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Abstract: The search for new antibacterial agents that could decrease bacterial resistance is a subject
in continuous development. Gram-negative and Gram-positive bacteria possess a group of metallo-
proteins belonging to the MEROPS peptidase (M4) family, which is the main virulence factor of these
bacteria. In this work, we used the previous results of a computational biochemistry protocol of a
series of ligands designed in silico using thermolysin as a model for the search of antihypertensive
agents. Here, thermolysin from Bacillus thermoproteolyticus, a metalloprotein of the M4 family, was
used to determine the most promising candidate as an antibacterial agent. Our results from docking,
molecular dynamics simulation, molecular mechanics Poisson–Boltzmann (MM-PBSA) method,
ligand efficiency, and ADME-Tox properties (Absorption, Distribution, Metabolism, Excretion, and
Toxicity) indicate that the designed ligands were adequately oriented in the thermolysin active site.
The Lig783, Lig2177, and Lig3444 compounds showed the best dynamic behavior; however, from the
ADME-Tox calculated properties, Lig783 was selected as the unique antibacterial agent candidate
amongst the designed ligands.

Keywords: thermolysin; antibacterial agents; docking; molecular dynamics; MM-PBSA; ADME-Tox

1. Introduction

The increase in bacterial diseases worldwide has been relevant in recent years [1]. It is
proposed that more than 117 conditions of bacterial origins will be described worldwide in
2020–21. According to the World Health Organization (WHO), based on bacterial infections,
the highest priority is to research and develop antibacterial drugs against Gram-positive
and Gram-negative bacteria [2].

Bacteria of the Vibrio, Legionella, Clostridium, Listeria, Staphylococcus, and Pseu-
domonas genus are keys factors of many diseases such as cholera [3,4], ulcerative gastri-
tis [5], and gastric carcinoma [6], affecting millions of people around the world. These
bacteria have a significant group of common proteins that are crucial factors in the patho-
genesis of several diseases [7]. This group of proteins is named the MEROPS peptidase
family (M4 family) [8].

An M4 family is an essential group of metalloproteins that has close similarities
between them [9]. This group is also commonly called the Thermolysin-Like-Proteinase
(TLPsa) family [9]. This name is assigned due to the high similarity with thermolysin
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since they share a common consensus sequence (HExxH) [7], which is part of the catalytic
domain together with Zn2+. Therefore, the search for effective inhibitors of the M4 family
proteins including thermolysin is one of the novel strategies in the design of new third and
fourth generation antibiotics [10].

Thermolysin is secreted by Bacillus thermoproteolyticus. It is considered a metallopro-
teinase containing Zn2+ in its active site, which is an essential cofactor for the enzyme
catalytic activity [7]. This protein was one of the first metalloproteins to be isolated. Its
crystallographic structure was resolved a long time ago, as a result, it is widely used as
a disease studies model [11,12]. Our research group has previously designed new ther-
molysin inhibitors as possible antihypertensive drugs by using a combination of QSARIN
and virtual screening methods [11]. Six compounds were selected from that previous study
(Figure 1) and were evaluated as possible antibacterial agents. We present a computa-
tional biochemistry protocol based on docking, molecular dynamics simulation, molecular
mechanics Poisson–Boltzmann (MM-PBSA) method, ADME-Tox properties (Absorption,
Distribution, Metabolism, Excretion, and Toxicity) and ligand efficiency methodologies to
comprehensively evaluate these molecules as possible antibacterial agents.
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Figure 1. Molecular structure of thermolysin inhibitors evaluated as possible antibacterial agents.

2. Results and Discussion

In a recent work [11], we obtained 133 compounds with described experimental
inhibitory activity against thermolysin from international literature reports. To design
a new and more efficient inhibitor ligand for thermolysin, we performed a combination
of QSARINS and virtual screening technique methods and determined the molecular
fragments that interacted with the thermolysin active site. Based on these results, we
created new ligands, whose structure is presented in Figure 1. In this work, we employed a
computational protocol to verify whether the designed compounds could be considered as
good candidates for use as antibacterial agents.
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2.1. Molecular Docking

We used the docking experiments to determine the position and binding mode of
a protein–ligand complex with minimum energy due to their usefulness in the drug’s
design [11–14]. In this work, docking experiments were used to determine how the ligands
designed in silico presented in Figure 1 were positioned in the thermolysin active site.
The crystallographic structure of thermolysin was obtained from the Protein Data Bank
(PDB id:5DPF).

As shown in Figure 2, the docking poses obtained were adjusted acceptably with the
available inhibitory x-ray crystal structures. All ligands were adequately located at the
thermolysin pocket. According to the docking experiments, the best poses were computed,
and, as shown in Table 1, 86% of the poses obtained had a ∆Gbinding energy greater than
7 kcal/mol, and 43% had a root-mean-square deviation (RMSD) below 2 Å. The most stable
complex was Lig5H9-5DPF, with the most negative free binding energy (−8.2 kcal/mol)
and the second-lowest RMSD value (Table 1) out of all the ligand–protein complexes
analyzed (0.90 Å). The RMSD values were obtained by comparing the best poses of the
ligand-protein complexes with the crystallographic structure from the Protein Data Bank
(PDB id:5DPF). The reference ligand 5H9 was re-docked using the same methodology as
other ligands to validate our docking experiments.
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Figure 2. Alignment of the best poses of ligands designed in silico compared to the Lig5H9 reference compound into the
thermolysin active site. (A) The thermolysin protein in green, the sphere represents the Zn2+ ion at the thermolysin active
site. (B) A close-up of the ligands’ best poses in the active site. In red: the reference ligand Lig5H9, green: the Lig783, blue:
the Lig1022, yellow: the Lig1392, cyan: the Lig2177, orange: the Lig3444, and white: the Lig6199.

According to the docking experiment results, Lig5H9 possesses a POOH group, which
interacts via the H-bond with the His231 residue. The carboxyl and the closest amide
groups present two hydrogen-bonding interactions with Asn112 and Arg103, respectively.
These interactions were also found to be present in the thermolysin crystal structure
(Figure 3A). However, the hydrophobic ring of Lig5H9 was oriented toward a hydrophobic
pocket formed by the Ala113, Phe114, Trp115, and Tyr157 in the thermolysin active center.
These interactions were not present in the crystal structure.
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Table 1. Calculated docking ∆Gbinding energies (kcal/mol) and root-mean-square deviation (RMSD)
(Å) of the firsts ranked Autodock Vina poses of ligand-thermolysin complexes.

Docking Pose-1 Docking Pose-2 Docking Pose-3

∆Gbinding RMSD ∆Gbinding RMSD ∆Gbinding RMSD

Lig5H9-5DPF 1 −8.2 0.94 −7.7 1.80 −7.5 2.36
Lig783-5DPF −8.0 1.07 −8.0 1.16 −7.8 1.80
Lig1022-5DPF −7.9 0.90 −7.8 1.88 −7.7 1.46
Lig1392-5DPF −7.3 3.02 −7.2 4.02 −6.8 5.06
Lig2177-5DPF −8.0 2.45 −7.9 3.01 −7.8 3.76
Lig3444-5DPF −8.1 1.16 −8.0 4.18 −7.9 4.57
Lig6199-5DPF −7.0 6.76 −6.9 6.81 −6.6 6.85

1 5H9 (N-[(S)-([(benzyloxy) carbonyl]amino-methyl)(hydroxy)phosphoryl]-L-leucyl-4-methyl-L-leucine) was used
as the reference molecule, and was re-docked using the same docking procedure employed for the other ligands.

From all the molecules designed in silico, the best oriented in the thermolysin pocket
was Lig3444. The Lig3444-5DPF complex had the second most negative binding energy
(below the reference ligand 5H9) with −8.1 kcal/mol, followed by Lig783 and Lig2177
(∆Gbinding = −8.0 kcal/mol), see Table 1.

Another stable complex obtained from the docking experiments was the Lig3444-5DPF.
The Lig3444 ligand possesses an oxime group, which interacts by hydrogen bonding with
Asn112. The pyrrolidine ring had an H-bond interaction with Glu143, which provides high
stability to this compound in the active pocket of thermolysin (Figure 3F).
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The third and fourth most negative binding free energies (∆Gbinding of −8.0 kcal/mol)
corresponded to the Lig783 and Lig2177 ligands. The Lig783-5DPF complex stability
is explained by the hydrogen bond interaction between the phenolic hydroxyl group
with Asp150 and Asn165. The hydrocarbon skeleton was oriented into a hydrophobic
pocket formed by Phe114, Trp115, and Trp157 (Figure 3B). Lig2177 had an N-hydroxy-
hydroxylamine group, which interacted with Asn112 forming an H-bond. The terminal
phenyl ring was located in a hydrophobic pocket formed by the Phe130, Leu133, and
Val139, which provides high stability to this complex (Figure 3E).

These are the most stable ligand–protein complexes determined by the docking exper-
iments. To analyze the stability of these interactions over time, we carried out molecular
dynamics simulations as described below.

2.2. Molecular Dynamics Simulation

Molecular dynamics simulations provide trajectories with structural information at
the molecular level [15–17]. Our main goal was to determine if the interactions encountered
in the docking experiments were maintained over time. In this sense, we performed an in-
tegral data analysis obtained from the molecular dynamics simulations results considering
the RMSD, RMSF, H-bond interaction stability, and radius of gyration across the time of
simulations.
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2.2.1. Root-Mean-Square Deviation (RMSD) Parameter

As a stability criterion, we analyzed the RMSD (root-mean-square deviation) parame-
ter (RMSD < 2.0 Å) [18–20]. This descriptor gives us an idea of how the systems evolved
during the 50 ns of simulation time. From the first 3 ns, all the ligand–protein complexes
studied remained stable over time with a minimal variation (Figure 4). All the systems
had RMSD values lower than 1.4 Å, even below the Lig5H9-5DPF complex (our reference
system), indicating that the compounds designed in silico remained stable over time into
the thermolysin pocket.
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The averaged RMSD parameter is another stability criterion for the studied systems
(Table 2). We observed no significant differences in the RMSD averaged value over time.
The most stable complex was Lig2177-5DPF (0.90 ± 0.07 Å). This system had the lowest
RMSD value of the complexes studied, even lower than our reference system (Lig5H9-
5DPF), which had an average RMSD value of 1.11 ± 0.13 Å.
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Table 2. Average values and standard deviation of parameters taken from 50 ns of trajectories.

Complexes RMSD (Å) Number of H-Bond Rg (Å)

Lig5H9-5DPF 1 1.11 ± 0.13 1.48 ± 1.68 5.36 ± 0.52
Lig783-5DPF 0.93 ± 0.08 0.17 ± 0.54 3.56 ± 0.02

Lig1022-5DPF 1.02 ± 0.11 0.09 ± 0.32 5.88 ± 0.86
Lig1392-5DPF 1.10 ± 0.15 0.35 ± 0.82 4.25 ± 0.04
Lig2177-5DPF 0.90 ± 0.07 0.46 ± 0.73 5.78 ± 0.29
Lig3444-5DPF 0.98 ± 0.08 0.74 ± 1.26 3.87 ± 0.03
Lig6199-5DPF 0.97 ± 0.08 0.05 ± 0.26 4.99 ± 0.14

1 5H9 (N-[(S)-([(benzyloxy) carbonyl]amino methyl)(hydroxy)phosphoryl]-L-leucyl-4-methyl-L-leucine) was our
reference molecule and was re-docked using the same docking procedure employed for the rest of the ligands.

It is important to note that the Lig2177-5DPF complex presented one of the most
negative binding energies in the docking experiments (Table 1). The Lig783-5DPF, Lig6199-
5DPF, and Lig3444-5DPF complexes had RMSD values close to the Lig2177-5DPF complex
(0.93 ± 0.08 Å, 0.97 ± 0.05 Å and 0.98 ± 0.07 Å, respectively). Except for Lig6199-5DPF, the
Lig783-5DPF and Lig3444-5DPF systems had similar binding energies than the Lig2177-
5DPF complex docking experiments.

The least stable complexes among the series (does not mean that they were unstable)
were Lig1022-5DPF, Lig1392-5DPF, and our reference system was Lig5H9-5DPF with
RMSD values of 1.01 ± 0.11 Å, 1.10 ± 0.15 Å, and 1.11 ± 0.13 Å, respectively. The RMSD
standard deviation value was low, indicating that the RMSD values remained constant
with small fluctuations over time (50 ns). The simulation time studied was sufficiently long
to determine the ligand binding mode in the thermolysin active center. We can conclude
that the RMSD parameter did not detect significant variations in the dynamic behavior of
the complexes studied. To determine which interactions were responsible for this behavior,
it is necessary to analyze the hydrogen bond number and stability details at the molecular
level across the time of MD simulations.

2.2.2. Hydrogen Bond Interactions (H-Bond)

The number and occupancies of H-bond interactions during the 50 ns of simulation
time were quantified to determine the studied complex stability. The number of H-bond
interactions was low in all the ligand-protein complexes studied (Figure 5). All systems
had an H-bond average lower than 1.5 (Table 2), indicating that these interactions do not
significantly influence the stability of the ligands in the thermolysin active site.

In addition to the low number of H-bonds, interaction stability was also low. The
standard deviation of H-bond interactions for all systems was higher than the population
average, indicating the low stability of these interactions (Table 2). Another interesting
fact that must be emphasized is the H-bond interaction occupancies over time. The
occupancy term (%) refers to when the H-bond interaction is maintained at less than 3 Å of
distance during the 50 ns of simulation. More than 50% occupancy was taken as a stability
criterion [21,22].

The highest occupancy (24.63%) was obtained from the hydrogen bond interaction
formed by Lig5H9-OH···O = Glu166 maintained at an average distance of 1.75 ± 2.38 Å
during the molecular dynamics simulation time (50 ns). The second-highest occupancy
(20.36%) was found for the H-bond interaction formed by Lig783-OH···O = Asp150, with
2.83 ± 1.60 Å of average distance during the trajectory.

From this analysis, the low number of hydrogen bonds and the instability of the inter-
actions cannot explain the complex stability shown in the molecular dynamics simulations
by using the H-bond parameter. Thus, it was necessary to analyze other parameters such
as radius of gyration, the results of which are presented below.
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2.2.3. Radius of Gyration (Rg)

The ligand-protein complexes stability already analyzed using the RMSD and H-bond
interaction parameters cannot be completely described using these two parameters. We
examined the compaction degree of the ligand-5DPF complexes during 50 ns of molecular
dynamics trajectories. The compaction degree of the complexes studied is described using
the radius of gyration (Rg) parameter [23–25]. This variable is defined as the root mean
square distance of the mass of an atom’s collection from a common mass center. There
are two analysis levels in the Rg graph: the value of the parameter over time and its
fluctuation [23–25].

The Lig783-5DPF, Lig3444-5DPF, and Lig1392-5DPF complexes were more compact
over time, as presented in Figure 6. These systems exhibited the lowest RMSD values
among all the series (Table 2) and remained stable over time (50 ns) without appreciable
conformational changes. Another compact complex obtained was Lig6199-5DPF, although
the Rg value was slightly higher than Lig783-5DPF, Lig3444-5DPF, and Lig1392-5DPF.

The trajectory behavior observed for the Lig5H9-5DPF, Lig1022-5DPF, and Lig2177-
5DPF complexes were different from the previously described ones (Figure 6). The Lig5H9-
5DPF complex presented few conformational fluctuations during the first 22 ns of trajectory.
From this time, the system stabilizes until the end of the trajectory (Figure 6).

The Lig1022-5DPF complex was the least compact of all systems studied based on
the fluctuations in the first 18 ns of simulation time (Figure 6). A conformational change
(Figure 7) was observed at this time with an Rg value that decreased abruptly. Then, its
value increased again from 33 ns, demonstrating the low stability of this complex.
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2.2.4. Root-Mean-Square Fluctuation (RMSF) Parameter

The root-mean-square fluctuation (RMSF) parameter measures the different amino
acid residues’ flexibility of the thermolysin structure during the 50 ns trajectory [26]. Higher
RMSF values represent greater flexibility of movement, while lower RMSF values suggest
the existence of mobility restrictions during the simulation.

The lowest RMSF values were found between amino acids 129–155 and 161–165 in all
the ligand–protein complexes studied (Figure 8). The area covered by these amino acids
was in contact with the studied ligands and remained more rigid than the 5H9 reference.
Specifically, this area corresponded to the thermolysin active site and the consensus se-
quence (HExxH) within the M4 family proteins [9,27]. In this study, the sequence was
His142-Glu166-Tyr157-His146-His231 for the 5DPF protein. The most flexible amino acid
residues were Asn183 and Glu199 because of their structural role rather than a catalytic one.
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2.3. Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA)

The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method is a
free energy decomposition analysis at the molecular level that explores which energy com-
ponents contribute favorably or adversely to the stability of ligand-protein complexes [28].

Table 3 shows that the Van der Waals electrostatic and the nonpolar solvation terms
contributed to the stability of the studied complexes. However, the ∆Gpolar term is destabi-
lizing in these systems (Table 3).

The Lig5H9-5DPF complex (our reference ligand) was the most stable with the most
negative ∆Gbinding value, which agreed with the results of the docking experiments.

The Lig1022-5DPF complex showed the most negative binding energy from all ligands
designed in silico. This complex had the third most negative binding energy in docking
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experiments (Table 1), and according to the MM-PBSA calculations results, the Lig1022-
5DPF complex was mainly stabilized via Van der Waals interactions.

Table 3. Predicted relative molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) for the free energies (kcal/mol)
and individual energy contributions of the complexes taken from 50 ns of trajectories.

Complexes ∆Gbinding ∆Eelect ∆Evdw ∆Gpolar ∆GApolar

Lig5H9-5DPF 1 −146.79 ± 8.30 −150.45 ± 13.06 −227.00 ± 7.61 254.72 ± 9.29 −24.05 ± 0.74
Lig783-5DPF −60.84 ± 11.32 −24.72 ± 14.56 −81.13 ± 0.29 55.27 ± 17.78 −10.26 ± 0,84
Lig1022-5DPF −114.11 ± 25.88 −1.84 ± 5.19 −120.97 ± 20.03 25.89 ± 25.87 −17.12 ± 2.35
Lig1392-5DPF −75.79 ± 11.25 −23.69 ± 6.66 −87.35 ± 8.27 46.35 ± 12.71 −11.09 ± 1.40
Lig2177-5DPF −37.06 ± 10.44 −42.08 ± 10.52 −63.36 ± 15.97 78.06 ± 17.56 −9.07 ± 2.28
Lig3444-5DPF −27.31 ± 11.72 −7.94 ± 6.26 −49.88 ± 20.82 36.92 ± 21.27 −6.41 ± 2.67
Lig6199-5DPF −88.56 ± 19.45 −74.95 ± 15.19 −159.04 ± 16.52 165.67 ± 33.93 −20.23 ± 1.22

1 5H9 (N-[(S)-([(benzyloxy) carbonyl]amino methyl)(hydroxy)phosphoryl]-L-leucyl-4-methyl-L-leucine) was our reference molecule and
was re-docked with the same docking procedure of the ligands.

The Lig6199 and Lig1392 complexes showed the second and third most negative
∆Gbinding in the MM-PBSA calculations (Table 3). These systems presented the lowest
negative energies in the docking experiments due to the loss of stabilizing interactions
during the molecular dynamics simulations. In addition to the Lig1022-5DPF complex,
these two systems were also stabilized through Van der Waals interactions.

The detailed analysis by residue (Figure 9) showed that the Phe126, Asp138, Glu166,
Glu187, and Asp170 residues contributed favorably to the complex ∆Gbinding. The Glu166
residue is present in the active center conserved sequence of M4 family proteins [9,27] and
is essential for the catalytic activity [9,27]. This result was corroborated by our molecular
dynamics simulations, together with free energy calculations.
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The Asp82, Arg101, Asn112, Phe114, and His231 amino acids contributed favorably to
the electrostatic origin and Van der Waals interactions. His231 is another essential residue
located in the thermolysin active center consensus sequence [9,27].

2.4. Ligand Efficiency Calculation and Absorption, Distribution, Metabolism, Excretion, and
Toxicity (ADME-Tox) Properties

At this point, we have analyzed the ligand–thermolysin complexes’ molecular stability.
In the next section, we analyze the affinity of compounds designed with thermolysin and
the ADME-Tox properties. These results will resolve which of the designed compounds are
the best candidates for antibacterial agents, thus minimizing the risk as much as possible.

We used four parameters in this analysis, the dissociation constant (Kd), ligand effi-
ciency index (LE), binding efficiency index (BEI), and lipophilic ligand efficiency (LLE) to
compare and select the best candidates for antibacterial agents. The dissociation constant
(Kd) parameter measures the strength of the ligand–protein interaction. Low Kd values
indicate a strong interaction between the ligand and the protein. The dissociation constant
was calculated using Equation (4). Lig5H9 showed the most robust interaction with sig-
nificant differences between the rest of the ligands studied (Table 4). The three designed
compounds, Lig3444, Lig783, and Lig2177, had the lowest Kd values, suggesting that they
could be good candidates for antibacterial agents.

Table 4. Ligand efficiency parameters calculated and absorption, distribution, metabolism, excretion, and toxicity (ADME-
Tox) properties prediction for all molecules studied.

Ligands MW (kDa) Kd clogP LE BEI LLE HBA HBD TPSA (Å2) RB

Lig5H9 1 0.4855 9.78 × 10−7 2.71 0.248 12.37 3.29 8 5 163.87 16
Lig783 0.2723 1.37 × 10−6 2.60 0.400 21.52 3.26 2 2 40.46 0
Lig1022 0.4507 1.62 × 10−6 5.86 0.239 12.84 −0.07 2 0 34.14 14
Lig1392 0.3574 4.46 × 10−6 2.81 0.280 14.96 2.54 3 3 74.35 5
Lig2177 0.4805 1.37 × 10−6 3.45 0.235 12.19 2.41 5 2 114.67 0
Lig3444 0.3561 1.15 × 10−6 2.31 0.368 16.66 3.62 3 3 74.72 0
Lig6199 0.5106 7.64 × 10−6 4.06 0.189 10.04 1.07 7 1 88.56 13

1 5H9 (N-[(S)-([(benzyloxy) carbonyl]amino methyl)(hydroxy)phosphoryl]-L-leucyl-4-methyl-L-leucine) was our reference molecule and
was re-docked with the same docking procedure employed for the rest of ligands.

The ligand efficiency index (LE) correlates the ligand–protein binding energy with the
compound number of atoms without considering the hydrogens in its structure [29]. In
our work, for an adequate drug candidate, we considered LE > 0.3 kcal/mol HAC as a
reference [29–31]. Consistent with the reference value, compounds like Lig783 and Lig3444
are good candidates as thermolysin inhibitors because they had LE values of 0.40 and 0.36,
respectively (Table 4). Studies on common drugs have given LE values between 0.5 and
0.52 for oral administration drugs [29]. We suggest that the Lig783 and Lig3444 compounds
could be good candidates for orally administered drugs.

The binding efficiency index (BEI) relates the dissociation constant (Kd) of the ligand
and its molecular weight [32]. As reference values, we considered a rate of 20 < BEI < 27.
These values were obtained from known drugs such as bortezomid (BEI = 21), a commer-
cially available proteasome inhibitor [33]. The BEI values for our designed ligands were
lowest than the reference values; only Lig783 showed a BEI value similar to bortezomib
(Table 4) [33].

Another essential variable to consider is the lipophilic ligand efficiency (LLE). This pa-
rameter measures the ligand-binding capacity with the protein and its lipophilic power [29].
In our case, the LLE’s reference values were between 5–7 units; these values were calcu-
lated based on oral administration of known drugs [34]. The calculated LLE values for our
ligands designed in silico were lower than the reference values, mainly because the cLogP
variable had relatively high values, which indicates the high lipophilic power for these
compounds (Table 4). Suppose we focus on analyzing the molecular chemical structure
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(Figure 10), we can observe the apolar hydrocarbon skeletons that could influence our
lipophilic ligand capacity.
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The pharmacokinetic prediction for absorption, distribution, metabolism, and elimi-
nation (ADME) of a drug is necessary to be known before suggesting a promising drug
candidate molecule. Additionally, some toxicological parameters (Tox) [35–38] are critical
to know. In this work, we calculated several parameters like the molecular weight (MW),
the octanol/water partition coefficient (cLogP), hydrogen bond acceptor count (HBA),
hydrogen bond donor count (HDA), and rotatable bond count (RB). We used the Swis-
sADME web server [39]. As a toxicological criterion, these results were compared with the
Lipinski [40], Veber [41], and Pfizer [42] rules. Thus, if any compounds designed in silico
comply with only one Lipinski rule, this molecule is not the right candidate. In contrast,
according to the Veber and Pfizer rules, a right ligand candidate must agree with both rules.

Our reference, ligand 5H9 met all the parameters of the Lipinski rule (Table 4). How-
ever, it did not meet any of Veber rule parameters. Ligand 5H9 only agreed with one
of the Pfizer rule parameters, indicating that this compound could have high oral avail-
ability. However, its high lipophilic power could have some toxicological potential. The
Lig783, Lig1392, and Lig3444 compounds complied with all of the Lipinski, Veber, and
Pfizer rulers. Thus, we can consider these ligands as the best antibacterial candidate
agents from our analysis. The Lig1022, Lig2177, and Lig6199 molecules presented a high
lipophilic power, resulting in being inadequate candidates as this parameter suggests some
toxicological consequences.

3. Computational Protocol

We planned a computational biochemistry protocol to evaluate thermolysin inhibitors
as possible antibacterial agents, as shown in Figure 10.

The molecules that we studied in this work were previously designed by our research
group using the QSAR-Insubria (QSARIN) method [11]. The molecular structures of these
possible thermolysin inhibitors were sketched using Avogadro software version 1.2.0 [43].
The optimized geometries were obtained through Density Functional Theory (DFT) cal-
culations using the B3LYP/ma-def2-SVP basis set implemented in Orca 4.2.1 software
package [44,45]. The full optimized geometries were checked by their imaginary frequen-
cies counting. The thermolysin inhibitors’ molecular structures studied are represented in
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Figure 1. To examine the compound’s interaction in the thermolysin pocket, we used the
docking experiment to obtain each molecule’s optimized geometries.

3.1. Docking Procedure

The full optimized geometries for the ligands obtained from quantum calculation were
used in docking experiments. The molecules were prepared at pH = 7.4 using Autodock
Tools [46]. The thermolysin x-ray crystallography structure was obtained from Protein Data
Bank (PDB) [47] with PDBid: 5DPF (resolved at 1.47 Å) [48]. This protein was prepared by
the addition of all hydrogen atoms at pH = 7.4. The water molecules around the protein
were eliminated. The size of the grid box was 16.875 × 14.14 × 16.875 Å3 around the mass
centers of our reference ligands (5H9) discharged from the x-ray crystallography structure
from PDB whose coordinates were x = 11.844 y = −40.829, and z = 64.20. The Zn2+ ion was
used in all docking experiments because it is present in the thermolysin M4 family pocket.

In all docking procedures, we used a grid spacing of 0.375 Å, the number of modes
was 10, and the energy rank was set up to 1 kcal/mol. The correct docking results were
analyzed by re-docking the 5H9 reference ligand under the same docking protocol of the
other compounds using Autodock Vina software version 1.1.2 [49,50]. The best docking
poses were selected using binding energy (kcal/mol) and the positional root-mean-square
deviation (RMSD) [51].

The best energetically good poses and lowest root-mean-square deviation of the com-
plex were selected for molecular dynamics simulations and ligand efficiency calculations.
The reproducibility of the docking results was verified by calculating the root-mean-square
deviation (RMSD) between the possible antibacterial compounds. The 5H9 ligand crystal-
lographic structure from the Protein Data Bank was used as a reference. These calculations
were performed by the LigRMSD server 1.0 program [52]. All docking figures were made
using Pymol software version 1.8 [53].

3.2. Molecular Dynamics Simulation

The best conformational poses for each ligand–thermolysin complex from the dock-
ing experiments were obtained as the start point for the molecular dynamics simula-
tions. Each complex was placed into a water box of 15 × 15 × 15 Å3 using the TIP3P
water model [54,55]. Topologies and parameters of the ligands were obtained by the
SwissParam web Server [56]. All molecular dynamics simulations were described using
CHARMM36 and CGenFF force field for the thermolysin and the possible antibacterial
compounds [57–61].

The ligand–thermolysin complexes were submitted to 50,000 steps for energy min-
imization using the conjugated gradient methodology to reduce any close contact. The
working temperature was 298.15 K using the weak coupling algorithm [62]. The Van
der Waals cutoff was fixed to 12 Å, and we applied a backbone constraint to all com-
plexes by the NPT (Number of particles, Pressure and Temperature constant) ensemble.
Considering the long ranges of the electrostatic forces, we used the Particle Mesh Ewald
(PME) approach [63]. The velocity Verlet algorithm with a 1.0 fs time step was used to
solve the motion equations. All complexes were submitted to 2.0 ns of equilibration and
50 ns of molecular dynamics simulation using the NAMD 2.13 software package [64]. The
trajectories’ analysis and scripts were performed by VMD software version 1.9.3 [65].

3.3. Free Energy Calculations

This work’s computational protocol combined molecular dynamics simulation and
MM-PBSA to study the ligands and thermolysin interactions. The binding free energy
was calculated using g_mmpbsa package version 5.1.2 [66], and a Gromacs tool to compute
the ligand-free binding energy [66]. Gromacs is an implicit solvent method to obtain the
different energy between the ligand–thermolysin complexes.

We extracted the last 300 frames from the 50 ns of molecular dynamics simulation to
calculate each complex binding free energy. Therefore, the MM-PBSA method calculates the
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free energy decomposition into contributions. The free energy of the ligand–thermolysin
complexes was calculated according to the following equation:

∆Gbinding = Gcomplex −
(

GThermolysin+Gligand

)
(1)

In Equation (1), Gcomplex corresponds to the thermolysin–ligand complex energy,
GThermolysin, and Gligand is the protein and ligand energy. The following equation was used
to calculate the protein, ligand, and complex free energy separately.

Gx = Ebond + Evdw + Eelect + Gpolar + GApolar (2)

In Equation (2), Gx can be Gcomplex, GThermolysin, or Gligand. The Ebond represents the
interactions that include bond, angle, and dihedral angle; Eelect is the electrostatic energy
contribution; and Evdw is a Van der Waals energy contribution. The Gpolar represents
the polar free energy contribution, which was calculated using the continuum solvent
Poisson-Boltzmann (PB) model included in the APBS (Adaptive Poisson-Boltzmann Solver)
software version 1.4.1 [67]. The nonpolar free energy contribution was calculated according
to the following equation:

GApolar = γSASA + β (3)

where γ represents the coefficient related to the solvent-surface tension, which in our case
had a 0.0072 kcal/mol/Å2 value; SASA is the solvent-accessible surface area with a 1.4 Å;
and β is a fitting parameter.

We also decomposed the overall binding energy per residue because we needed to
know every amino acid contribution. These contributions were calculated using python
script MmPbSaStat.py, and the amino acid’s individual contribution in binding was calcu-
lated by MmPbSaDecomp.py scripts [66].

3.4. Ligand Efficiency Calculations

Ligand efficiency metrics is a series of parameters that measure the relationship
between the binding energy and the molecule size [29]. These parameters significantly
predict how efficient a compound will be as a possible drug [29,31,68,69]. In our case,
the ligand efficiency calculations were performed through several parameters such as the
dissociation constant (Kd), the ligand efficiency index (LE), the binding efficiency index
(BEI), and the lipophilic ligand efficiency (LLE).

The Kd corresponds to the dissociation constant between a ligand and the protein. Its
value indicates the bond strength between them [31,68]. The following equations calculate
the Kd parameter:

Kd = 10[
∆Gdocking

2.303RT ]. (4)

According to Equation (4), ∆Gdocking is the binding energy (kcal/mol) obtained from
docking experiments; R is the gas constant whose value is 0.001987 kcal/mol·K; and T is
the temperature in Kelvin, 298.15 K in our case.

Ligand efficiency index (LE) is a measure of binding energy and the compound’s
size [31,70]. This parameter compares molecules according to their average binding energy
and can be calculated according to the following equation [31]:

LE =
−2.303RT

HAC
log(Kd) (5)

In Equation (5), Kd is the dissociation constant obtained from Equation (4), and HAC
corresponds to the non-hydrogen atoms (heavy atom counter) number in a ligand.
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Binding efficiency index (BEI) is a measure that involves a ligand-binding property
with the protein against molecular weight [71,72]. In this work, the binding efficiency index
was calculated through the following equation [32]:

BEI = [pKdMW] (6)

where pKd is −LogKd and Kd is the dissociation constant calculated from Equation (4).
MW represents the molecular weight in kDa.

Lipophilic ligand efficiency (LLE) has been defined as the difference between the lig-
and activity and lipophilicity (cLogP) and is obtained from the following Equation (7) [73].

LLE = pKd − cLog(P) (7)

In Equation (7), pKd is −LogKd and cLogP is a ligand lipophility measure, calculated
using the SwissADME web server [39].

3.5. ADME-Tox Properties

The absorption, distribution, metabolism, and excretion (ADME) properties of all
ligands were calculated from optimized geometry of the molecules under study by using
the SwissADME web server [39]. Other physicochemical variables like molecular weight
(MW), octanol/water partition coefficient (cLogP), hydrogen bond acceptor (HBA), hy-
drogen bond donor (HBD), topological polar surface area (TPSA), and rotatable bond
count (RB), respectively, were also calculated as the fundamental goal was to obtain ties
of a compound to become a drug. We could predict the drug’s toxicological properties
(Tox) considering the Lipinski [40,74], Veber [41], and Pfizer toxicity empirical rules [42]
(Table 5).

Table 5. Empirical rules for predicting the oral availability and toxicity properties of the studied lig-
ands.

Properties Oral Availability Toxicity

Lipinski Rules Veber Rules Pfizer 3/75 Rules

MW ≤500 - -
cLogP ≤5 - ≤3
HBA ≤10 - -
HBD ≤5 - -
TPSA - ≤140 ≤75

RB - ≤10 -
MW: Molecular weight; LogP: Octanol/water partition coefficient; HBA: Hydrogen bond acceptor; HBD:
Hydrogen bond donor; TPSA: Topological polar surface area; RB: Rotatable bond count.

4. Conclusions

Bacterial diseases have increased worldwide. This type of disease is caused by a large
group of Gram-Positive and Gram-Negative bacteria. Several factors influence the virulence
of these bacteria. It has been suggested that one of the virulence factors correspond to the
widely studied proteins of the M4 family metalloproteins, with Zn2+ ion in their active
center. In previous works, we designed a series of thermolysin inhibitor ligands (M4
family metalloproteinase). To determine if these designed compounds would be good
antibacterial agents, we successfully constructed and applied a computational protocol
with a complete analysis result obtained from docking experiments, molecular dynamics
simulations, MM-PBSA, ligand efficiency calculation, and ADME-Tox prediction.

We concluded that compounds Lig783, Lig2177, and Lig3444 showed the best perfor-
mance in the docking experiments. These same compounds also had very similar molecular
dynamics and MM-PBSA behavior. These results agreed with the ligand efficiency anal-
ysis, demonstrating that these molecules can be suggested as good antibacterial agents.
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However, the results from the ADME-Tox properties analysis suggests that the unique
candidate to be employed as an antibacterial agent amongst the designed ligands is Lig783.
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