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Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects multiple systems. Its clinical manifestation
varies across patients, from skin mucosa to multiorgan damage to severe central nervous system involvement. The exosome
has been shown to play an important role in the pathogenesis of autoimmune diseases, including SLE. We review the recent
knowledge of exosomes, including their biology, functions, mechanism, and standardized extraction and purification methods
in SLE, to highlight potential therapeutic targets for SLE.

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic, systemic, and
severe autoimmune disease that affects multiple systems.
Patients with SLE have a poor quality of life and high mortality
[1] and are more likely to develop comorbidities such as cardio-
vascular and respiratory diseases, infections, cancers, and osteo-
porosis [2–5]. Moreover, women are more likely to suffer from
SLE thanmen [6]. Currently, SLE is treated with the application
of biological agents, which provide relief and minimize the use
of glucocorticoids [7]. SLE patients still require long-term drug-
based maintenance, which often has toxic side effects [8]. Long-

term use of glucocorticoids can even lead to emotional disorders
such as depression in patients [9].

Exosomes as a targeted carrier may reduce drug con-
centrations in the human body and the accumulation of
drug toxicity [10]. Many mechanisms are involved in the
etiology and pathogenesis of SLE, but these remain
unclear. Exosomes play an important role in innate and
adaptive immunity, participate in many physiological and
pathological SLE processes, and help maintain immune
homeostasis [11]. In recent years, the effect of exosomes
in SLE has attracted greater attention. This review intro-
duces exosomes, their immunomodulatory role and
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mechanism, and their potential as a new SLE drug target
and identifies new opportunities for understanding SLE
pathogenesis and biotherapy.

2. Exosome Classification

Extracellular vesicles (EVs) are membrane-derived vesicles
surrounded by lipid bilayers in the periphery that are
released into the extracellular space by various cell types,
mediate intercellular communication, and can be found in
various bodily fluids [12]. EVs can be classified based on
their release processes as microvesicles (MVs), exosomes,
and apoptotic bodies (APBs) [13]. MVs are produced by
budding directly from the cell membrane to outside the cell
[14], and APBs arise as part of the apoptotic process [15].
Multivesicular bodies (MVBs) are late endosomes that fuse
with cell membranes and release their contents as exo-
somes [16].

EVs are vesicles 30 to 1000nm or more in size [17]. Exo-
somes are one type of EV with a size of 30 to 150 nm [18]
that contain many transmembrane proteins, including
CD9, CD63, and CD81 [19]. Tetraspanin proteins are abun-
dant in the outer membrane and can indirectly control cell
interactions through exosomes. They play important roles
in regulating physiological processes such as signal transduc-
tion, motility, adhesion, cell activation, and tissue differenti-
ation [20]. CD63 is mainly found in MVBs and lysosomes
and is closely related to exosome production [21]. Studies
have suggested that CD63 is the defining exosome trans-
membrane protein [22]. The quantification and detection
of CD63 on EVs by nanoflow cytometry can determine exo-

some content in body fluids [23]. CD9 is also present in the
endosome system, particularly in MVBs, where it is located
on the cell surface and facilitates the endocytosis of CD9-
positive exosomes [24]. Therefore, CD9 can promote inter-
cellular exosome transport. In addition, studies have sug-
gested that high levels of CD9 on the plasma membrane
may be associated with early endosome formation, while
CD63 mainly affects the MVB stage [25]. CD9 and CD63
may be associated with exosome formation. The CD29/
CD81 complex on the cell surface also promotes intercellular
exosome transport [26].

EVs are exosomes surrounded by lipid bilayers that are
released by various cells, including macrophages, dendritic
cells (DCs), tumor cells, and mesenchymal stem cells
(MSCs) [27]. Exosome formation is mainly dependent on
the double invagination of the plasma membrane. In the first
exosome invagination, the plasma membrane envelopes sol-
uble proteins in the extracellular environment, gradually
forming an early-sorting endosome (ESE). The trans-Golgi
network and endoplasmic reticulum also facilitate the form-
ing and increasing of ESE content [28, 29]. ESEs can also
fuse and eventually mature into late-sorting endosomes
(LSEs). With the second exosome invagination, MVBs con-
taining multiple intracavitary vesicles (ILVs) begin to form.
The fusion of MVBs with the plasma membrane releases
ILVs that become exosomes in the extracellular fluid [30]
or are degraded via fusion with lysosomes (Figure 1) [31].

Exosomes are widely distributed in various body fluids
[32] and contain adhesion molecules, tetrads, enzymes, scaf-
folds, nucleic acids, and binding proteins (Figure 2) [33].
Nucleic acids, lipids, and proteins can be transferred
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Figure 1: Biogenesis, secretion, and ingestion of EVs. (a) Exosomes from ILV in MVBs are secreted outside cells by exocytosis, transporting
lipids, lncRNA, miRNA, circRNA, proteins, tsRNA, and enzymes between cells. CD63 is a defining exosome transmembrane protein. (b)
Exosomes act in multiple ways on receptor cells. (c) Origin and secretion of MV and APBs. Key: APBs: apoptotic bodies; ESE: early-
sorting endosome; ILV: intraluminal vesicles; MV: microvesicles; MVB: multivesicular bodies; tsRNA: tRNA-derived small RNAs.
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between cells via exosomes [34], in some cases affecting
recipient cells via autocrine and paracrine mechanisms
[35]. There are multiple modes of action between target cells
and exosomes. The exosome information transmission pro-
cess can occur on the cell surface. Exosomes and cells can
simply transmit information through receptor-ligand inter-
action, or EV surface proteins can be activated without
entering the cell [36, 37]. Other modes of action include
direct membrane fusion and endocytosis, which includes
receptor-mediated endocytosis, phagocytosis, and macropi-
nocytosis [38–42].

3. Exosome Function

The functions of exosomes from other cells differ according
to the substances they are carrying. For example,
macrophage-derived exosomes can overexpress ArfGAP
with GTPase domain ankyrin repeat and PH domain 2
(AGAP2) antisense RNA 1 (AGAP2-AS1) or underexpress
microRNA- (miRNA-) 296 (miR-296) to enhance the antira-
diotherapy capability of lung cancer cells [43]. Similarly,
exosomes derived from M2 macrophages use apolipoprotein
E (ApoE), a lipid-transporting lipoprotein found within the
brain and periphery, to promote gastric cancer cell migra-
tion [44]. In addition, lung adenocarcinoma (LUAD) cells
acquire enhanced cell migration, invasion, and angiogenic
abilities by absorbing M2 macrophage-derived exosomes
[45]. Furthermore, mature DC exosomes can promote oste-
ogenic differentiation and improve bone regeneration by
transporting miRNA-335 (miR-335) in thighbone-deficient

thymic rats [46]. Moreover, tumor-derived exosomes can
promote the polarization of M2 macrophages, while exo-
somes carrying miRNA-19b-3p (miR-19b-3p) can promote
lung cancer metastasis via the Hippo pathway [47]. Finally,
exosomes from hepatocellular carcinoma (HCC) cells can
promote tumorigenesis by secreting sonic hedgehog (Shh)
protein [48], which is closely related to both embryonic
development and histogenesis in mammals. These examples
highlight how exosome functions are closely related to their
origin and contents.

4. Exosome Features

Exosomes are small, can avoid phagocytosis by mononuclear
macrophages, and can freely cross the vessel wall and extra-
cellular matrix [49]. Exosomes carry molecules such as
CD55 and CD59 on their surface, preventing their damage
by complement or coagulation factors [50]. Therefore,
CD55 and CD59 can maintain exosome stability. As inter-
cellular transport vesicles, exosomes have remarkable prop-
erties, including not stimulating the immune system,
avoiding degradation, carrying endogenous bioactive mole-
cules, long persistence, and crossing multiple biological bar-
riers [51, 52]. Small molecule drugs, including functional
nucleic acid nanoparticles, may be incorporated into and
carried by exosomes [53, 54]. Exosomes have a high degree
of biological stability and can stably exist in the blood for
an extended time [55]. In addition, the exosome’s specific
molecular surface structure can be used to target specific
cells [56]. Therefore, exosomes represent a suitable carrier
in drug delivery systems.

5. Exosomes as Potential Biomarkers

Studies have found that some miRNAs can be used to diag-
nose lupus nephritis (LN) based on their levels in urine-
borne exosomes of SLE patients [57, 58] and as predictors
of early fibrosis [59–61] and the need for LN treatment
[62]. In addition, S100 calcium-binding protein A4
(S100A4) protein levels can be used for evaluating LN activ-
ity [63]. T cell-derived exosomes contain many molecules,
including miRNAs, long noncoding RNAs (lncRNAs), cir-
cular RNAs (circRNAs), S100A4, ApoE, and bactericidal
permeability-increasing protein (BPI), which can be trans-
ported between cells. Therefore, exosomes can be used as
novel biomarkers and predictors of SLE progression
(Table 1). However, the dearth of highly sensitive exosome
detection methods limits their use as potential SLE biomark-
ers. Cascade signal amplification is one such method that
has been proposed based on a biosensor able to detect exo-
somes at concentrations as low as 44 particles/μL [64]. Alter-
natively, exosomes can be detected using a human CD63
antibody conjugated to a molecule that enhances the fluores-
cence of the Alexa Fluor 647 (AF647) dye [65]. These highly
sensitive and specific methods for detecting exosomes in the
body fluids of patients offer potential diagnostic approaches
for SLE biomarkers.
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Figure 2: The structure and contents of exosomes. Exosome is a
kind of vesicle surrounded by a lipid bilayer in the periphery, and
it contains nucleic acid, lipid, protein, and other substances.
HSP70: heat shock protein 70; HSP90: heat shock protein 90;
tsRNA: tRNA-derived small RNAs.
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6. Exosome Regulation in SLE

6.1. Negative Regulation of Exosomes in SLE. Exosomes have
different effects on recipient cells based on their different
sources and substances carried [66]. MSCs are pluripotent
stem cells with the ability for self-renewal and multidirec-
tional differentiation. Previous studies have shown that
MSCs alleviate LN by inhibiting T follicular helper (Tfh) cell
development and subsequent humoral immune activation
[67]. MSC-derived exosomes (MSC-Exos) have similar func-
tions to MSCs in treating autoimmune diseases, such as
repairing damaged tissue, regulating the immune response,
and playing an anti-inflammatory role. While increases in
MSC-Exos or their inhibitory function may be beneficial
for treating autoimmune diseases, they may improve the
immunity of tumors and chronic infectious pathogens. SLE
is a chronic autoimmune disease caused by the production
of various autoantibodies that can affect and damage multi-
ple organs and systems [68].

The initial stage of SLE is macrophage activation [69].
Macrophages participate in immune and inflammatory pro-
cesses and acquire different polarized phenotypes in these
processes or responses. The polarized macrophage pheno-
type includes classically activated macrophages (M1) and
selectively activated macrophages (M2) [70]. M1 macro-
phages are closely associated with SLE development and
aggression, while M2 macrophages can reduce SLE severity
[71]. However, MSC-Exos can inhibit the M1 macrophage
polarization, but its mechanism is imprecise. MSC-Exos
can increase transfer RNA- (tRNA-) derived small RNA
(tsRNA) 21109 (tsRNA-21109) expression, affecting Rap,
Ras, Hippo, Wnt, mitogen-activated protein kinase
(MAPK), and transforming growth factor β (TGFβ) signal-
ing pathway and inhibiting the immune response, leading
to decreased M1 and increased M2 activity [72].

MSC-Exos have immunosuppressive effects on B lym-
phocytes [73, 74] and regulate the T helper (Th) and regula-
tory (Treg) cell subgroups to reduce the cytotoxicity and
proliferation of cytotoxic T cells and the inflammatory
response in SLE patients [75, 76]. It has been reported that
MSC-EVs isolated from adipose tissues can improve the
structure and function of the kidney and reduce kidney
damage and dysfunction by upregulating interleukin 10
(IL-10) expression in a new porcine model of metabolic syn-

drome (METS) and renal artery stenosis (RAS) [77]. In addi-
tion, a study has shown that the direct injection of human
bone marrow mesenchymal stem cells into mice with LN
helps to control inflammation [78]. However, no studies
have yet explored the use of MSC-EVs for treating SLE in
mice or humans. Nevertheless, exosomes derived from pro-
fessional antigen-presenting cells (APCs) can regulate the
immune response, and DC-derived EVs (DC-EVs) have
been found to have the same effect as DC cells in treating
autoimmune diseases [79].

6.2. Positive Regulation of Exosomes in SLE. T cell-derived
exosomes have the opposite effect as those from MSCs.
These exosomes were found to cause chronic immune acti-
vation and produce excessive cytokines and chemokines
via the relationship of cell subgroups with lupus type I inter-
feron (IFN) signaling [80]. In addition, exosome delivery of
miRNAs promotes IFNα secretion by human plasmacytoid
DCs (pDCs) via Toll-like receptor 7 (TLR7) [81]. IFN is
one of the most critical cytokines in SLE [82], promoting
SLE progression by affecting CD8+ T cells in patients [83].
Increased serum IFN in SLE patients has been found to neg-
atively correlate with component 3 (C3) and 4 (C4) levels
[84]. IFN can interact with pDC, T cells, B cells, natural
killer (NK) cells, and macrophages to increase their survival
and maturation [85]. Inflammatory cytokine and chemokine
levels are elevated in SLE patients with elevated IFN levels
[80], who are also more likely to develop LN and have a
poorer response to immunosuppressive treatment [86].
Therefore, T cell-derived exosomes can promote autoimmu-
nity via cytokines such as IFN.

Studies have suggested that a lack of S100A4 in exo-
somes derived from highly metastatic HCC (HMH) reduces
tumor necrosis factor α (TNFα) expression in the mouse [87,
88], indicating that S100A4 acts to increase TNFα levels. Sol-
uble S100A4 can directly activate the protein kinase B (Akt)
signaling pathway to prolong CD8+ T cell survival [89] and
promote SLE development [90, 91] through the ability of
CD8+ T cells to create autoantibodies and cause organ dam-
age [92]. HMH-derived exosomes were found to have an
adverse effect on SLE in patients. Therefore, blocking exo-
some secretion or inhibiting the production of related path-
ogenic carriers may be beneficial in treating SLE.

Table 1: Exosomal biomarkers in SLE.

Biomarker Expression Source Role and function References

NEAT1 High Monocytes Promotes SLE by activating Th2 cells [117, 118]

GAS5 Low PBMCs Suppress SLE by inhibiting CD4+ T cell activation [119, 120]

S100A4 High Plasma Prolongs the survival time of CD8+ T cells [89, 121]

BPI High Exosomes Inhibits Treg differentiation to promote SLE [122]

ApoE High PBMCs Increase the risk of SLE [123, 124]

miR-124 Low Serum Suppress CD4+ T cells to inhibit SLE [123, 124]

Hsa_circ_0000479 High PBMCs Adjust SLE progression by regulating the Wnt signaling pathway [125, 126]

Note: NEAT1: nuclear paraspeckle assembly transcript 1; GAS5: growth arrest-specific transcript 5; BPI: bactericidal/permeability-increasing protein; ApoE:
apolipoprotein E; PBMCs: peripheral blood mononuclear cells.
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7. Exosomes in SLE treatment

Exosomes have unique benefits compared to other carriers
in SLE treatment. Exosomes have a long half-life, existing
for extended periods in the body [93] and can be stored
for long periods, either for short periods at 4°C and -20°C
or for long periods at -80°C [94]. Exosomes can transport
proteins and nucleic acids between cells, protecting them
from degradation when they enter cells [95, 96]. Exosomes
are small enough to cross biological membranes and even
have the capacity to cross biological barriers such as the
blood-brain barrier (BBB) and blood-cerebrospinal fluid
barrier (BCSFB) [97]. Exosomes can carry different drugs
to meet treatment needs [98], prolonging the drug’s half-
life and increasing the stability of its release [99]. As drug
carriers, exosomes have the innate advantages of prolonged
stability, convenient storage, content protection, avoiding
immune monitoring, and crossing biological barriers. There-
fore, exosomes have the potential to play a more significant
role in SLE therapies.

SLE treatment is aimed at alleviating symptoms, pre-
venting damage accumulation, and minimizing drug side
effects, improving patients’ long-term prognosis and quality
of life. Immunotherapy for patients with autoimmune dis-
eases usually lasts for their whole life. The continuous use
of drugs can produce severe adverse reactions and side
effects. In recent years, treatment options for SLE patients
have been continually updated. Hydroxychloroquine
(HCQ) is commonly prescribed for SLE treatment at a dose
of no more than 5mg/kg. Glucocorticoid (GC) doses should
be reduced to <7.5mg during chronic maintenance treat-
ment and eliminated when possible, and the appropriate
use of immunomodulators such as methotrexate, azathio-
prine, and mycophenolate can accelerate the gradual reduc-
tion and discontinuation of GC. The addition of belimumab
should be considered for persistently active or flaring extra-
renal disease. Rituximab (RTX) is recommended for various
organ-threatening, refractory conditions [100]. Early treat-
ment can effectively stop disease progression and improve
the patients’ long-term quality of life.

Exosome-based drug delivery has been widely reported.
The ideal therapeutic strategy is to reduce the required drug
concentrations via their targeted delivery, preventing dam-
age accumulation and minimizing side effects. Studies have
designed various experimental methods for injecting specific
drugs into exosomes and achieving targeted exosome-based
therapy. The increasing understanding and development of
therapeutic nucleic acids (TNA) [101] enabled plasmid
DNA (pDNA) encoding the anti-inflammatory cytokine
interleukin 10 (IL-10 pDNA) and the chemotherapeutic
drug betamethasone sodium phosphate (BSP) to be incorpo-
rated into M2 macrophage-derived exosomes. The results
showed that the molecules carried by the exosomes accumu-
lated in large amounts at the target site within the mouse
and had beneficial effects [102], indicating that modified
exosomes show efficacy in treating autoimmune diseases
[103]. However, there were practical problems in this study
associated with how to safely manufacture and ensure the
quality of exosomes. Nevertheless, delivering drugs to tar-

geted sites via modified exosomes may represent a promis-
ing new approach for treating SLE. However, whether it
can be safely applied in humans and how to modify exo-
somes for SLE are complex problems that remain to be
solved.

8. Limitations of Exosomes in SLE Treatment

While exosomes have excellent prospects as drug carriers,
they also have limitations. The first issue is how to extract
and purify the exosomes. Currently, the common method
for exosome separation requires ultrafiltration, immunoaf-
finity, and ultracentrifugation [104]. Differential ultracentri-
fugation remains the gold standard for exosome separation,
but it causes mechanical damage to exosomes and is very
time-consuming [105]. The recent development of cutting-
edge biosensors for exosome detection and analysis has
attracted significant attention because of their speed, conve-
nience, low sample requirements, and high sensitivity and
specificity, enabling significant progress in exosome separa-
tion and detection [106–108]. Biosensor-based detection
and analysis were found to be much better than the tradi-
tional methods [109] and may accelerate the study of exo-
somes to treat SLE. However, due to the unique physical
and chemical properties of protein molecules and the lack
of exosome classification for transport, it remains difficult
to inject them into exosomes. Nevertheless, a new type of
engineered exosome has been reported into which therapeu-
tic membrane proteins and soluble protein cargo can be
injected [110]. Therefore, resolving these issues has made
exosome-based drug delivery to target cells possible. How-
ever, the characteristics of exosomes alone were not suffi-
cient to achieve the targeted transport of exogenous cargo
to the target tissues. Relevant engineering technologies still
under development will be required to improve exome tar-
geting [111–113].

9. Conclusion

Exosomes play important roles in SLE occurrence and devel-
opment through various molecular mechanisms that signifi-
cantly mediate its progression. Through continuous research
on exosomes, it may be possible to deliver drugs for long-
term use with low side effects for treating SLE. Exosomes
have attracted increasing attention from pharmacologists
and drug developers as potential drug carriers. Exosomes
have been shown to possess substantial benefits in targeted
drug and biomolecule delivery for various diseases
[114–116], making them excellent candidates for treating
SLE and other autoimmune diseases. While exosomes show
excellent potential as drug carriers, they also have limita-
tions, including a lack of highly sensitive exosome detection
methods and standardized extraction and purification
methods and difficulties in actively adding protein molecules
into exosomes. Exosome research is in its infancy, and much
work remains to be done. Nevertheless, a better understand-
ing of exosome biology and function will increase their
applicability as drug carriers for treating human diseases.
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SLE: Systemic lupus erythematosus
EVs: Extracellular vesicles
MV: Microvesicles
APBs: Apoptotic bodies
DCs: Dendritic cells
ESE: Early-sorting endosome
LSE: Late-sorting endosome
MVB: Multivesicular body
ApoE: Apolipoprotein E
HCC: Hepatocellular carcinoma
miRNAs: MicroRNAs
ILV: Intraluminal vesicles
LN: Lupus nephritis
MSCs: Mesenchymal stem cells
AGAP2: ArfGAP with GTPase domain ankyrin repeat

and PH domain 2
Treg cells: T regulatory cells
METS: Metabolic syndrome
RAS: Renal artery stenosis
APCs: Antigen-presenting cells
IL-10: Interleukin-10
IFN: Interferon
pDCs: Plasmacytoid dendritic cells
HMH: Highly metastatic hepatocellular carcinoma
BBB: Blood-brain barrier
BCSFB: Blood-cerebrospinal fluid barrier
HCQ: Hydroxychloroquine
GC: Glucocorticoids
RTX: Rituximab
TNA: Therapeutic nucleic acids
BSP: Betamethasone sodium phosphate
AF647: Alexa Fluor 647
lncRNAs: Long noncoding RNAs
circRNAs: Circular RNAs
BPI: Bactericidal permeability-increasing protein
Tfh: T follicular helper
MAPK: Mitogen-activated protein kinase
TGFβ: Transforming growth factor β
Th: T helper
TLR7: Toll-like receptor 7
C3: Component 3
C4: Component 4
TNFα: Tumor necrosis factor α
Akt: Protein kinase B
tsRNA: Transfer RNA- (tRNA-) derived small RNA
pDNA: Plasmid DNA.
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