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Abstract

Abnormal T cell responses are central to the development of autoimmunity and organ damage in 

systemic lupus erythematosus. Following stimulation, naïve T cells undergo rapid proliferation, 

differentiation and cytokine production. Since the initial report, approximately two decades ago, 

that engagement of CD28 enhances glycolysis but PD-1 and CTLA-4 decrease it, significant 

information has been generated which has linked metabolic reprogramming with the fate of 

differentiating T cell in health and autoimmunity. Herein we summarize how defects in 

mitochondrial dysfunction, oxidative stress, glycolysis, glutaminolysis and lipid metabolism 

contribute to pro-inflammatory T cell responses in systemic lupus erythematosus and discuss how 

metabolic defects can be exploited therapeutically.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune condition characterized by 

abnormal T cell responses to self-antigens resulting in multi-organ involvement including 

skin, kidney and central nervous system [1]. Following the initial report, two decades ago, 

that engagement of CD28 leads to enhanced glycolysis in T cells [2] plethora of data 

contributed to our current understanding on how metabolic processes are involved in the 

control of various aspects of T cell signaling, differentiation and pathogenicity allowing for 

the development of new therapeutic tools or repurposing of already known drugs for the 

treatment of patients with SLE [3–5]. Advancements in nuclear magnetic resonance 

spectroscopy and gas chromatography/mass spectrometry have led to the identification of 
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metabolic biomarkers in SLE [3–6]. Herein, we focus on the most recent understandings of 

the metabolic abnormalities in T cell subsets in patients with SLE and discuss how 

metabolic defects can be exploited therapeutically.

MITOCHONDRIAL DYSFUNCTION AND OXIDATIVE STRESS IN SLE

Increased oxidative stress and altered redox state have been shown to contribute to 

pathogenesis and tissue damage in patients with SLE by increasing apoptosis, decreasing the 

clearance of apoptotic material and oxidative modification of numerous biomolecules 

including DNA and enzymes [7–9]. Reactive oxygen species (ROS) is a group free radical 

generated during mitochondrial respiration as the result of incomplete reduction of oxygen. 

Under normal and tightly controlled physiological conditions these molecules play positive 

role in CD4+ T cell signaling and homeostasis such as antigen-specific proliferation, 

differentiation and cytokine production [10]. Loss of mitochondrial DNA or disruption of 

mitochondrial complex I or III results in low ROS production and leads to reduced 

production of interleukin (IL)-2 and IL-4 [11]. In CD4+ T cells from healthy people 

engagement of the costimulatory molecule CD28 leads to rapid upregulation of aerobic 

glycolysis [2], which is in stark contrast to T cells from patients with SLE which display a 

chronically activated phenotype, upregulated calcium signaling, enhanced tricarboxylic acid 

(TCA) cycle activity and dependency on oxidative phosphorylation (OXPHOS) to meet their 

energetic needs [12]. By shifting away from aerobic glycolysis and pentose phosphate 

pathway, SLE CD4+ T cells eventually exhaust their antioxidant capacity with lower 

glutathione and NADPH pools [9,13]. At the subcellular level, electron microscopy has 

revealed extensive mitochondrial remodeling in CD4+ T cells isolated from people with SLE 

with the development of hyperpolarized megamitochondria [14], but with paradoxically 

decreased ATP production and marked leakage of ROS outside of the organelles [15]. 

Besides chronic stimulation and reliance on OXPHOS, genetic contributors have been 

postulated to play a role in the abnormal mitochondrial homeostasis. In humans, a SNP 

variant of the ATP6 or F0F1-ATPase gene (Complex V) has been associated with the 

development of SLE [16]. Inhibition of this ATPase leads to mitochondrial hyperpolarization 

and ATP depletion, features similar to those observed in SLE, but in vivo treatment of MRL/

lpr mice with Bz-423, an inhibitor of mitochondrial F1F0 ATP synthase, leads to apoptosis 

of autoreactive CD4+ T cells and suppression of glomerulonephritis [17]. The murine lupus 

susceptibility locus Sle1c2 defines the Esrrg gene, which is a known regulator of 

mitochondrial function, and whose decreased expression in lupus-prone mice contributes to 

mitochondrial dysfunction with increased ROS leakage, abnormal CD4+ T cell activation 

and increased IFNγ production [18,19].

Under normal conditions, ROS production by mitochondria is needed to trigger signaling 

through NF-κB, AP1 and NFAT (which bind to the IL-2 promoter) to promote IL-2 

production [10,11,20]. High oxidative stress in SLE T cells [21,22], together with the 

overexpressed serine-threonine protein phosphatase2A (PP2A) leads to T-cell receptor 

(TCR) rewiring by promoting replacement of CD3ζ with FcεRIγ chain coupled with SYK 

and decreased DNA mehyltransferase 1 activity [21–23]. In parallel, oxidative stress impairs 

ERK pathway signaling by decreasing protein kinase C δ (PKCδ) phosphorylation and DNA 

methyltransferase 1 activity, thus directly leading to hypomethylated status of DNA 
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observed in SLE and overexpression of genes associated with pathogenesis of SLE [23–29]. 

Additionally, ROS triggers activation of mammalian target of rapamycin (mTOR) which is a 

sensor of mitochondrial hyper polarization and nutrient status [30,31]. In turn, mTOR 

signaling is directly involved in maintaining and promoting increased mitochondrial biomass 

by decreasing mitophagy [32]. In contrast to mTORC2, increased activation of mTORC1 is 

observed in CD4+ T cells obtained from SLE patients and lupus prone mice leading to 

elevated IL-17, IL-4 producing double negative T cell expansion and regulatory T cell (Treg) 

depletion [33–35]. Unrestricted mTORC1 signaling leads to severe SLE-related 

manifestations and this is highlighted in reports of several patients with mutations in 

tuberous sclerosis complex genes which are known suppressors of mTORC1 signaling 

[36,37]. Signaling through mTORC1 shifts balance of CD4+ T cell polarization away from 

Treg development and toward Th1 and Th17 phenotype by enhancing glycolysis (in these 

subsets), activates retinoic acid-related orphan receptor gamma t (RORγt) and signal 

transducer and activator of transcription 3 (STAT3) phosphorylation [33,34,38]. The activity 

of mTORC1 in Treg is curbed by PP2A and even though mTORC1 does not influence 

Foxp3 expression and is necessary for the maintenance of suppressive function by Treg cells 

[39–42]. The inhibition of mTORC1 with rapamycin leads to Treg cell expansion, 

contraction of IL-17 producing cells and suppression of STAT3 signaling—all of which 

represent attractive therapeutic targets in people with SLE [43–45]. In addition, in vitro 

treatment with rapamycin reduces glycolysis and mitochondrial potential and corrects the 

replacement of CD3ζ chain on CD4+ T cells [46,47]. Moreover, there is complex fine-tuning 

between mTORC1 and 2 complexes in Treg cells as they transition through various stages of 

differentiation [39,48].

Germinal center formation depends on the presence of follicular helper T cells (Tfh) which 

are expanded in people with SLE [49]. There are conflicting results whether Tfh 

differentiation is independent or not of mTORC1 activity but more indirect evidence has 

implicated mTORC2 in Tfh cell differentiation [41,42,50]. Treatment with the reducing 

agent N-acetylcysteine proved beneficial in SLE patients and it reversed the expansion of 

double negative T cells, stimulated Foxp3 expression and decreased dsDNA levels [51] 

(Table 1). Treatment of triple congenic B6.Sle1.Sle2.Sle3 lupus-prone mice with metformin, 

the inhibitor of mitochondrial metabolism, corrected abnormal T cell metabolism, reduced 

IFNγ production and restored the IL-2 production [47]. Similarly, metformin normalized in 

vitro IFNγ production in CD4+ T cells isolated from patients with SLE [52]. Also, 

combination of metformin and glycolytic inhibitor 2-deoxy-D glucose (2-DG) showed a 

synergic effect in vivo and decreased serological markers of SLE disease activity and 

improved nephritis (Table 1).

GLYCOLYSIS

Generation of adenosine triphosphate (ATP) in T cells is essential for their survival, 

activation, differentiation and effector functions. There is marked diversity between T cells 

subsets in regard to which metabolic pathway dominates the production of energy [53]. 

Whether an activated naïve cell will differentiate into effector, regulatory or memory T cell 

depends, in part, not just on the cytokine milieu but also on metabolic reprogramming [54–

56]. At rest, both naïve CD4+ and CD8+ T cells fulfill their low metabolic demands by 
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utilizing low rates of OXPHOS [57,58]. Somewhat similar metabolic needs are found in 

Treg cells and memory CD4+ T cells that predominantly rely on fatty acid oxidation (FAO) 

and OXPHOS [59–61] for the production of energy. In contrast to this, differentiated effector 

CD4+ cells prefer glutaminolysis, rapid glycolysis and fatty acid synthesis [59,62] (Figure 

1).

Upon activation, naïve T cells rapidly shift metabolism towards aerobic glycolysis with large 

glucose consumption [58,63]. From the efficiency standpoint oxidative glycolysis is less 

efficient than TCA cycle coupled to OXPHOS, but serves as a means to engage pentose 

phosphate pathway (PPP) to generate nucleotides, amino acids, lipids and NADPH to 

support an increase in the levels of antioxidants in the cell [64,65]. Pyruvate is the end 

product of glycolysis, and at rest, it is more likely to be converted to lactate rather than to 

enter the TCA cycle as acetyl coenzyme A (acetyl-CoA) [66]. End products of TCA cycle 

are NADH, FADH2 and amino acids. NADH enters OXPHOS on the inner mitochondrial 

membrane to generate maximum ATPs. This process is prerequisite for Th1 and Th17 

differentiation [67]. Once CD4+ T cells are activated, the engagement of TCR and co-

stimulatory receptors leads to the rapid upregulation of the glucose transporter Glut1 via 

PI3K-Akt signaling (that can activate mTOR) and upregulation of key downstream enzymes 

via hypoxia-inducible factor (HIF)-1α and Myc [2,64] (Figure 1). The opposite occurs with 

the engagement of cytotoxic T lymphocyte–associated protein 4 (CTLA-4) and programmed 

death 1 (PD-1) [2,68].

Several metabolic abnormalities have been observed in SLE T cells. Chronic antigenic 

stimulation leads to increased OXPHOS as measured by the oxygen consumption which can 

be replicated in healthy cells following repetitive antigen stimulation or in T cells lacking 

HIF-1α [12,69,70]. As discussed above, in SLE T cells OXPHOS fails to generate sufficient 

ATP compared to healthy T cells despite having enlarged mitochondrial biomass. Therefore, 

enhanced secondary glycolysis is observed in SLE [71]. Overexpression of Glut1 in murine 

T cells results in the development of lupus-like disease in older mice and selective 

accumulation of effector and follicular T cells [72]. More recently, Glut1 overexpression was 

found in effector memory CD4+ T cells in people with active and inactive SLE [73]. 

Increased Glut1 expression can be reversed by inhibiting the T cell restricted serine/

threonine kinase, calcium/calmodulin–dependent protein kinase IV (CaMK4) which is 

overexpressed in SLE T cells [73,74]. Pharmacological inhibition or genetic deletion of 

CaMK4 decreases glycolysis and ameliorates disease activity in MRL/lpr mice [75–77]. 

CaMK4 activates AKT/mTOR pathway but is also found to promote glycolysis by binding 

and augmenting the activity of pyruvate kinase M2, the final rate-limiting enzyme in 

glycolysis, underlying autoimmunity associated with Th17 in SLE [78,79]. A distinct feature 

of Th17 cells, which are exaggerated in patients with SLE, is the overexpression of HIF-1α 
and reduced pyruvate dehydrogenase (PDH) activity that triggers metabolic shift leading to 

enhanced pyruvate to lactate production and decreased pyruvate to acetyl-CoA [62,80] 

(Figure 1). The enzymatic activity of PDH is inhibited in Th17 cells to promote conversion 

of pyruvate to lactate by promoting the activity of PDH kinase, which phosphorylates PDH 

(active form) to phospho-PDH (inactive form) [62]. On the other hand, PDH phosphatase 

makes PDH active (Figure 1) [80]. The cAMP response element modulator (CREM) 

moderates the transcription of cAMP-responsible genes [81]. CREM splice variants 
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CREMα and inducible cAMP early repressor (ICER) are increased in Th17 cells and more 

so in people with SLE [82]. ICER binds the cAMP-response element (CRE) of PDH 

phosphatase catalytic subunit 2 (Pdp2) promoter, suppresses the Pdp2 gene expression and 

reduces PDH enzyme activity [80]. Forced expression of PDP2 into naïve CD4+ cells reduce 

Th17 cell differentiation [80]. These data demonstrate that molecules which were previously 

connected to T cell effector function accomplish their effects by directly controlling the 

expression of distinct enzymes involved in cell metabolism.

Because Tfh cells are also involved in the pathogenesis of SLE and their numbers are 

expanded, in vivo treatment of several lupus-prone mice with 2-DG normalized Tfh cells 

numbers and reversed serological markers of lupus but more importantly it did not affect 

humoral responses that preferentially relied on glutaminolysis [82,83]. This observation is of 

paramount importance because it points to the need to understand the differential regulation 

of metabolic pathways between the development of a normal and an autoimmune/

inflammatory process.

Compared to CD4+ T cells, stimulated cytotoxic CD8+ cells undergo more rapid growth and 

proliferation and retain preferential glycolytic metabolism resistant to metabolic inhibition 

[58]. CD38 is ecto-enzyme NADase, a co-factor of OXPHOS, found to be overexpressed on 

SLE T cell subsets [84,85]. In vitro generated T cells lacking CD38 have enhanced oxidative 

phosphorylation and higher glutaminolysis rates [86]. Recently we found that 

CD8+CD38high population is expanded in subset of patients with SLE who have increased 

rates of infections and these cells had decreased cytotoxic capacity, degranulation and 

expression of cytolytic enzymes [87]. These findings point to the need to develop biologics 

or drugs to inhibit CD38 in order to restore CD8+ cytotoxic T cell responses and avert 

infections, which are still the main cause of mortality in people with SLE.

GLUTAMINE METABOLISM

Glutamine is a non-essential amino acid and another important metabolic fuel besides 

glucose. Glutaminolysis has a vital role in energy production in proliferating cells, including 

T cells. Glutamine enters the cell through the alanine, serine, cysteine-preferring transporter 

2 (ASCT2) and is converted to glutamate, which is further transformed into α-ketoglutarate, 

an intermediate of the TCA cycle. Glutaminolysis is requisite for mTORC activation [88] 

and for the generation of glutathione, which neutralized ROS and is essential for Th17 cell 

differentiation [89,90]. Glutamine metabolism is involved T cell differentiation and fate. 

Th17 cells depend on glutaminolysis more than Th1, Th2 and Treg cells [88]. Depletion of 

glutamine or deficiency of the transporter ASCT2 reduces Th1 and Th17 differentiation 

[91]. Glutaminase which generates glutamate from glutamine has two isoforms: kidney-type 

glutaminase 1 and livertype glutaminase 2. Glutaminase 1 has more enzymatic activity than 

glutaminase 2 and T cells express mainly glutaminase 1 [88]. The transcription factor ICER 

binds the promoter lesion of glutaminase 1 and enhances its expression and promotes 

glutaminolysis [88] (Figure 1). Inhibition of glutaminase 1 or deficiency of glutaminase 1 

reduces Th17 cell differentiation [88,92] and disease activity in animals subjected to 

experimental autoimmune encephalomyelitis (EAE). The glutaminase inhibitor, Bis-2-(5-

Vukelic et al. Page 5

Immunometabolism. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES)], also ameliorates the disease 

activity in MRL/lpr mice [93] (Table 1).

Glutamate can generate α-ketoglutarate through direct deamination by glutamate 

dehydrogenase or through transamination to produce the non-essential amino acid alanine or 

aspartate. Glutamate oxaloacetate transaminase 1 (GOT1) catalyzes the conversion of 

glutamate to α-ketoglutarate via the transamination of oxaloacetate to aspartate. Selective 

inhibition of GOT1 with (aminooxy)acetic acid (AOA) reduces Th17 differentiation and 

enhances Treg cells differentiation and ameliorates EAE [94].

Tfh cells are increased in both the patients with SLE and lupus-prone mice and their 

numbers correlate with disease activity. Glutaminolysis also regulates Tfh and inhibition of 

glutaminolysis with the glutamine analog 6-Diazo-5-oxo-L-norleucine (DON) reduces the 

frequency of Tfh cells and the production of dsDNA antibody [83].

LIPID METABOLISM

Fatty acid oxidation (FAO) is a mitochondrial aerobic process responsible for producing 

acetyl CoA from fatty acids which enters the TCA cycle (Figure 1). Quiescent T cells and 

Treg cells use mainly FAO. The addition of fatty acids to cells in culture increases Treg cell, 

but not effector T cell differentiation [95]. Adenosine monophosphate activated protein 

kinase (AMPK) is serine/threonine kinase and one of the key metabolic regulators besides 

mTORC. AMPK inhibits mTORC activity and vice versa. AMPK increases the expression 

of carnitine palmitoyl transferase I (CPT I), a rate-limiting enzyme in FAO and promotes 

FAO, whereas AMPK-dependent phosphorylation of acetyl-CoA carboxylase 1 (ACC1) 

inhibits fatty acid synthesis [96,97]. In fact, Treg cells have high expression levels of CPT I, 

which supports Treg cells to use multiple fuel sources, including FAO [59,98].

Biosynthesis of fatty acids and cholesterol is essential for T cell proliferation, and 

differentiation in effector T cells, especially Th17 cells. Fatty acid synthesis is a cytosolic 

process whereby acetyl CoA is converted to fatty acids. ACC1, the rate-limiting enzyme for 

fatty acid synthesis promotes metabolic reprograming due to TCR stimulation, and enhances 

Th1 and Th17 cell differentiation [61,99,100]. Cholesterol is synthesized from acetyl CoA 

by the hydroxymethylglutaryl-coenzyme A (HMG-CoA). Statin, the inhibitors of HMG-

CoA reductase, reduce Th17 cell differentiation [101].

Lipid rafts are subdomains of the plasma membrane that are composed of cholesterol and 

glycosphingolipids. CD4+ T cells from people with SLE have an altered profile of lipid raft–

associated glycosphingolipids compared with that of healthy controls [102]. N-

butyldeoxynojirimycin (NB-DNJ), a glucosylceramide synthase inhibitor, normalizes lipid 

metabolism in CD4+ T cells from the patients with SLE [102]. Furthermore, NB-DNJ 

treatment restores the functionality of B and T lymphocyte attenuator (BTLA), an inhibitory 

receptor, similar to CTLA-4 and PD-1, in lupus CD4+ T cells [103] (Table 1). The synthesis 

of glycosphingolipids in T, B cells and kidney is regulated by the transcription factor Friend 

leukaemia integration 1 (FLI1). A polymorphic microsatellite consisting of GA repeats 

within the proximal promoter of Fli1 gene is shorter in three different lupus-prone mice, and 
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the length of the microsatellite correlates inversely with the activity of the promoter [104]. 

Overexpression of FLI1 in mice results in a progressive immunological renal disease and 

renal failure caused by tubulointerstitial nephritis and immune-complex glomerulonephritis 

[105]. Fli1+/− T cells from MRL/lpr mice transferred to Rag1-deficient mice have reduced 

levels of glycosphingolipids and diminished TCR activation compared with transferred 

Fli1+/+ T cells [106]. The formation of lipid rafts on the surface of T cells is important 

during T cell activation and T cells from people with SLE aggregate lipid rafts on the surface 

membrane spontaneously [105] and enable faster and stronger CD3-mediated cell signaling. 

Enhanced lipid raft aggregation in the absence of obvious antigenic stimulation implies that 

the surface membrane is more fluid and molecules move around faster. There is need to gain 

more information on metabolic factors that regulate the expression of lipids on the surface 

membrane of T cells so we may control their signaling capacity.

CONCLUSIONS AND FUTURE DIRECTIONS

We have discussed in detail most recent information on the metabolic aberrations which 

account for the abnormal function of T cell subsets in people with SLE. We have learned 

that specific effector T cell function is defined by metabolic processes which dictate the 

sources of energy generation. More importantly, we have learned that molecules such as 

kinases (CaMK4) or transcription factors (CREM/ICER) which had previously been linked 

to abnormal effector T cell function in SLE accomplish their effects by directly controlling 

the function of metabolic enzymes involved in glycolysis and glutaminolysis. It is certain 

that in the near future we will discover that other known determinants of effector T cell 

function accomplish their effect through the control of metabolic enzymes. Therefore, it is 

proper to assume that what each T cell does depends on its source and disposal of energy. 

Besides though energy, each metabolic pathway generates metabolites which are important 

to construct molecules needed in other cells processes including building blocks for cell 

growth and differentiation. It is important to consider that metabolic processes may behave 

differently during the development of a normal immune response and in the context of 

autoimmune or inflammatory context. Such understanding should influence the design of 

approaches to boost a normal response and suppress an inflammatory one. We expect that 

modulators of metabolic processes will be important in controlling abnormal T cell behavior 

and although most probably they alone will not be sufficient to control autoimmune 

pathology, they may be perfect adjuvants to standard treatment with immunosuppressive 

drugs and help limit their side effects by decreasing their dose. Finally, we should state 

unequivocally, that more research is needed to completely understand the complex metabolic 

processes that are responsible for the well-known aberrant function of T cell subsets 

including Treg, CD8+ cytotoxic, T effector and T follicular helper cells. Very little, if 

anything, is known on the metabolism of lipids in SLE immune cells. For example, does 

cholesterol control immune cell function, and does cholesterol of fatty acids control immune 

cell membrane physical chemistry behavior. For example, what accounts for the spontaneous 

formation of lipid rafts on the surface membrane of T cells. It is plausible that aberrant lipid/

sphingolipid metabolism contributes to their formation and indirectly to the enhanced early 

signaling events [22].
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Acetyl CoA acetyl coenzyme A

AOA (aminooxy)acetic acid

ATP adenosine triphosphate

ASCT2 alanine, serine, cysteine-preferring transporter 2

BTLA B and T lymphocyte attenuator

BPTES bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl 

sulfide

CaMK4 calcium/calmodulin–dependent protein kinase IV

CRE cAMP-response element

CTLA cytotoxic T lymphocyte–associated protein 4
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EAE experimental autoimmune encephalomyelitis

FAO fatty acid oxidation

GOT glutamate oxaloacetate transaminase

HIF hypoxia-inducible factor

HMG-CoA hydroxymethylglutaryl-coenzyme A

ICER inducible cAMP early repressor

IL interleukin

mTOR mammalian target of rapamycin

mTORC mammalian target of rapamycin complex

OXPHOS oxidative phosphorylation

PDH pyruvate dehydrogenase

PDP pyruvate dehydrogenase phosphatase catalytic subunit

PD-1 programmed death 1
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PPP pentose phosphate pathway

PP2A phosphatase2A

RORγt retinoic acid-related orphan receptor gamma t

ROS reactive oxygen species

SLE systemic lupus erythematosus

STAT3 signal transducer and activator of transcription 3

TCA tricarboxylic acid

TCR T-cell receptor

Tfh follicular helper T cells

Treg regulatory T cell

2-DG 2-deoxy-D glucose
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Figure 1. 
Main metabolic pathways in T cells. Cellular metabolism is controlled by many factors, 

including transcription factors. Red arrow means “enhance or activate”, whereas blue line 

means “inhibit or inactivate”. Acetyl Co-A, acetyl coenzyme A; mTOR, mammalian target 

of rapamycin; AMPK, adenosine monophosphate activated protein kinase; HIF-1α, hypoxia 

inducible factor 1 alpha; PKM2, pyruvate kinase muscle isozyme 2; CaMK4, calcium/

calmodulin–dependent protein kinase IV; PDH, pyruvate dehydrogenase; ICER, inducible 

cAMP early repressor; α-KG, α-ketoglutarate; ETC, electron transport chain; OXPHOS, 

oxidative phosphorylation; ROS, reactive oxygen species.
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Table 1.

Potential therapeutic target of metabolic pathway in SLE.

Therapeutic target Therapy Effect on T cells Effects on SLE

Hexokinase and mitochondrial 
complex I

2-deoxy-D glucose and 
metformin

Decrease IFNγ production and decreases 
Tfh cells

Reduces disease activity, and 
improve kidney disease

Glutaminase 1 BPTES, CB-839, and 968 Reduces Th17 cell differentiation Reduces disease activity, and 
improve kidney disease

Mitochondrial metabolism Bz-423 Promotes autoreactive T cell apoptosis Reduces disease activity

Glucosylceramide synthetase NB-DNJ Normalizes TCR signaling and restores 
BTLA expression Reduces disease activity

Cysteine metabolism N-acetyl cysteine Inhibits mTOR activity Reduces disease activity, and 
improve kidney disease

mTOR signaling Sirolimus Inhibits Th17 differentiation and 
promotes Treg differentiation Reduces disease activity

PPARγ Pioglitazone (agonist) Promotes Treg expansion Improves nephritis

BTLA, B and T lymphocyte attenuator; BPTES, bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide; mTOR, mammalian target of 
rapamycin; PPARγ, peroxisome proliferator-activated receptor γ; Tfh, follicular helper T cells.
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