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Abstract: By measuring gene expression at an unprecedented resolution and throughput, RNA-seq has played a pivotal 
role in studying biological functions. Its typical application in clinical medicine is to identify the discrepancies of gene 
expression between two different types of cancer cells, sensitive and resistant to chemotherapeutic treatment, in a hope to 
predict drug response. Here we modified and used a mechanistic model to identify distinct patterns of gene expression in 
response of different types of breast cancer cell lines to chemotherapeutic treatment. This model was founded on a mixture 
likelihood of Poisson-distributed transcript read data, with each mixture component specified by the Skellam function. By 
estimating and comparing the amount of gene expression in each environment, the model can test how genes alter their 
expression in response to environment and how different genes interact with each other in the responsive process. Using 
the modified model, we identified the alternations of gene expression between two cell lines of breast cancer, resistant and 
sensitive to tamoxifen, which allows us to interpret the expression mechanism of how genes respond to metabolic differ-
ences between the two cell types. The model can have a general implication for studying the plastic pattern of gene ex-
pression across different environments measured by RNA-seq.
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INTRODUCTION

An organism’s ability to adapt to changes in the envi-
ronment, called phenotypic plasticity, is essential for the sur-
vival of the organism [1, 2]. Occurring at all levels of biolog-
ical organization from cells to organisms, plastic response to 
various internal and external environmental signals repre-
sents an intrinsic attribute of organisms that facilitates evolu-
tion [3, 4]. In recent years, the concept of phenotypic plastic-
ity has been increasingly used to study the causes of complex 
human diseases [5-8]. It has been recognized that the for-
mation of phenotypic plasticity is mediated through altered 
patterns of gene and protein expression cued by the envi-
ronment [9-12], but the mechanistic details of cell and mo-
lecular biology behind phenotypic plasticity are not fully 
understood.

Current next-generation sequencing techniques (RNA-
seq) provide a powerful tool to array the expression of 
whole-genome transcript genes [13, 14]. By linking these 
genes to environmental variation, one can identify the pat-
tern of how genes alter their expression to cause phenotypic 
plasticity when the environment changes [15]. In practice, 
numerous genes have been identified to be up- or down-
regulated in response to specific environmental signals 
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[16, 17]. Traditional approaches for identifying environment-
induced gene differentiation are based on a simple compara-
tive analysis of expression for individual genes between dif-
ferent environments. Other approaches cluster genes into 
different groups based on their biological function under one 
specific condition or treatment [18]. No approaches are cur-
rently available to catalogue genes in terms of their pattern 
of expression in response to environmental stimuli, thereby 
limiting our inference about the mechanisms governing dif-
ferential expression of genes across environments. 

More recently, Wang et al. [19] developed a bi-variate
Poisson model to cluster genes expressed in two different 
environments. Jiang et al. [20] derived an algorithmic model 
for clustering genes based on their environment-induced
differentiation patterns. Both models incorporate distinct 
patterns of gene expression by RNA-seq into a mixture like-
lihood framework. Each mixture component of the likeli-
hood corresponds to a particular expression pattern that dis-
tinguishes this component from the other. By integrating 
intrinsic environment-dependent plasticity, the discoveries of 
expression patterns from Jiang et al.’s model are biologically 
more interpretable than those from traditional clustering ap-
proaches using a single environment. 

The main idea of Jiang et al.’s model is to cluster the dif-
ferences of gene expression between two treatments, making it 
possible to characterize the patterns of gene differentiation 
directly from environmental influences on transcription. How-
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ever, the difference of two Poisson variables follows a com-
plex form of distribution which makes parameter estimation 
highly challenging [21, 22]. We modified Jiang et al.’s model 
by integrating an integrative generalized EM and Newton-
Raphson algorithm to estimate the parameters of gene expres-
sion that describe transcriptional plasticity to changing envi-
ronment. We used the new modified model to analyze RNA-
seq data that describe global changes of gene expression be-
tween two types of breast cancer cell lines, resistant and sensi-
tive to the intervention of tamoxifen, leading to the identifica-
tion of differential expression patterns in response to metabol-
ic differences between the two cell types. Computer simula-
tion was performed to examine the statistical properties of the 
new model and validate its usefulness and utilization.

MODEL

Mixture

Suppose we have measured the expression reads of n
genes in two different treatments, such as different tissues, 
different cell types, or different temperatures. Let m1i and m2i
denote the expression reads of gene i measured in the two 
treatments, respectively. The difference of expression of this 
gene between the treatments is calculated as mi = m1i – m2i.
This difference is used as a measure of phenotypic plasticity 
[1]. Because of their functional similarities and differences in 
plastic response, these genes can be clustered into different 
groups (assuming J groups). Thus, for any gene i, it should 
arise from one (and only one) of the J groups. The likelihood 
of the expression data of n genes is written as
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where � is a set of unknown parameters; (�1, …, �J) is a set 
of proportions that each corresponds to a gene group; and 
pj(mi) is the discrete probability distribution of differential 
expression for group j. The expression reads of genes in each 
treatment are thought to obey a Poisson distribution [19], 
thus the distribution of the read differences between the two 
cell types is modeled by the Skellam function [22, 23], ex-
pressed as 

( )jjm
j

j
ij i

im

jj Iemp 21
2

1)( 2)(
2

21 ��
�

���

�
�

�

�

�
�

	

�
=

+�

, � j = 1, …, J (2)

where �1j and �2j are the expected numbers of reads for all 
genes that belong to group j in two treatments, respectively; 
and ( )jjmi

I 212 �� is the modified Bessel function of the 

first kind, which is the solution of Bessel’s differential equa-
tion [21]. The modified Bessel function of the first kind is 
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where ( )1++ imk� is the gamma function, a generaliza-
tion of the factorial function to non-integer values. All un-
known parameters are arrayed in � = ( J

jjjj 121 },,{ =��� ).

Parameter Estimation

 To obtain the maximum likelihood estimates (MLEs) of 
the parameter vector, �, that defines the mixture model (1), 
we implement an integrative procedure that combines the 
generalized EM and Newton-Raphson algorithms for param-
eter estimation. From the mixture (1), we define the E step 
by calculating the posterior probability at which a gene i
belongs to group j given the observations and parameter es-
timates. Using the results from the E step, we obtain the M 
step in which the proportion of group j is calculated using a 
closed form estimator and the expected values of gene group 
j in the two treatments, �1j and �2j, are calculated using the 
Newton-Raphson algorithm. A detailed procedure for param-
eter estimation is given in the Appendix.

For a practical data set, we do not know the optimal 
number of gene clusters. This can be determined by a model 
selection criterion, such as commonly used Akaike infor-
mation criterion (AIC) or Bayesian information criterion 
(BIC). The optimal number of clusters corresponds to the 
minimum AIC or BIC value.

Hypothesis Tests

After the parameters are estimated, we will perform two 
biologically meaningful tests as follows:
Test 1: For a given cluster group, genes are differently ex-
pressed between the two treatments. This can be done by 
testing:
H0: �1j = �2j vs. H1: �1j � �2j � j = 1, …, J (3)

If the H0 is rejected, this group of genes displays different 
amounts of expressions between the two treatments, indicat-
ing that they may contribute to phenotypic plasticity and can 
be viewed as a predictor of this phenomenon. 
Test 2: For a pair of gene groups j and k, they interact with 
each other to determine phenotypic plasticity. This can be 
done by testing: 
H0: �1j–�1k = �2j–�2k vs.
H1: �1j–�1k � �2j–�2k � j < k = 1, …, J. (4)

A rejection of the H0 means that these two groups of 
genes have significant interaction effects with treatment.
Test 3: The extent of phenotypic plasticity is often associated 
with the magnitude of change of environmental signals. 
Thus, it is interesting to test whether the change of gene ex-
pression for a particular group is consistent with the extent of 
change of the environment. This can be done by formulating 
the hypotheses:
H0: �1j /�2j = c vs. H1: �1j /�2j � c� j = 1, …, J (5)
where c is the ratio of the environmental signals between the 
two treatments.

The log-likelihood ratio (LR) test statistics for each of the 
three hypotheses (3) – (5) are calculated. The LR values are 
approximated by a chi-square distribution with the degree of 
freedom equaling the difference of the number of parameters 
to be estimated under the H0 and H1.
Consideration of Overdispersion

Many clustering models assume that RNA-seq reads fol-
lows a Poisson distribution, although several recent studies 
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do not support this assumption because of overdispersion 
[24-26]. In statistics, the overdispersion can be captured by a 
negative binomial (NB) distribution, in which reads follow a 
Poisson distribution, but with the mean approximated by a 
Gamma distribution. However, our model is based on differ-
ences of reads between two treatments, which have become a 
finite Poisson (fPMD) mixture distribution, rather than a 
simple Poisson distribution as assumed for reads in individu-
al treatments by the previous models [19]. In the fPMD, the 
mean is modeled as a finite discrete distribution, which can 
well take into account the overdispersion of across-treatment
differences of reads.

To support our argument, we simulated two sets of read 
data, each with 400 genes from NB(5, 0.5) and NB(10, 0.5), 
respectively, allowing overdispersion. We then calculated 
differences between the same genes from these two sets. As 
shown in (Fig. 1), the differences can well be fitted by the 
Skellam mixture model. From this example, the Skellam 
mixture distribution can be safely used to model the distribu-
tion of differences of reads between two treatments, even if 
overdispersion occurs for these reads.

RESULTS

The newly developed model was used to analyze a real 
data set on the phenotypic plasticity of gene expression. As a 
commonly used adjuvant hormonal therapy for patients with 
breast cancer, tamoxifen blocks the effects of estrogen in 
breast cancer cells by mediating the estrogen receptor (ER) 
to prevent ER-mediated transcription. Although tamoxifen 
has successfully treated some ER-negative breast tumors 
[27], its efficacy has often been limited by drug resistance 
[28]. To reveal the global mechanisms of gene expression
and signaling pathway alterations for tamoxifen resistance, 
Huber-Keener et al. [29] compared the transcriptomes of 
breast cancer cells that are tamoxifen-sensitive and tamoxi-
fen-resistant by collecting a total of 23,561 mRNA genes 
using RNA-Seq.

As the demonstration of how the model can be used in 
practice, we randomly chose 500 from this set of genes. By 
using the differences of gene expression between tamoxifen-
sensitive and tamoxifen-resistant cell types, we used the 
Skellam model to analyze the data, aimed to detect genes 
that are associated to the development of tamoxifen re-
sistance. Based on the BIC values under different numbers of 
clusters, 500 randomly chosen genes are categorized into 
four distinct clusters (Fig. 2). The proportions of the four 

clusters were estimated and all genes were found to be up-
regulated from tamoxifen-sensitive to tamoxifen-resistant
cell types, but the number of genes within a cluster decreases 
with the increasing extent of differentiation of gene expres-
sion between the two cell types (Table 1). This suggests that 
a fewer number of genes display pronounced differentiation 
over the two treatments. It is interesting to note that treat-
ment-induced differentiation of gene expression can be more 
precisely estimated than the amount of gene expression in 
each treatment, as shown by the standard errors of the esti-
mates (Table 1).

(Fig. 3A) plots the patterns of how genes are differently 
expressed from tamoxifen-sensitive to tamoxifen-resistant
cells. About a half are only slightly up-regulated (cluster 1), 
whereas about 15% of genes increase their expression dra-
matically in the resistant cells (cluster 4). The other genes 
(clusters 2 and 3) are up-regulated moderately from tamoxi-
fen-sensitive to tamoxifen- resistant cell types. Hypothesis 
test (3) was used to examine whether each cluster of genes is 
expressed significantly differently between the two cell 
types, with the result suggesting that all clusters are signifi-
cant (p < 2.01�10-5).

Based on the estimated �1j and �2j values, we drew the 
plots of expression against the cell type for each cluster (Fig. 
3B). Cluster 4 is not only expressed much more strongly in 
both cell types than the other three clusters which display a 
similar amount of expression, but also is the most sensitive 
to metabolic changes between the two cell types among all 
the clusters. Using hypothesis test (4), we investigated how 
each pair of clusters interact with cell types. Significant in-
teractions were detected for each cluster pair; for example,
cluster 1 vs. 2 at P = 2.81 � 10-6, cluster 2 vs. 3 at P = 2.85 �
10-6, and cluster 3 vs. 4 at P = 1.28 � 10-6.

We also tested whether the ratio of the amounts of gene
expression between the two cell line types is identical among 
clusters. The result from this test indicates that none of clus-
ter pairs has the same ratio of treatment-dependent gene ex-
pression. This suggests that all these clusters function differ-
ently in response to the metabolic environment of the cell 
types.

We compared our Skellam mixture model with a more 
commonly used hierarchical clustering approach with Ward’s 
criterion [30]. Ward’s criterion aims to minimize the total 
within-cluster variance while maximizing the between-
cluster variance. By analyzing the same data, the new model 

Fig. (1). Differences of reads between two treatments (black) fitted by the Skellam mixture distribution (red). (A) Density function expressed 
by a histogram and curve. (B) Distribution function expressed by observed points and curve.
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is found to provide a similar result with that by the hierar-
chical model (Fig. 4), suggesting the statistical reasonability 
of the new model. However, our model allows various quan-
titative inferences of gene differentiation as formulated in 
hypothesis tests (3) – (5), thereby with results from our mod-
el being biologically more interpretable, informative and 
implementable to practical settings than those from tradi-
tional approaches.

Fig. (2). BIC values calculated under an increasing number of gene
clusters detected by the model. The optimal number of clusters 
corresponds to the minimum BIC value.

COMPUTER SIMULATION

We performed simulation studies to examine the statisti-
cal behavior of the new Skellam model by investigating the 
precision of parameter estimation. We simulated read data of 
500 transcript genes with four distinct clusters by mimicking 
the tamoxifen example as described above. The model was 
used to analyze the simulated data and find the number of 
clusters. The BIC values indicate that the model correctly 
finds four clusters. Among 1,000 simulation replicates, over 
95% can provide a correct estimate of cluster numbers.

(Table 2) tabulates the estimates of the mean reads in two 
different treatments, �1j and �2j, for four clusters. It can be 
seen that the model provides reasonable estimates of mean 
read counts for each cluster and obtains better estimates of 
the differences of mean read counts between two treatments 
than mean counts in individual treatments. Using the esti-
mated values, we drew the plots of each cluster over two 
treatments, in a comparison with those obtained from true 

values (Fig. 5). The broad consistency between the estimated 
and true plots suggests that our model can provides reasona-
ble estimates of the patterns of gene differentiation in re-
sponse to environmental change. As expected, the estimates 
of parameters for a larger cluster are better than those for a 
smaller cluster. By changing the values of mean reads and 
their environment-dependent differences, additional simula-
tion was carried out to investigate the influence of different 
parameter values on the estimation precision. In general, 
reasonable estimates can be obtained in all these cases, ex-
cept for a small cluster with 50 genes or less.

We also carried out simulation studies by changing the 
sample size, the amount of gene expression in each treat-
ment, and treatment-dependent difference of gene expres-
sion. Results from these simulation studies allow the practi-
tioners to determine an optimal sample size under various 
situations of gene expression differentiation.

DISCUSSION

We have developed a new model for clustering gene ex-
pression profiles, measured by RNA-seq, based on their dif-
ferentiation in response to different agents. The model is 
based on a mixture likelihood in which each component is 
specified by a particular pattern of gene expression related to 
a certain biological function [31]. The model fully considers 
the statistical feature of transcript read data by next-
generation sequencing [19]; meanwhile, it displays several 
biological and statistical merits.

By jointly capitalizing on expression data from two 
treatments, our model provides more power for gene identi-
fication than conventional clustering approaches based on 
individual treatments [18]. The new model identifies differ-
ent patterns of gene differentiation according to their plastic 
response to environmental change, therefore facilitating an 
understanding of mechanistic basis for the association be-
tween gene expression and phenotypic plasticity, a phenom-
enon that pervades the biological kingdom [1, 2, 32]. Given 
its increasing implication for studying the etiology of human 
diseases [5-8], there is a daunting need on the understanding 
of the genetic architecture of this phenomenon.

Although many previous models assume the Poisson dis-
tribution of RNA-seq data [19], some authors recently found 
that this assumption may not always work due to the over-
dispersion of data [24-26]. However, our model clusters 
genes into different groups by using the differences of their 
expression between environments. The distribution of the

Table 1. The MLEs of the mean reads for each cluster in individual treatments and their differences between the two treatments, 
tamoxifen-sensitive and tamoxifen-resistant cell types. The standard errors of the MLEs are also given.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Prop. 0.42±0.028 0.24±0.028 0.17±0.024 0.16±0.020

�1j 2.18±0.342 2.56±2.446 7.16±8.105 230±41.42

�2j 3.77±0.473 12.1±2.673 29.6±7.826 285±41.19

�1j–�2j 1.59±0.250 9.58±0.735 22.4+1.316 54.8±3.385
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Fig. (3). Four patterns of gene expression in response to metabolic changes of tamoxifen-sensitive and tamoxifen-resistant breast cancer cell 
types detected by the Skellam model. (A) Differences of gene expression for each cluster between the two cell types are shown. (B) Actual 
expression values of four clusters are plotted over the cell types.

Fig. (4). Comparison of the Skellam mixture model (A) and hierarchical clustering model with Ward’s criterion (B) by analyzing the tamoxi-
fen-resistant and sensitive data of gene expression. Dots in different shapes denote four clusters detected.

Table 2. The MLEs of the mean reads for each cluster in individual treatments and their differences between the two treatments. 
The standard deviations (SD) of the MLEs are also given.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

True MLE±SD True MLE±SD True MLE±SD True MLE±SD

Prop. 0.42 0.44±0.028 0.24 0.25±0.030 0.17 0.19±0.017 0.16 0.12±0.014

�1j 2.18 1.82±0.391 2.56 3.98±2.352 7.16 11.4±5.193 230 219±54.46

�2j 3.77 3.24±0.527 12.1 13.8±2.301 29.6 34.9±4.898 285 277±52.57

�1j–�2j 1.59 1.43±0.249 9.58 9.84±0.762 22.4 23.4+1.149 54.8 57.8±4.240

differences of two Poisson variables, which is a finite Pois-
son mixture distribution (fPMD), can be approximated by 
the Skellam function [22, 23]. The fPMD models the mean 
as a finite discrete distribution, which thus takes into account 
the overdispersion of RNA-seq data. The estimation of the 
Skellam function within a mixture model context has proved 
to be difficult, but we have implemented the generalized EM 
algorithm, integrated with the Newton-Raphson algorithm, 
for parameter estimation. Our algorithm allows the pheno-
typic plasticity of gene expression measured by RNA-seq to 
be estimated and tested in a quantitative manner. The new 
model is the first of its kind in RNA-seq data modeling, 

which has made it feasible to characterize the transcriptomic 
alterations of gene function in regulating phenotypic plastici-
ty to environmental signals. 

The Skellam model derived was used to analyze a real 
data set from the pharmacogentic study of breast cancer, 
leading to the identification of distinct gene differentiation in 
response to tamoxifen-sensitive and tamoxifen-resistant cells 
and, also, validating the practical utilization of the model. 
The statistical properties of the model were examined 
through simulation studies, with results that help geneticists 
determine necessary conditions for efficient and effective
studies of genotype-environment interactions [11].

D
iff

er
en

ce

Sensitive Resistant

0
10

20
30

40
50

60 A
4

3

2

1

M
LE

Sensitive Resistant

0
50

10
0

20
0

30
0 B

4

3
2
1

0 20 40 60 80

0
50

10
0

15
0

Sensitive

R
es

is
ta

nt

A

20 40 60 80
Sensitive

B



354 Current Genomics, 2014, Vol. 15, No. 5 Wang et al.

The model can be extended to construct a genetic net-
work for the phenotypic plasticity of gene expression to an 
environmental stimulus [33]. This network allows a compre-
hensive evaluation and inference of the role of genes in me-
diating the phenotypic plasticity of phenotypic traits and 
diseases. Also, if a well-designed segregating population is 
available, with a set of DNA polymorphic markers geno-
typed through the genome and transcriptional profiles meas-
ured across different treatments, the model can be integrated 
with a genetic mapping approach [34] through the Skellam 
function to locate the expression quantitative trait loci 
(eQTLs) that contribute to phenotypic plasticity [35]. Alt-
hough there are a few studies on the genetic mapping of 
plastic response for complex traits [31], eQTL mapping on 
phenotypic plasticity will certainly show its unique power to 
synthesize genomics and ecology into a unified science 
aimed to reveal the secrets behind life in nature.
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APPENDIX

In what follows, we provide a procedure for integrating 
the EM and Newton-Raphson algorithms to estimate pa-
rameters contained in the likelihood (1). Define the posterior 
probability at which gene i belongs to cluster j as
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where the first and second terms are the derivatives with 
respect to proportion �j and �1j and �2j, respectively. By let-
ting the derivative with respect to �j equal zero, we derivate 
a formula to estimate the mixture proportion as
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of mean expression between two treatments as
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Fig. (5). Four patterns of environment-dependent gene expression (solid lines) for the simulated data estimated by the Skellam model, in a 
comparison with true patterns (dash lines). (A) Differences of gene expression for each cluster between two treatments are shown. (B) Actual 
expression values of four clusters are plotted over the treatments.
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�1j, i.e., �2j(�1j) = �2j – Cj and ��2j(�1j) = 1. We now imple-
ment the Newton-Raphson algorithm to estimate the MLEs 
of �1j and �2j.

The first and second partial derivatives of Q* with respect 
to �1j are expressed as
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In the Newton-Raphson iteration t, we have
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We are now able to construct a loop of the EM algorithm. 
In the E step, we calculate the posterior probability for gene i
using (A1). In the M step, we estimate the mixture propor-
tion of cluster j using (A2), the difference of mean expres-
sion for cluster j between the two treatments using (A3) and 
the mean expression of cluster j in the first treatment using 
(A4). The estimation of the mean expression of cluster j in
the first treatment is implemented by the Newton-Raphson
algorithm. The iteration is repeated until we obtain conver-
gent estimates, which are regarded as the MLEs of the pa-
rameters.

In programming the algorithm, we found that the New-
ton-Raphson iteration converges extremely fast and also the 
rate of its convergence becomes faster and faster with the 
convergence of the EM iteration. Note that when the numeri-
cal solution of Iv(x) occurs we can implement the saddlepoint 
approximation. Let ),;(~

21 ��vf denote the approximation of 
the probability mass function ),;( 21 ��vf . Then we have

Iv(x) �
.
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