. Cells were transiently transfected
with either the wild-type Cyclin D1 promoter (CycD1) or the same promoter construct containing mutated GAS1 (GAS1mut) or GAS2 (GAS2mut)
sequence, respectively. Transfected cells were treated with vehicle or 1 nM of antiestrogens, and the luciferase activity was presented relative to the
wild-type Cyclin D1 promoter-transfected cells treated with vehicle that is arbitrarily set as 1.0. *, p,0.05, for cells treated with vehicle (V) vs 1 nM of
antiestrogens.
doi:10.1371/journal.pone.0030174.g005
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[31]. Thus, our results indicated that the EGFR/Src/STAT5

pathway is also involved in the biphasic antiestrogen signaling in

ER-negative breast cancer cells.

In summary, we have shown that ER-a36 expressing ER-

negative breast cancer cells exhibited biphasic response to

antiestrogens, which further confirm that ER-a36 mediates non-

genomic antiestrogen signaling. Our results also provided a

possible explanation to the previous findings of the existence of

two non-genomic estrogen-signaling pathways, one sensitive to

antiestrogens and the other insensitive. The finding that

antiestrogens at higher concentrations inhibit proliferation of

ER-negative breast cancer cells through suppressing the EGFR/

Src/STAT5 signaling pathway provided a rational for develop-

ment of more effective therapeutic approaches for ER-negative

Figure 6. ER-a36 mediates biphasic antiestrogen signaling in ER-negative breast cancer cells. (A). The effects of antiestrogens on the
proliferation rate of MDA-MB-231 and MDA-MB-436 cells with or without ER-a36 expression knocked-down. Cells maintained for three days in phenol
red-free DMEM plus 2.5% dextran-charcoal-stripped fetal calf serum were treated with indicated concentrations of antiestrogens or ethanol vehicle as
a control. The cell numbers were determined using an automatic cell counter after 12 days. Five dishes were used for each concentration and
experiments were repeated three times. The mean cell number 6 SE are shown. (B). Western blot analysis of the effects of 1 nM or 5 mM of
antiestrogens on the phosphorylation levels of the SrcY416, SrcY527 and EGFRY845 in MDA-MB-231 and MDA-MB-436 cells. (C). Cells were transfected
with the luciferase reporter plasmid driven by the wild-type Cyclin D1 promoter and transfected cells were treated with vehicle (ethanol), 1 nM or
5 mM of antiestrogens. Columns: means of the relative luciferase activity in transfected cells treated with vehicle that is arbitrarily set as 1.0 from three
independent experiments; bars, SE. *, p,0.05, for cells treated with vehicle (V) vs 1 nM of antiestrogens.
doi:10.1371/journal.pone.0030174.g006
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breast cancer using combinations of antiestrogens with EGFR or

Src inhibitors.

Materials and Methods

Chemicals and Antibodies
The Src inhibitors PP2, the PI3K inhibitor LY294002, 4-

hydoxy tamoxifen (4-OHT) and ICI 182, 780 were from Tocris

Bioscience (Ellisville, MO). The Src inhibitor dasatinib was

obtained from LC Laboratories (Woburn, MA). Phospho-EGFR

and -Src antibodies, EGFR and Src antibodies, anti-phospho-

p44/42 ERK (Thr202/Tyr204) (197G2) mouse monoclonal

antibody (mAb) and anti-p44/42 ERK (137F5) rabbit mAb were

all purchased from Cell Signaling Technology (Boston, MA).

Polyclonal anti-ER-a36 antibody was generated and characterized

as described before [22]. Antibody for Cyclin D1 was purchased

from Santa Cruz Biotechnology (Santa Cruz, CA).

Cell Culture, Treatment and Growth Assay
MDA-MB-231 and MDA-MB-436 cells were obtained from

American Type Culture Collection (ATCC, Manassas, VA). All

parental and derivative cells were maintained at 37uC in a 10%

CO2 atmosphere in DMEM and 10% fetal calf serum in a

humidified incubator. For antiestrogen treatment, cells were

maintained in phenol red-free media with 2.5% charcoal-stripped

fetal calf serum for two to three days, and then in serum-free

medium for 24 hours before experimentation. For ERK activation

assays, cells were treated with vehicle (ethanol) and indicated

concentrations of 4-OHT and ICI 182, 780. To test the effects of

different inhibitors, all inhibitors were added 10 min. before

addition of antiestrogens.

Since these ER-negative breast cancer cells express high levels

of EGFR, which make cells proliferate at a near-maximal rate in

serum-supplemented medium, the effects of antiestrogen signaling

on proliferation of these cells are too subtle to detect most time. To

alleviate this problem, we reduced charcoal-stripped fetal calf

serum concentration in culture medium from 10% to 2.5% and

increased estrogen treatment time to 12 days in our cell growth

assays.

To examine cell growth in the presence or absence of

antiestrogens, cells maintained for three days in phenol red-free

DMEM plus 2.5% dextran-charcoal-stripped fetal calf serum

(HyClone, Logan, UT) were treated with different concentrations

of 4-OHT, ICI 182, 780 or ethanol vehicle as a control. The cells

were seeded at 16104 cells per dish in 60 mm dishes and the cell

numbers were determined using the ADAM automatic cell

counter (Digital Bio., Korea) after 12 days. Five dishes were used

for each treatment and experiments were repeated more than

three times.

Cell lines with ER-a36 expression knocked down by the shRNA

method in MDA-MB-231 and MDA-MB-436 cells were generated

and described before [22].

Plasmids, DNA transfection and Luciferase Assay
The expression vectors for a dominant-negative mutant of Src

(pCMV5/SrcK295) and a constitutively active mutant of Src

(pCMV5/SrcY527F) were obtained from Dr. Yun Qiu at the

Department of Pharmacology and Experimental Therapeutics,

University of Maryland School of Medicine. Dr. Linda Schuler at

Department of Comparative Biosciences, University of Wiscon-

sin-Madison kindly provided the luciferase reporter plasmids of

the Cyclin D1 promoter (pl-963) carrying GAS1 and 2 mutations.

Two dominant-negative STAT5 mutants, Stat5aD713 and

Stat5aD740 were provided by Dr. H Yamashita at Department

of Surgery II, Nagoya City University. The wild-type luciferase

reporter plasmid of the Cyclin D1 promoter, Cyclin D1 pl-963

was obtained from Dr. Chris Albanese at Departments of

Oncology and Pathology, Georgetown University Medical

Center. The 4XM67 pTATA-TK-luciferase reporter plasmid

was purchased from Addgene (Cambridge, MA). Cells were co-

transfected with a cytomegalovirus-driven Renilla luciferase

plasmid, pRL-CMV (Promega, Madison, WI) to establish

transfection efficiency. Twenty-four hours after transfection, cells

were treated with vehicle, 10 mM of dasatinib, PP2, or LY294002

for twenty-four hours. Forty-eight hours after transfection, cell

extracts were prepared and luciferase activities were determined

and normalized using the Dual-Luciferase Assay System (Pro-

mega, Madison, WI) and a TD 20/20 Luminometer (Turner

BioSystems, Inc., Sunnyvale, CA) as instructed by the manufac-

turer.

Western blot Analysis
For Western blot analysis, cells washed with cold PBS were

lysed with the lysis buffer (50 mM Tris-HCl pH 8.0, 150 mM

NaCl, 0.25 mM EDTA pH 8.0, 0.1% SDS, 1% Triton X-100,

50 mM NaF) supplemented with protease and phosphatase

inhibitors from Sigma. The protein amounts were measured using

the DC protein assay kit (BIO-RAD Laboratories, Hercules, CA).

The same amounts of the cell lysates were boiled for 5 minutes in

loading buffer and separated on a SDS-PAGE gel. After

electrophoresis, the proteins were transferred to a PVDF

membrane. The membranes were probed with various primary

antibodies, HRP-conjugated secondary antibodies, and visualized

with enhanced chemiluminescence (ECL) detection reagents (GE

Healthcare Bio-Sciences Corp. Piscataway, NJ).

Immunoprecipitation and Immunoblot Analysis
For imunoprecipitation assays, cells were washed twice with

ice-cold PBS and lysed with the lysis buffer (150 mM NaCl,

20 mM TrisHCl, pH 7.4, 0.1% NP-40) supplemented with

protease and phosphatase inhibitors (Sigma, St. Louis, MO).

Cell lysates were then incubated with indicated anti-HA

antibodies, or pre-immune serum and immunoprecipitated with

protein A/G plus agarose. The precipitates were then washed,

separated on SDS-PAGE and analyzed with Western blot

analysis as described before [27,29].

Figure 7. Different concentrations of antiestrogens affect the
association of ER-a36 and Src differently. Co-immunoprecipita-
tion and Western blot analysis of HA-ER-a36 and Src in MDA-MB-231
cells. Cells transiently transfected with an expression of HA-tagged ER-
a36 and treated with different concentrations of antiestrogens for
10 min were lysised and the cell lysates were immunoprecipitated with
pre-immune and anti-HA antibodies. The immunoprecipitates were
blotted by anti-HA and anti-Src antibodies.
doi:10.1371/journal.pone.0030174.g007
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Statistical analysis
Data were summarized as the mean 6 standard error (SE) using

the GraphPad InStat software program (GraphPad Software, La

Jolla, CA, USA). Tukey-Kramer Multiple Comparisons Test was

also used, and the significance was accepted for P,0.05.
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