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A novel sequence‑based predictor 
for identifying and characterizing 
thermophilic proteins using 
estimated propensity scores 
of dipeptides
Phasit Charoenkwan1, Warot Chotpatiwetchkul2, Vannajan Sanghiran Lee3, 
Chanin Nantasenamat4 & Watshara Shoombuatong4*

Owing to their ability to maintain a thermodynamically stable fold at extremely high temperatures, 
thermophilic proteins (TTPs) play a critical role in basic research and a variety of applications in 
the food industry. As a result, the development of computation models for rapidly and accurately 
identifying novel TTPs from a large number of uncharacterized protein sequences is desirable. In spite 
of existing computational models that have already been developed for characterizing thermophilic 
proteins, their performance and interpretability remain unsatisfactory. We present a novel sequence‑
based thermophilic protein predictor, termed SCMTPP, for improving model predictability and 
interpretability. First, an up‑to‑date and high‑quality dataset consisting of 1853 TPPs and 3233 
non‑TPPs was compiled from published literature. Second, the SCMTPP predictor was created by 
combining the scoring card method (SCM) with estimated propensity scores of g‑gap dipeptides. 
Benchmarking experiments revealed that SCMTPP had a cross‑validation accuracy of 0.883, which was 
comparable to that of a support vector machine‑based predictor (0.906–0.910) and 2–17% higher than 
that of commonly used machine learning models. Furthermore, SCMTPP outperformed the state‑of‑
the‑art approach (ThermoPred) on the independent test dataset, with accuracy and MCC of 0.865 and 
0.731, respectively. Finally, the SCMTPP‑derived propensity scores were used to elucidate the critical 
physicochemical properties for protein thermostability enhancement. In terms of interpretability 
and generalizability, comparative results showed that SCMTPP was effective for identifying and 
characterizing TPPs. We had implemented the proposed predictor as a user‑friendly online web server 
at http:// pmlab stack. pytho nanyw here. com/ SCMTPP in order to allow easy access to the model. 
SCMTPP is expected to be a powerful tool for facilitating community‑wide efforts to identify TPPs on a 
large scale and guiding experimental characterization of TPPs.

Proteins are one of the most important biological macromolecules as they perform a variety of functions such as 
enzyme catalysis, ion and molecular transport, antibody production, and cellular/physiological activity regula-
tion. Protein activities are heavily influenced by the three-dimensional structure of the  protein1. Furthermore, 
protein and protein complex structures provide a wealth of information for understanding inter-residue interac-
tions such as protein folding mechanisms, folding and unfolding rates, protein structure stability, stability upon 
mutation, recognition mechanisms of protein–protein, protein-nucleic acid, protein–ligand complexes, which are 
instrumental for structure-based drug  design2,3. Thermophilic proteins (TPPs) have already been established a 
critical role in biotechnology and chemical  processing4. TPPs are stable at high temperatures of about 80–100 °C 
and environmental temperature of the host  organism5,6. Additionally, specific amino acid properties such as 
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shape, Gibbs free energy change of hydration in native proteins, dipeptide composition, contacts between amino 
acid residues, number of ion pairs, hydrogen bonds, packing, and aromatic clusters all play an important role in 
TPP  stability5,7. According to a thorough examination of all interactions, hydrophobicity is the most important 
feature in TPP stability, followed by ion pairs and hydrogen  bonds8. Understanding the molecular basis of protein 
thermostability is critical for designing proteins for specific industrial and medical applications that necessitate 
special  stability3. Furthermore, TPPs are resistant to denaturation by chemical compounds such as detergents, 
surfactants, oxidizing agents, and  proteases9,10. As a result of these properties, TPPs can be easily purified by heat 
treatment and can withstand harsh industrial conditions for a longer period of  time11. It should be noted that 
higher thermostability of therapeutic proteins can extend their blood survival  time12. As for their advantages 
in high-temperature industrial catalysis, TPPs have reduced contamination, easy mixing with low viscosity and 
high mass transfer rate, higher solubility of substrates and  products13. Furthermore, the advantage of TPPs are 
their use in high-temperature pelleting  process14 and in endothermic processes such as the isomerization of 
glucose to generate high fructose  syrups15. Although experimental methods are the way to certify thermostability 
of proteins, these methods are usually labor-intensive, time-consuming and expensive. Thus, it is desirable to 
develop a rapid and accurate approach for identifying TPPs from a large collection of proteins.

Several previous studies have shown that machine learning (ML)-based tools can accurately characterize 
various protein functions using only protein primary  sequences16–24. Several computational efforts based on 
machine learning (ML) methods have been made in recent years to identify  TPPs20,21,24–33 as summarized in 
Table 1. As can be seen from Table 1, support vector machine (SVM) method is the most widely used technique 
for identifying  TPPs20,21,24–26,28–30. For instance, Zhang and  Fan31 developed the first TPP predictor based on 
amino acid composition (AAC) descriptors. Particularly, they developed a TPP predictor using the partial least 
squares (PLS) method on a small set of training data (76 TPPs and 76 MPPs). Afterwards, the same  group32 intro-
duced a LogitBoost predictor based on a larger number of data consisting of 3521 TPPs and 4895 MPPs (called 
Zhang2007). In 2008, Gromiha et al.27 established a new dataset (called Gromiha2008) by applying the CD-HIT 
 program34 using a threshold of 0.4 on the Zhang2007 data so as to remove additional redundant sequences. In 
2011, Lin et al.20 constructed a more reliable benchmark dataset containing 915 TPPs and 793 non-TPPs (called 
Lin2011). Using this dataset, ThermoPred was developed by means of the SVM method in conjunction with 
AAC and dipeptide composition (DPC), which could achieve an improvement in accuracy (ACC) of 0.933 as 
evaluated by the jackknife cross-validation in their comparative analysis with the model of Gromiha et al.27. In 
addition, Fan et al.25 introduced a new TPP predictor (called PSSM400_pKa) based on the SVM method and 
trained on three different feature encodings namely AAC, acid dissociation constant (pKa) and position-specific 
scoring matrices (PSSM). The PSSM400_pKa predictor was developed based on the Gromiha2008 dataset and 
its predictive performance was validated by using two independent test datasets where the Gromiha2008 data 
and two independent test datasets are referred to as Fan2016.

Although existing methods could achieve good predictive performance, their overall utility is limited in 
terms of interpretability and practical utility. The following important issues are needed to be addressed. Firstly, 
SVM-based predictors are not easy-to-use and difficult for biologists and biochemists to implement on their 
own datasets. On the other hand, the ability of biologists and biochemists in understanding the resulting model 
is of great importance if they are to be applied in a real-world setting. Secondly, existing datasets do not include 
comprehensive TPPs and non-TPPs. Therefore, these datasets might not have sufficient information necessary for 

Table 1.  Summary of existing ML-based models for thermophilic protein prediction. a KNN k-nearest 
neighbor, NN neural networks, PLS partial least-square regression, SVM support vector machine. b AAC  amino 
acid composition, CTD composition-transition-distribution, DPC dipeptide composition, DPS dipeptide 
propensity scores, GGAP g-gap dipeptide composition, k-mer fragment-based technique, pka acid dissociation 
constant, PCP physicochemical properties, PseACC  pseudo amino acid composition, PSSM position specific 
scoring matrix, RACC  reduce amino acid composition, TC tripeptide composition. c 5CV fivefold cross-
validation, 10CV tenfold cross-validation, jackknif jackknife cross-validation, IND independent test. d Not 
accessible: the webserver was not functional during the preparation of this manuscript.

Author (year) Classifier a Features b Evaluation  strategyc Web server  availabilityd

Zhang et al.31 PLS AAC 5CV/IND No

Zhang et al.32 LogitBoost AAC 5CV/IND No

Gromiha et al.27 NN AAC 5CV/IND No

Montanucci et al.21 SVM AAC, DPC 5CV Not accessible

Lin et al.20 SVM AAC, GGAC Jackknife Yes

Wang et al.24 SVM AAC, DPC, PCP, CTD 5CV No

Nakariyakul et al.28 SVM AAC, DPC 5CV/IND No

Zuo et al.33 KNN AAC Jackknife Not accessible

Wang et al.30 SVM AAC, GGAC 5CV/IND No

Fan et al.25 SVM AAC, pka, PSSM 10CV/IND No

Tang et al.29 SVM k-mer 5CV No

Feng et al.26 SVM ACC, DPC, PCP,RAAC 10CV/IND No

Charoenkwan et al. (this study) SCM DPS 10CV/IND Yes
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the development of comprehensive TPP predictors. Finally, almost all existing methods (with the exception for 
 ThermoPred20) did not provide a web server for public usage therefore their practical application is quite limited.

In this paper, we present SCMTPP, a novel, simple-to-implement, and interpretable computational model that 
is designed to improve predictive performance and model interpretability for the identification of TPPs. Figure 1 
summarizes the SCMTPP’s overall framework. Firstly, we established an up-to-date dataset (i.e. 1823 TPPs and 
3124 non-TPPs) by combining positive and negative samples from datasets of previous  studies20,25,32,35. Secondly, 
propensity scores of 20 amino acids and 400 g-gap dipeptides were estimated via the scoring card method (SCM). 
Finally, derived propensity scores were used for the development of a prediction model (SCMTPP) based on a 
scoring function for determining important biophysical and biochemical properties for TPPs. Results indicated 
that SCMTPP could outperform existing methods and widely used ML-based classifiers in terms of simplicity, 
interpretability, and practical application (according to tenfold cross-validation and independent tests).

Materials and methods
Dataset preparation. In this study, we created an up-to-date dataset by combining previously reported 
datasets consisting of Zhang200732,35, Lin201120 and Fan201625. Particularly, Zhang200732,35, Lin201120 and 
Fan201625 datasets contained 8419, 1708 and 4684 sequences, respectively. Herein, these TPPs and non-TPPs 
were considered as positive and negative samples, respectively. Particularly, the positive dataset was extracted 
from thermophilic  organisms20,25,31,32 while the negative dataset represents the integration of non-TPPs and 
mesophilic proteins (MPPs) extracted from non-thermophilic organisms (i.e. Lin201120) and mesophilic organ-
isms (i.e. Zhang200732,35 and Fan201625), respectively. From these, we excluded protein sequences containing 

Figure 1.  Schematic framework of the development of SCMTPP. This can be summarized into five main 
steps: (i) Training and independent test datasets preparation, (ii) Feature extraction, (iii) SCM-based model 
development, (iv) TPPs characterization and (v) SCMTPP webserver construction.
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nonstandard letters such as “B”, “U”, “X”, or “Z”. Subsequently, redundant sequences were removed by applying 
the CD-HIT program using a threshold of 0.4 on both positive and negative datasets so as to avoid overestima-
tion of the model performance. As a result, a total of 4945 sequences containing 1823 TPPs and 3124 non-TPPs 
were obtained and considered as the largest and up-to-date dataset in this aspect. Among these, we randomly 
selected 80% of the positive dataset containing 1482 TPPs and an equal number of non-TPPs from the negative 
dataset to construct a training dataset called TPP-TRN (1482 TPPs and 1482 non-TPPs). In the meanwhile, the 
remaining set of TPPs and an equal number of non-TPPs were considered as the independent test dataset called 
TPP-IND (371 TPPs and 371 non-TPPs). For reproducibility purposes, the TPP-TRN and TPP-IND datasets can 
be downloaded from our web server (at http:// pmlab stack. pytho nanyw here. com/ SCMTPP).

Feature representation. The g-gap dipeptide composition (GDC) descriptor is another variation of the 
DPC descriptor ( g = 0 ) by representing the fraction of any two interval amino acids (aai, aaj; j − i > 1) in a 
given peptide P. This descriptor can be formulated as:

where f gi  is the percentage of the composition of the ith ( i = 1, 2, . . . , 400 ) g-gap dipeptide.

where ngi  represents the total number of ith g-gap dipeptide in a given peptide P. The dimension of the GDC 
descriptor is 400.

Scoring card method. The SCM method has been demonstrated to perform admirably in terms of concep-
tual simplicity, ease of implementation and  interpretability16,18,36–39. In 2012, Huang et al.19 firstly introduced the 
original SCM method. More recently, Charoenkwan et al. had developed an improved version that is designed 
for predicting and characterizing anticancer  peptides38. It is well-recognized that the SCM method is effective 
for identifying proteins and providing information on the underlying molecular mechanism of proteins. The 
following points summarize the benefits of the SCM method. To begin, unlike well-known ML methods (such 
as SVM and NB methods), the SCM method uses only one threshold value to distinguish positives from nega-
tives. Second, the SCM method is the most cost-effective method for performing a genome-wide prediction of 
any protein family. Finally, the information from the propensity scores of 20 amino acids and 400 dipeptides 
helps wet-lab researchers gain insights into the properties of proteins. The following describe the concepts and 
optimization procedures of an SCM classifier trained with GDC (g = 0):

Phase 1: Preparing the TPP-TRN and TPP-IND datasets for SCM classifier development and evaluation.
Phase 2: Calculating initial propensity scores of GDC ( g = 0 ) using a statistical approach. For convenience 

of discussion, we denote propensity scores of the g-gap dipeptide term as PSGD (g = 0, 1, 2, …, 9). Further details 
of this statistical approach are provided in our previous  studies16,18,36–40.

Phase 3: Optimizing the initial PSGD (g = 0) and estimating the threshold value using the GA algorithm 
in order to improve the predictive  performance39. Specifically, the fitness function of the GA was mainly used 
for optimizing two important factors: the area under the receiver operating characteristic (AUC) ( W1 ) and the 
Pearson’s correlation coefficient (R value) between the initial and optimized PSGD (g = 0) ( W2 ). To avoid the 
overfitting issue, the fitness function Fit(.) was performed via a tenfold cross-validation procedure and repre-
sented as follows:

Furthermore, weights for W1 and W2 were set based on our previous  studies18,37–40.
Phase 4: Constructing a scoring function S(P) based on the SCM method to calculate TPP score of an 

unknown protein P. Herein, the scoring function was created using the optimized propensity scores of 400 
dipeptides and can be defined as follows:

where DPi and PSi represent the total number and propensity score of the ith dipeptide.
Phase 5: Identifying the biological function of an unknown protein P using the scoring function S(P). Par-

ticularly, for a given unknown protein sequence P, it is classified as TPP if S(P) is greater than the threshold 
value, otherwise P is classified as non-TPP.

where 1 and 0 represent prediction results as TPP and non-TPPs, respectively.

Characterization of thermophilic proteins using SCMTPP. Propensity scores of 20 amino acids were 
estimated and used in this study to provide a better understanding of the biophysical and biochemical proper-
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ties of TPPs using SCMTPP. Particularly, a statistical approach was used to calculate the propensity scores for 
each amino acid. The propensity score for Glu, for example, is calculated by averaging propensity scores of 40 
dipeptides that contain Glu. In addition, propensity scores of 20 amino acids were also used to identify a set of 
informative physicochemical properties (PCPs) as extracted from the amino acid index database (AAindex)41 by 
means of R values from amongst propensity scores of 20 amino acids with those of 531 PCPs.

Performance evaluation. In order to evaluate the prediction ability of the model, we used four widely 
used metrics for the two-class prediction problems as follows:

where ACC, Sn, Sp and MCC represents accuracy, sensitivity, specificity and Matthews correlation coefficient, 
respectively. Particularly, the number of correctly predicted true TPPs and true non-TPPs is indicated by TP 
and TN, respectively. Furthermore, FP stands for the number of non-TPPs that are predicted to be TPPs, and 
FN stands for the number of TPPs that was predicted to be non-TPPs. The proposed model was compared to 
previously described models using the receiver operating characteristic (ROC) curve of threshold-independent 
parameters. As a result, the area under the ROC curve (AUC) was used to evaluate prediction performance, with 
AUC values in the range of 0.5 and 1 denoting random and perfect models,  respectively42–47.

Analysis of three‑dimensional structure of thermophilic proteins. Herein, Galaxy TBM (http:// 
galaxy. seokl ab. org/ index.html) was used for the determination of three-dimensional structures of TPPs and 
non-TPPs. The workflow of protein modelling consisted of two main stages: (i) selecting reliable models that are 
aligned with  PROMALS3D48 and  MODELLERCSA49 models and (ii) detecting and remodelling loop areas using 
the refining method. Particularly, protein structures of selected models were refined using 3Dpro (http:// scrat ch. 
prote omics. ics. uci. edu/ expla nation. html# 3Dpro) and GalaxyRefine (http:// galaxy. seokl ab. org/ cgi- bin/submit.
cgi?type = REFINE). Finally, the ProSA-web server (https:// prosa. servi ces. came. sbg. ac. at/ prosa. php) and the 
Ramachandran plots were used to validate the three-dimensional structure. Moreover, hydrophobic and charge 
surface were visualized by using the BIOVIA Discovery Studio software (Dassault Systèmes BIOVIA, Discovery 
Studio Modeling Environment, Release 2018, San Diego: Dassault Systèmes, 2016).

Results and discussion
Prediction assessment of different propensity scores of g‑gap dipeptides. The predictive per-
formance of SCM classifiers trained with different PSGD (g = 0–9) was evaluated by means of tenfold cross-
validation and independent tests on TPP-TRN and TPP-IND datasets, respectively. The GA algorithm was used 
to optimize and generate 10 sets of propensity scores for each g-gap dipeptide in order to construct 10 different 
SCM classifiers. As a result, among these ten sets, the one with the highest cross-validation MCC was chosen 
as the best. Supplementary Tables  S1-S10 list the predictive performance of various SCM classifiers trained 
with PSGD (g = 0–9). Moreover, a summary of the predictive performance of 10 SCM classifiers trained by the 
10 optimal sets of PSGD (g = 0–9) and evaluated by tenfold cross-validation and independent test results are 
recorded in Tables 2 and 3, respectively.

It is noticed that the mean ± SD values of ACC, Sn, Sp, MCC and AUC as based on 10 SCM classifiers 
are 0.867 ± 0.006, 0.871 ± 0.012, 0.864 ± 0.015, 0.735 ± 0.013 and 0.916 ± 0.005, respectively, using tenfold cross-
validation. As can be seen from Table 2, PSGD (g = 0) was found to achieve the highest ACC of 0.883 with an 
MCC of 0.766 and an AUC of 0.926. Furthermore, PSGD (g = 1) and PSGD (g = 3) also performed well as it 
afforded the second and third highest ACC of 0.872 and 0.869, respectively. In the case of independent test 
results, Table 3 shows that the mean ± SD values of ACC, Sn, Sp, MCC and AUC based on 10 SCM classifiers are 
0.850 ± 0.010, 0.842 ± 0.017, 0.858 ± 0.016, 0.700 ± 0.019 and 0.909 ± 0.006, respectively. PSGD (g = 6) achieved 
the highest ACC and MCC of 0.867 and 0.733, respectively, while PSGD (g = 0) achieved the second highest ACC 
and MCC of 0.865 and 0.731, respectively. From Table 3, it can be observed that PSGD (g = 0) achieved very 
comparable independent test results to that of PSGD (g = 6) in terms of all metrics (i.e. ACC, Sn, Sp, MCC and 
AUC). Taken into consideration the performance of both tenfold cross-validation and independent test results, 
results indicated that the SCM classifier trained with PSGD (g = 0) (i.e. the propensity scores of dipeptide) was 
the optimal one for the identification of TPPs and is referred to as SCMTPP. Further details of propensity scores 
of dipeptides are depicted in Fig. 2.

(6)ACC =
TP+ TN

(TP+ TN+ FP+ FN)

(7)Sn =
TP

(TP+ FN)

(8)Sp =
TN

(TN+ FP)

(9)MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
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Comparison of initial and optimized propensity scores. The improved predictive performance of 
SCMTPP is mainly due to estimated propensity scores of dipeptides derived from the SCM approach. In order 
to understand this phenomenon, firstly, we compared the predictive performance of optimized (optimized-
PS) and initial (initial-PS) propensity scores of dipeptides. Table 4 shows the predictive performance of opti-
mized-PS and initial-PS as evaluated by tenfold cross-validation and independent tests. As shown in Table 4, the 
optimized-PS achieved cross-validation ACC, Sp and MCC of 0.883, 0.887 and 0.766, which represents 3.9%, 
5.8% and 7.8%, respectively, improvements over that of the initial-PS. Furthermore, independent test results of 
the optimized-PS were found to be consistently higher than that of the initial-PS. Particularly, optimized-PS 
afforded improvements as demonstrated by higher values of ACC, Sp and MCC of 1.7%, 3.7% and 3.8%, respec-
tively, when compared to that of the initial-PS. In addition, histogram plots was used to represent scores of TTPs 
and non-TTPs as derived from SCMTPP by using initial-PS (Fig. 3A) and optimized-PS (Fig. 3B). As can be seen 
in Fig. 3, the optimized-PS shows a clear distinction between TTPs and non-TPPs thereby indicating that the 
optimized-PS was more effective for discriminating TTPs from non-TPPs than that of the initial-PS.

Comparison of SCMTPP with well‑known ML classifiers and the existing method. In order to 
assess the predictive effectiveness of the proposed SCMTPP, we compared its performance with well-known 
ML classifiers as well as with the existing method on the same training and independent test dataset. Herein, we 
constructed and optimized several ML classifiers using SVM, decision tree (DT), k-nearest neighbor (KNN) and 
naive Bayes (NB) with AAC, DPC and amino acid index (AAI). All of these ML classifiers were constructed using 
the scikit-learn Python machine learning package (version 0.22)50. Figure 4 and Supplementary Tables S11-S12 
summarize results of SCMTPP and several ML classifiers as evaluated by tenfold cross-validation and independ-
ent test. In regards to the existing method, Table 1 shows that three of these existing methods (i.e. Montanucci 
et al.’s  method21,  ThermoPred20 and Zuo et al.’s  method33) were available as a webserver. However, ThermoPred is 
the only webserver that was functional at the time of this manuscript’s preparation. Therefore, the performance 
of SCMTPP was compared with only ThermoPred and their results are reported in Table 5.

Insights gained from Fig. 4, Table 5 and Supplementary Tables S11-S12 can be summarized as follows: (i) Two 
SVM-based classifiers consisting of SVM-DPC and SVM-ACC was found to achieve the two highest performance 

Table 2.  Cross-validation results of SCM models using different optimal propensity scores of g-gap dipeptides.

g-gap R Cutoff ACC Sn Sp MCC AUC 

0 0.650 418 0.883 0.878 0.887 0.766 0.926

1 0.592 420 0.872 0.879 0.865 0.744 0.918

2 0.634 414 0.867 0.865 0.868 0.734 0.919

3 0.653 412 0.869 0.864 0.874 0.739 0.916

4 0.602 417 0.865 0.867 0.862 0.730 0.918

5 0.601 416 0.867 0.873 0.861 0.735 0.918

6 0.601 407 0.865 0.862 0.868 0.730 0.913

7 0.664 415 0.862 0.885 0.840 0.726 0.911

8 0.668 415 0.862 0.848 0.875 0.724 0.912

9 0.585 425 0.861 0.885 0.837 0.724 0.909

Mean 0.625 416 0.867 0.871 0.864 0.735 0.916

SD 0.032 4.77 0.006 0.012 0.015 0.013 0.005

Table 3.  Independent test results of SCM models using different optimal propensity scores of g-gap 
dipeptides.

g-gap R Cutoff ACC Sn Sp MCC AUC 

0 0.650 418 0.865 0.849 0.881 0.731 0.925

1 0.592 420 0.844 0.846 0.841 0.687 0.912

2 0.634 414 0.863 0.868 0.857 0.725 0.918

3 0.653 412 0.860 0.836 0.884 0.721 0.908

4 0.602 417 0.852 0.863 0.841 0.704 0.909

5 0.601 416 0.852 0.854 0.849 0.704 0.915

6 0.601 407 0.867 0.863 0.871 0.733 0.914

7 0.664 415 0.853 0.860 0.846 0.706 0.909

8 0.668 415 0.840 0.822 0.857 0.680 0.910

9 0.585 425 0.837 0.849 0.825 0.674 0.897

Mean 416 0.625 0.853 0.851 0.855 0.706 0.912

SD 0.032 4.77 0.011 0.014 0.019 0.021 0.007
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with ACC (cross-validation and independent test) of (0.910 and 0.904) and (0.906 and 0.898) for SVM-DPC and 
SVM-ACC, respectively; (ii) SCMTPP achieved very comparable to these two classifiers as well as ThermoPred 
with cross-validation and independent test ACC of 0.883 and 0.865, respectively, (iii) SCMTPP and SVM-based 
classifier (except for SVM-AAI) performed better than DT-based, KNN-based and NB-based classifiers. Particu-
larly, the cross-validation ACC of SCMTPP was 7.05–16.83%, 3.78–14.68 and 1.86–14% higher than DT-based, 
KNN-based and NB-based classifiers, respectively. It is well-known that SVM method is a complicated approach 
that is not straightforward to provide the underlying biological  implications16,18,36–40. On the other hand, SCM 
method is based on a simple weighted-sum approach that is more easy-to-understand method for biologists 
and provide interpretable propensity scores of dipeptides. Altogether, these comparative results revealed that 
the proposed SCMTPP predictor was the most suitable one for the identification and analysis of TPPs in terms 
of conceptual simplicity, ease of implementation and effectiveness.

Identification of potential thermophilic proteins. Unlike existing methods, the proposed SCMTPP 
predictor is an easy-to-use and cost-effective for determining the likelihood of uncharacterized proteins namely 
TPPs using a simple scoring function S(P)16,18,36–40. Recently, Charoenkwan et al. made the use of SCM method 
for determining a new potential peptide-based drug for the hypoxia inducible factor 1α (HIF-1α)36. Herein, 
the scoring function S(P) was used to calculate TPP scores (PS-TPP) for all proteins in the TPP-TRN dataset. 
Table 6 records ten top-ranked proteins having the highest TPP scores along with their name, PS-TPP, UniProt 
ID, function and source organism. As seen in Table Table 6, it could be noticed that all of the ten top-ranked pro-
teins exhibited TPP scores of greater than 418. In addition, Fig. 5 depicts three-dimensional structures of TPPs 
(Q9YFR9, Q57676 and Q9YD25) and non-TPPs (Q8ZDC4, Q66A07 and A1AZ52) having the highest (528.74, 
527.79 and 525.29, respectively) and lowest (319.67, 331.20 and 340.61, respectively) TPP scores, respectively. 
The five top-ranked proteins having the highest TPP scores and their UniProtID contained: 50S ribosomal pro-
tein L38E (528.74, Q9YFR9), Uncharacterized protein MJ0223 (527.79, Q57676), 50S ribosomal protein L31e 
(525.29, Q9YD25), Protein Grp (519.54, Q9WZV) and Elongation factor 1-beta (519.28, Q8TYN8). From 

Figure 2.  Propensity scores of 400 dipeptides as obtained from the proposed SCMTPP.

Table 4.  Cross-validation and independent test results of SCM-based classifiers using initial-PS and 
optimized-PS.

Cross-validation Feature ACC Sn Sp MCC AUC 

Tenfold CV
Initial-PS 0.844 0.858 0.829 0.688 0.910

optimized-PS 0.883 0.878 0.887 0.766 0.926

Independent test
Initial-PS 0.848 0.852 0.844 0.695 0.914

optimized-PS 0.865 0.849 0.881 0.731 0.925
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amongst these ten proteins, they were from five main organisms consisting of Aeropyrum pernix (Q9YFR9, 
Q9YD25, P58289,), Archaeoglobus fulgidus (O28071), Methanocaldococcus jannaschii (Q57676), Methanopyrus 
kandleri (Q8TYN8, Q8TX34, Q8TXI4 and Q8TWL9) and Thermotoga maritime (Q9WZV4). Interestingly, the 
uncharacterized protein MJ0223 was from Methanocaldococcus jannaschii which is an anaerobic thermophilic 
 archaea51.

Characterization of thermophilic proteins using propensity scores of amino acids. In this sec-
tion, propensity scores of 20 amino acids and 400 dipeptides to be TPPs were analyzed to provide good under-
standing of physicochemical properties of TPP. As mentioned above, these propensity scores were generated by 
using SCMTPP based on the training dataset containing 1482 TPPs and 1482 non-TPPs. Table 7 records the 
propensity scores of amino acids along with the percentage of amino acid compositions, while Fig. 2 displays 
the propensity scores of dipeptides. As seen in Table 7, we notice that the correlation coefficient R between the 
propensity scores of amino acids and the difference of the percentage of amino acid compositions among TPPs 
and non-TPPs is 0.96. This again confirmed that the propensity scores of amino acids and dipeptides had more 
discriminative power to capture the key information between TPPs and non-TPPs. By consideration of the pro-
pensity scores of amino acids, we noticed that the top-five amino acids to be TPPs consisted of Glu, Lys, Val, Arg 
and Ile with respective scores of 510.18, 480.00, 470.75, 464.08 and 435.65, respectively, while the top-five amino 
acids to be non-TPPs consisted of Gln, Thr, Ala, Asn and Phe with respective scores of 255.43, 306.00, 323.63, 
332.48 and 351.25, respectively. In case of the propensity scores of dipeptides, it could be found that the ten top-
ranked dipeptides to be TPPs consisted of EE, GW, SG, WS, KY, YP, PW, IM, VY, EG and RI with their scores of 
1000, 979, 956, 952, 908, 881, 876, 864, 860, 853 and 838, respectively, while the ten top-ranked dipeptides to be 

Figure 3.  Histogram plot represent scores of thermophilic and non-thermophilic proteins as derived from 
SCMTPP using initial (A) and optimized (B) dipeptides propensity scores on the training dataset where the 
mean and standard deviation are indicated by bars and closed circles, respectively.
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non-TPPs consisted of AA, LQ, NM, FW, MQ, AD, MT, SI, QL, QA and AQ with their scores of 0, 11, 27, 41, 47, 
71, 99, 104, 115, 129 and 144, respectively.

As shown in Table 7, the ranks of the top-five amino acids to be TPPs (propensity, difference) for Glu, Lys, 
Val, Arg and Ile are (1, 1), (2, 2), (3, 3), (4, 4) and (5, 5), respectively, while the ranks of the top-five amino acids 
to be non-TPPs for Gln, Thr, Ala, Asn and Phe are (20, 20), (19, 18), (18, 19), (17, 16) and (16, 13), respectively. 
Many previous studies indicated that Glu, Lys and Arg had higher occurrence in TPPs than  MPPs20,27,28,35,52–55. 
For example, Haney et al.53 conducted a comprehensive analysis on 115 protein sequences from M. jannaschii. 
Their results of amino acid composition analysis showed that Ile, Arg, Glu, Lys and Pro plays an important role in 
thermostability of proteins while Ser, Asn, Gln, Thr, and Met contributed to the mesostability of proteins. Haney 
et al.53 also reported that important physicochemical and biochemical properties for TPPs consisted of hydro-
phobicity, charged and uncharged polar residues. Zhang and  Fang35 provided the residue distribution analysis 
by employing DPC on 3521 TPPs and 4895 MPP. Based on their analysis results, they reported that dipeptide 
compositions of EX and KX were significantly higher in TPPs as compared to MPPs while the dipeptide composi-
tions of AX, HX, NX, QX and TX were significantly higher in MPPs as compared to TPPs where X denotes any 
amino acid. In 2004, Ding et al.54 mainly focused on the influence of single amino acid composition on TTPs 
by analyzing a large dataset containing three thermophilic organisms, ten hyperthermophilic organisms and 52 
mesophilic organisms, which were collected from the NCBI database. From amongst 400 dipeptides, archaeal 

Figure 4.  Performance evaluations of SCMTPP and conventional TPP predictors. (A,B) tenfold cross-
validation of ACC and MCC from SCMTPP versus conventional TPP predictors. (C,D) Independent test of 
ACC and MCC from SCMTPP versus conventional TPP predictors.

Table 5.  Cross-validation and independent test results of SCMTPP and ThermoPred. a Results were obtained 
by feeding the protein sequences in the independent validation set to the web servers of ThermoPred.

Cross-validation Methoda Ac Sn Sp MCC

Tenfold CV
ThermoPred – – – –

SCMTPP 0.883 0.878 0.887 0.766

Independent test
ThermoPred 0.860 0.938 0.782 0.729

SCMTPP 0.865 0.849 0.881 0.731
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proteins had compositions of VK, KI, YK, IK, KV, KY and EV that were effective contributing to the increase of 
TPPs while compositions of DA, AD, TD, DD, DT, HD, DH, DR and DG contributed to the increase of MPPs. 
In the meanwhile, bacterial proteins had compositions of KE, EE, EK, YE, VK, KV, KK, LK, EI, EV, RK, EF, KY, 
VE, KI, KG, EY, FK, KF, FE, KR, VY, MK, WK and WE that contributed to the increase of TPPs while compo-
sitions of WQ, AA, QA, MQ, AW, QW, QQ, RQ, QH, HQ, AD, AQ, WL, QL, HA and DA contributed to the 
increase of MPPs. Altogether, our estimated propensity scores of amino acids as derived from SCMTPP is quite 
consistent with those of previous  studies20,27,28,54–56. However, there are other factors responsible for improving 
the thermal stability of proteins such as hydrogen bonds, hydrophobic interactions, electrostatic interactions, 
α-helix forming and the entropy of  unfolding55,57. More details on characterization of the thermal stability of 
proteins will be described below.

Characterization of thermophilic proteins using informative PCPs. Numerous studies have dem-
onstrated that biochemical and biophysical properties such as side  chain56,58 or beta-sheet  propensity22 and 
side  chain56,58 were essential for understanding the thermostability of proteins. As can be seen in Table 8, the 
three selected informative PCPs along with their corresponding R values as selected by SCMTPP consisted of 
FUKS010101 (R = 0.616), FUKS010101 (R = 0.523) and FUKS010109 (R = 0.307), respectively. In addition, the 

Table 6.  Top ten TPPs having the highest PS-TPP derived from the proposed SCMTPP.

Rank Name (Uniprot) PS-TPP UniProt ID Function Organism

1 50S ribosomal protein L38E 528.74 Q9YFR9 Structural constituent of ribosome Aeropyrum pernix

2 Uncharacterized protein MJ0223 527.79 Q57676 Unknown Methanocaldococcus jannaschii

3 50S ribosomal protein L31e 525.29 Q9YD25 Structural constituent of ribosome Aeropyrum pernix

4 Protein GrpE 519.54 Q9WZV4 Hyperosmotic and heat shock by preventing the aggrega-
tion of stress-denatured proteins Thermotoga maritima

5 Elongation factor 1-beta 519.28 Q8TYN8 Promote the exchange of GDP for GTP in EF-1-alpha/GDP Methanopyrus kandleri

6 50S ribosomal protein L29 518.45 Q8TX34 Structural constituent of ribosome Methanopyrus kandleri

7 DNA double-strand break repair Rad50 ATPase 516.88 Q8TXI4 Facilitate opening of the processed DNA ends to aid in the 
recruitment of HerA and NurA Methanopyrus kandleri

8 Putative antitoxin VapB21 516.77 O28071 Possibly the antitoxin component of a type II toxin-anti-
toxin (TA) system Archaeoglobus fulgidus

9 V-type ATP synthase subunit E 514.51 Q8TWL9 Produces ATP from ADP in the presence of a proton gradi-
ent across the membrane Methanopyrus kandleri

10 50S ribosomal protein L18Ae 513.46 P58289 Structural constituent of ribosome Aeropyrum pernix

Figure 5.  Three-dimensional structures of TPPs (Q9YFR9, Q57676 and Q9YD25) and non-TPPs (Q8ZDC4, 
Q66A07 and A1AZ52) having the highest (528.74, 527.79 and 525.29, respectively) and lowest (319.67, 331.20 
and 340.61, respectively) TPP scores, respectively, where the optimal threshold value is 418.
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top-twenty informative PCPs having the highest and lowest R values are recorded in Supplementary Tables S13 
and S14, respectively.

The FUKS010101 property is described as the Surface composition of amino acids in intracellular proteins 
of thermophiles (percent) (Fukuchi-Nishikawa, 2001)56. Fukuchi and Nishikawa suggested that proteins from 
thermophilic bacteria had 45.1% charged residues containing 23.6% negatively charged residues and 21.5% 

Table 7.  Propensity scores of twenty amino acids in becoming a thermophilic protein (PS-TPP) along with 
amino acid compositions (%) of TPPs and non-TPPs.

Amino acid PS-TPP TPP (%) Non-TPP (%) Difference

E-Glu 510.18 (1) 9.28 6.49 2.79 (1)

K-Lys 480.00 (2) 7.83 5.79 2.04 (2)

V-Val 470.75 (3) 8.45 7.09 1.36 (3)

R-Arg 464.08 (4) 6.47 5.14 1.32 (4)

I-Ile 435.65 (5) 7.41 6.45 0.96 (5)

G-Gly 433.48 (6) 7.34 7.12 0.22 (7)

Y-Tyr 425.93 (7) 3.42 2.89 0.53 (6)

P-Pro 421.40 (8) 4.26 4.13 0.13 (8)

C-Cys 388.28 (9) 0.92 1.07 − 0.15 (9)

M-Met 387.10 (10) 2.33 2.50 − 0.17 (11)

D-Asp 386.25 (11) 5.18 5.34 − 0.17 (10)

W-Trp 383.25 (12) 0.88 1.09 − 0.22 (12)

L-Leu 367.18 (13) 9.35 10.14 − 0.79 (15)

H-His 364.58 (14) 1.65 2.22 − 0.57 (14)

S-Ser 363.20 (15) 4.85 5.90 − 1.05 (17)

F-Phe 351.25 (16) 3.63 4.06 − 0.43 (13)

N-Asn 332.48 (17) 3.33 4.14 − 0.80 (16)

A-Ala 323.63 (18) 7.29 8.90 − 1.61 (19)

T-Thr 306.00 (19) 4.13 5.32 − 1.20 (18)

Q-Gln 255.43 (20) 2.01 4.21 − 2.20 (20)

R 1.00 0.54 0.12 0.96

Table 8.  Summary of four important physicochemical properties as determined by SCMTPP.

Amino acid PS-TPP (Rank) FUKS010101 (Rank) FUKS010102 (Rank) ZIMJ680101 (Rank)

E-Glu 510.18 (1) 16.56 (1) 12.93 (1) 0.65 (13)

K-Lys 480.00 (2) 12.98 (2) 10.20 (2) 1.6 (7)

V-Val 470.75 (3) 4.05 (10) 3.57 (13) 1.79 (6)

R-Arg 464.08 (4) 8.48 (3) 6.87 (5) 0.83 (12)

I-Ile 435.65 (5) 3.3 (13) 2.72 (15) 3.07 (1)

G-Gly 433.48 (6) 8.29 (4) 7.95 (4) 0.1 (18)

Y-Tyr 425.93 (7) 2.75 (15) 2.26 (16) 2.97 (2)

P-Pro 421.40 (8) 5.41 (6) 4.79 (11) 2.7 (4)

C-Cys 388.28 (9) 0.29 (20) 0.31 (20) 1.48 (8)

M-Met 387.10 (10) 1.71 (18) 1.87 (18) 1.4 (9)

D-Asp 386.25 (11) 7.05 (5) 8.57 (3) 0.64 (14)

W-Trp 383.25 (12) 0.67 (19) 0.54 (19) 0.31 (16)

L-Leu 367.18 (13) 5.06 (7) 4.43 (12) 2.52 (5)

H-His 364.58 (14) 1.74 (17) 2.80 (14) 1.1 (10)

S-Ser 363.20 (15) 4.27 (9) 5.41 (8) 0.14 (17)

F-Phe 351.25 (16) 2.32 (16) 1.92 (17) 2.75 (3)

N-Asn 332.48 (17) 3.89 (11) 5.50 (7) 0.09 (19)

A-Ala 323.63 (18) 4.47 (8) 6.77 (6) 0.83 (11)

T-Thr 306.00 (19) 3.83 (12) 5.36 (9) 0.54 (15)

Q-Gln 255.43 (20) 2.87 (14) 5.24 (10) 0 (20)

R 1.00 0.616 0.348 0.307
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positively charged residues on the surface, which was found to be higher than those of other groups (19.9% 
nonpolar residues, 16.6% polar residues and 18.5% others)56. Figure 6 provides an example on the interpolated 
charge surface plot of TPPs and non-TPPs. Figure 6A,B shows interpolated charge surface plots of Q9YFR9 (TPP) 
and P0A223 (non-TPP). The blue surfaces of the P0A223 indicates that the interpolated charge of the entire 
P0A223 is higher than that of P0A223. In general, the interpolated charge surface are often used to determine 
hydrogen bonding patterns, electrostatic interaction and strengths of salt bridges in biomolecular  simulations59. 
Many studies have also confirmed that amino acids with charged side chains could be regarded as the important 
factor for the increase of the thermostability of  proteins35,57 where positively and negatively charged amino acids 
contain (Arg, His and Lys) and (Asp and Glu), respectively. As shown in Table 8, the ranks of propensity scores 
(PS-TPP, FUKS010101) for Lys, Glu, Arg, Asp and His are (1, 1), (2, 2), (4, 3), (11, 5) and (14, 17), respectively. 
Interestingly, from amongst these charged amino acids, three of these were found in the top-five amino acids 
contributing to TPPs (i.e. Lys, Glu and Arg). At the typical biological pH, Lys and Glu is capable of carrying a 
charge for forming hydrogen bonds. This phenomenon render it as one of the crucial factors that is responsible 
for enhancing the thermostability of proteins. In the meanwhile, it is well-recognized that TTPs could participate 
in salt bridge interaction, which is known as a typical charge–charge interaction between oppositely charged 
residues. Many research groups have shown that the number of salt bridges show a positive correlation to the 
thermostability of  proteins35,60–63. Interestingly, FUKS010101 and FUKS010102 properties are described in the 
AAindex as Surface composition of amino acids in intracellular proteins of thermophiles (percent) and meso-
philes (percent) (Fukuchi-Nishikawa, 2001)56, respectively, while the ZIMJ680101 property is described in the 
AAindex as Hydrophobicity (Zimmerman et al., 1968). Specifically, FUKS010101 and FUKS010102 properties 
suggested that the fraction of hydrophobic residues in thermophilic bacteria (19.9%) is quite equivalent to that of 
the mesophilic bacteria (17.3%) in the surface  composition56. Figure 7 shows an example surface hydrophobicity 
plot of TPPs and non-TPPs. Figure 7A,B shows surface hydrophobicity plots of Q9YFR9 (TPP) and P0A223 
(non-TPP). Moreover, brown surfaces of Q9YFR9 was found to be quite similar to that of P0A223. Recently, 
Vieille and  Zeikus13 conducted a comparative analysis of residue contents between TTPs and MPPs on genome 
sequences containing seven TTPs and eight MPPs. Their analysis revealed that the content of hydrophobic amino 
acids in TPPs was quite similar to those of MPPs. Vieille and Zeikus’s analysis were quite consistent with those 
of previous  works53,64,65.

Herein, results from analyses were based on the propensity scores of 20 amino acids to be TPPs (i.e. derived 
from primary sequence information). Particularly, selected TPPs and non-TPPs were employed to analyze their 
interpolated charge and hydrophobicity. However, analysis was limited due to the small size of samples used 
herein. In order to explicitly understand this phenomenon, average values of interpolated charge and hydropho-
bicity from 1482 TPPs and 1482 non-TPPs should be computed for future analysis.

Utilization of the proposed SCMTPP. Finally, we had created a user-friendly web server SCMTPP to 
allow easy access to the model by the scientific community. Thus, SCMTPP is freely available online at http:// 

Figure 6.  Interpolated charge surface of Q9YFR9 (TPP) and P0A223 (non-TPP) having TPP scores of 528.74 
and 341.99, respectively, where the optimal threshold value is 418. Blue, white and red colors denote high, 
medium and low interpolated charge, respectively.

http://pmlabstack.pythonanywhere.com/SCMTPP
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pmlab stack. pytho nanyw here. com/ SCMTPP. Step-by-step guidelines on how to use the SCMTPP web server are 
provided in the Supplementary information.

Conclusions
The accurate identification of novel TTPs from a large number of uncharacterized protein sequences is impor-
tant in basic research as well as a variety of applications in the food industry. Herein, we propose SCMTPP as 
a novel and interpretable computational model for the identification and characterization of TPPs. Firstly, we 
established an up-to-date dataset from published literature in order to develop an effective prediction model. 
Propensity scores of 20 amino acids and 400 g-gap dipeptides were calculated using the SCM method. Unlike 
previous methods, our predictor aims to provide a better understanding of the molecular basis for TPPs as well 
as improve prediction accuracy. Because of its simplicity, interpretability, and practical application, our empiri-
cal studies based on cross-validation and independent tests demonstrated the effectiveness and applicability of 
SCMTPP, which outperformed existing methods and widely used ML-based predictors. Finally, SCMTPP was 
set up as a publicly accessible web server at http:// pmlab stack. pytho nanyw here. com/ SCMTPP to help experi-
mental scientists with large-scale TPP identification. The proposed SCMTPP webserver and SCMTPP-derived 
propensity scores are expected to be useful tools for facilitating basic research and a variety of applications in 
the food industry.

Data availability
All the data are available at http:// pmlab stack. pytho nanyw here. com/ SCMTPP.
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