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Abstract
Recent evidence that freshwater fishes diversify faster than marine fishes signifies that the evolutionary 
history of biodiversity in freshwater system is of particular interest. Here, the evolutionary diversification 
events of African Cyprinidae, a freshwater fish family with wide geographic distribution, were recon-
structed and analysed. The overall diversification rate of African Cyprinidae is 0.08 species per million year 
(when extinction rate is very high, i.e., ε = 0.9) and 0.11 species per million year (when ε = 0). This overall 
rate is lower than the rate reported for African Cichlids, suggesting that African freshwaters might be less 
conducive for a rapid diversification of Cyprinidae. However, the observed diversification events of Afri-
can Cyprinidae occurred in the last 10 million years. The temporal pattern of these events follows a non-
constant episodic birth-death model (Bayes Factor > 28) and the rate-constant model never outperformed 
any of the non-constant models tested. The fact that most diversification events occurred in the last 10 
million years supports the pattern reported for Cyprinidae in other continent, e.g., Asia, perhaps pointing 
to concomitant diversification globally. However, the diversification events coincided with major geologic 
and paleo-climatic events in Africa, suggesting that geological and climatic events may have mediated the 
diversification patterns of Cyprinidae on the continent.
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Introduction

The standing biodiversity, i.e., the diversity of life that we are witnessing today, is the re-
sult of countless speciation and extinction events that have occurred in the past (Jablon-
ski 1995; May et al. 1995; Niklas 1997). An important body of literature has been 
devoted to explain not only what drives these macro-evolutionary events (ecological 
or stochastic forces) but also their temporal dynamics (Morrison et al. 2004; Williams 
and Reid 2004; Xiang et al. 2005; Kozak et al. 2006; Weir 2007; Phillimore and Price 
2008). These studies explored specific questions: i) did macro-evolutionary events oc-
cur at a constant rate with species accumulating exponentially over time? Alternatively, 
ii) did they occur at non-constant rates with bursts of speciation at the origin (owing to 
availability of empty niches) followed by a rate decrease over time (adaptive radiation)?

In macro-evolutionary studies, fossil records are believed to track better the tem-
poral dynamic of species accumulation (Raup 1976; Jablonski 1995; Niklas 1997). 
However, a number of limitations preclude a common or frequent use of fossil records. 
First, we do not always have fossil records for several taxonomic groups of interest 
(Raup 1976; Jablonski 1995; Niklas 1997; Peters and Foote 2002). This is especially 
the case for taxonomic groups with soft body parts or those that occur in arid envi-
ronments because they are rarely fossilized. Second, it is difficult to identify punctu-
ated events (e.g., mass extinction) in fossil records, and as a result, the analysis of 
fossil records “can give the impression that the diversity of life has increased inexorably 
through time” (Crisp and Cook 2009).

In the face of the limitations of fossil records for macro-evolutionary studies, DNA-
based phylogenies provide a commonly used alternative approach (e.g., Harvey et al. 
1994; Rüber and Zardoya 2005). Most recent studies employed the phylogenetic ap-
proach to investigate the dynamics of species accumulation over time, and these dynam-
ics are best interpreted when represented graphically in the form of lineages-through-
time plot (LTT plot). Various theoretical scenarios of LTT plots are plausible as described 
in Crisp and Cook (2009). First, the tempo and mode of species accumulation can be 
constant over time corresponding to a linear semi-log LTT plot due to a constant ratio 
birth/death through time. Second, the pattern can depart from a linear semi-log LTT 
plot showing a concave or convex line as a result of single rate decrease or increase, respec-
tively. Third, a pattern of early rapid radiation that later slows down can also be observed. 
This is known as adaptive radiation and is thought to be driven by ecological opportuni-
ties (i.e., the need to fill empty niches trigger a rapid radiation, which slows down over 
time as the proportion of empty niches decrease with time). Characteristics of LTT plot 
corresponding to adaptive radiation are steep slope at the origin and the slope flattens 
progressively. Finally, when the LTT plot has an anti-sigmoidal shape, this is indicative 
of a constant radiation punctuated by mass extinction events (Crisp and Cook 2009).

In the literature, the adaptive radiation is the most commonly reported scenario 
irrespective of the taxonomic groups studied (Shaw et al. 2003; Kadereit et al. 2004; 
Machordom and Macpherson 2004; Morrison et al. 2004; Williams and Reid 2004; 
Xiang et al. 2005; Kozak et al. 2006; Weir 2006; Phillimore and Price 2008; Seehausen 
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2015). Nonetheless, it is important to highlight that these studies are biased not only 
towards plants but specifically towards plant groups of exceptionally high diversifica-
tion rate (Baldwin and Sanderson 1998; Richardson et al. 2001; Verboom et al. 2003; 
Klak et al. 2004; Kay et al. 2005; Hughes and Eastwood 2006; García-Maroto et al. 
2009; Valente et al. 2010). In the animal kingdom, similar high radiations were also 
reported in the Cambrian era (see Rokas et al. 2005) but Rokas et al.’s study was very 
broad as it focused on Metazoa in general. Even studies that explored more specifically 
the diversification patterns of vertebrate also focused on groups that showed relatively 
high diversification rate (e.g., birds, Moyle et al. 2009). For fish, particular attention 
has been given to the African Cichlids (McCune 1997; Verheyen et al. 2003; Day 
et al. 2008), again because this group of fish showed spectacular diversification rates 
(8.29–62.15 species per million years in the Lake Victoria; Verheyen et al. 2003).

However, the phylogenetic approach too has some limitations, with the most com-
monly cited limitation being the lack of complete DNA data for most lineages of in-
terest. For example, in the vertebrate group, we only have DNA sequences (COI) for 
67% of extant bird species (Jetz et al. 2012), 55% of mammals (Bininda-Emonds et al. 
2007), 45% of squamate reptiles (Pyron et al. 2013) and the lowest proportion of avail-
able DNA sequences is for fishes (27%; Rabosky et al. 2013). Consequently, we have 
a poor understanding of the evolutionary history and diversification patterns of several 
vertebrate groups due to unavailability of complete DNA data. Although several statis-
tical approaches have been proposed to simulate complete sampling (e.g., see Pybus and 
Harvey 2000), a complete DNA- and/or taxonomic-based phylogeny would always be 
better for ecological and evolutionary studies than simulated phylogenies (see Rabosky 
2015). Interestingly, owing to the ongoing global DNA barcoding campaign, an im-
pressive volume of DNA sequences is increasingly made available in public repositories 
(www.boldsystems.org) and these sequences can be used for taxonomic, ecological, and 
evolutionary studies. Even when complete DNA sequences are not yet available for a 
particular taxonomic group of interest (e.g., African Cyprinidae), a recent improve-
ment in methodological approaches now allows the reconstruction of a comprehensive 
phylogenetic tree (see Thomas et al. 2013) without any simulation. Thomas et al.’s ap-
proach (see details in Material and Method Section) combines taxonomic information 
with the available incomplete DNA sequences to assemble a complete phylogenetic 
tree. The resulting phylogeny from Thomas et al.’s approach is showed multiple times to 
be suitable for the analysis of diversification rates and evolutionary processes (e.g., Jetz 
et al. 2012) especially when trait data are not involved (see Rabosky 2015).

In the present paper, Thomas et al.’s approach was used to assemble a complete 
phylogeny for the African Cyprinidae. A higher proportion of the African freshwater 
ichthyofauna belongs to the family Cyprinidae after the cichlids (Skelton et al. 1991). 
For example, 24 genera and 539 species of Cyprinidae are recognized in Africa (Froese 
and Pauly 2017). They are distributed from the northern to southern Africa, with their 
mature sizes ranging from small (30 mm SL) to larger size (900 mm SL) (Skelton et al. 
1991). The aim of the present Chapter was to understand the evolutionary processes 
that shaped the current diversity of the fish family Cyprinidae in Africa. Specifically, 

http://www.boldsystems.org
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four questions were investigated. First, what is the overall rate of the evolutionary pro-
cesses (speciation and extinction events) that led to the observed diversity of Cyprini-
dae in Africa? ii) How does this rate compare to the rates reported for African Cich-
lids? iii) Have diversification rates of African Cyprinidae changed significantly through 
time? iv) Is there evidence that African Cyprinidae experienced mass extinction events?

Materials and methods

Assembling a fully sampled phylogeny of the African Cyprinidae

The recent approach of Thomas et al. (2013) was used to assemble a complete phy-
logeny, as we do not have a complete matrix of DNA sequences for all species. This 
approach requires taxonomic information and DNA data. The DNA data used are 
the COI matrix that we recently assembled and published (see details in Adeoba et 
al. 2018). These DNA sequences were used to first reconstruct a constraint tree. With 
regard to DNA data, three types of species (types 1, 2 and 3) are distinguished: “type 1 
species” are species for which COI sequences are available; “type 2 species” are species 
for which COI sequences are missing but they are congeners of type 1; “type 3 species” 
have no COI sequences and are not congeners of type 1. In this study, there are 138 
type 1 species, 388 type 2 species, and 13 type 3 species.

To assemble the constraint tree, an XML file was generated using the COI se-
quences of the type 1 species, in the program BEAUTi, and this file was used to recon-
struct a dated constraint tree based on a Bayesian MCMC approach implemented in 
the BEAST program. Next, the GTR + I + Γ model was selected as the best model of 
sequence evolution based on the Akaike information criterion evaluated using MOD-
ELTEST (Nylander 2004). In addition, a Yule process was selected as the tree prior 
with an uncorrelated relaxed lognormal model for rate variation among branches. Also, 
the COI sequences of the following species were used as outgroups and for calibra-
tion purpose (He et al. 2008; Tang et al. 2010; Wang et al. 2012): Barbonymus altus 
(Günther, 1868), Barbonymus schwanenfieldii (Bleeker, 1854), Barbus barbus (Lin-
naeus,  1758), Carrassius auratus (Linnaeus,  1758), Carrassius gibelio (Bloch, 1782), 
Gyrinocheilus aymonieri (Tirant, 1883), Hybognathus argyritis Girard, 1856, Myxocy-
prinus asiaticus (Bleeker, 1864), Paramisgurnus dabryanus Dabry de Thiersant, 1872, 
Phoxinus phoxinus (Linnaeus, 1758), Pseudorasbora parva (Schlegel, 1842), Rhinichthys 
umatilla (Gilbert & Evermann, 1894), Tinca tinca (Linnaeus, 1758) and Vimba vimba 
(Linnaeus, 1758). For calibration purpose, following Wang et al. (2012) and Cavender 
(1991), the root node of Cyprinidae was constrained to 55.8 million years (My) and 
the split between Tinca and the modern leuciscins was constrained to 18.0 My. In 
addition, the lineage Barbus was calibrated to 13 My following Zardoya and Doadrio 
(1999). Monte Carlo Markov chains were run for 50 million generations with trees 
sampled every 1000 generations. Log files, including prior and likelihood values, as 
well as the effective sample size (ESS) were examined using TRACER (Rambaut and 
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Drummond 2007). ESS values were all > 200 for the age estimates. The first 25% of 
the resulting 50,000 trees were discarded as burn-in, and the remaining trees were 
combined using TREEANNOTATOR (Rambaut and Drummond 2007) to generate 
a maximum clade credibility (MCC) tree (the constraint tree).

To integrate the types 2 and 3 species into the constraint tree, a simple taxon defi-
nition file that lists all three types of species along with their taxonomic information 
(here genus names) was formed. Using the constraint tree and the taxon definition 
file, an MrBayes input file was first generated as implemented in the R library PASTIS 
(Thomas et al. 2013), and then a dated complete phylogeny using MrBayes 3.2. (Ron-
quist and Huelsenbeck 2003) was reconstructed under a relaxed-clock model with 
node-age calibrations indicated above.

In the 10,000 resulting trees, the topology of species with DNA-sequences remains 
fixed, and the unsampled species (types 2 and 3) were assigned randomly within their 
genera. In an early study, Kuhn et al. (2011) demonstrated that similar approach to 
that of Thomas et al. (2013) generates conservative placements of types 2 and 3 species 
with respect to divergence times and diversification rate estimation, which is, following 
Rabosky (2015), a significant advance for diversification studies.

Data analysis

All analyses were done in R (R Development Core Team 2011). To understand how 
the observed diversity of African Cyprinidae was accumulated over time, multiple ap-
proaches described below were used.

First, the net diversification rate (speciation minus extinction) was estimated using 
Magallón and Sanderson’s method (Magallón and Sanderson 2001) implemented in 
the R library GEIGER (Harmon et al. 2007) under two scenarios: no extinction (ε = 
0) and high extinction rate (ε = 0.9).

Second, the observed net diversification rates were compared to those reported for 
Cichlids in various African lakes (Lake Malawi and Lake Victoria).

Third, to assess whether the diversification rates of African Cyprinidae have 
changed significantly through time, the gamma statistic (Pybus and Harvey 2000), the 
LTT (Lineage-Through-Time) plot and several evolutionary models were tested on the 
African Cyprinidae dataset. The value of gamma was calculated on the phylogenetic 
tree of Cyprinidae using the R package LASER (Rabosky 2006). If gamma < 0, this 
implies a decreasing speciation of Cyprinidae over time whereas gamma > 0 is indica-
tive of an increasing speciation toward the present day (Pybus and Harvey 2000).

To test if the value of gamma departs significantly from zero, the observed value of 
gamma was compared, using confidence interval, to the expected value of gamma under 
a constant-rate birth-death model. To this end, an MCMC (Markov chain Monte Carlo) 
simulation was performed to estimate the posterior probability distribution of gamma 
under this constant-rate model. Specifically, the constant-rate birth-death model was pa-
rameterized by drawing rate parameters from the joint posterior densities inferred from 
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the phylogenetic tree of Cyprinidae. This parameterized model was used to simulate 1000 
phylogenies, and these simulated phylogenies were used to calculate the expected value of 
gamma. Then, the observed value of gamma was compared to the posterior-predictive dis-
tribution of the expected value of gamma. If the observed value falls near the centre of the 
simulated distribution, then the diversification rates of African Cyprinidae are constant 
over time. If not, it means that the diversification of the African Cyprinidae has significant-
ly changed over time (Höhna et al. 2015), i.e., some diversification shifts have occurred.

In addition, the 1000 phylogenies that were simulated were used to reconstruct the 
posterior-predictive distribution of the corresponding LTT plots (1000 simulated LTT 
plots). The observed LTT plot for African Cyprinidae was then reconstructed and com-
pared to the simulated LTT plots. If the observed LTT plot falls within the simulated 
LTT plots, this means that the diversification rate of African Cyprinidae has been con-
stant over time. Otherwise, the diversification of African Cyprinidae has experienced 
some evolutionary shifts. Next, the observed LTT plot was also compared to the vari-
ous scenarios predicted and summarized above in the Introduction (Crisp and Cook 
2009). Furthermore, the evolutionary models that explain the diversification patterns 
depicted by the observed LLT plot of the African Cyprinidae were identified. The mod-
els tested include a constant-rate birth-death model and three rate-variation models. 
The rate-variation models include a birth-death model with an exponentially decreas-
ing speciation rate, a birth-death model with piecewise-constant rates (i.e., rates of spe-
ciation and extinction change over time but the diversification rate remains constant; 
Höhna 2015) and a birth-death model of evolution punctuated by a mass-extinction 
event. The best of these models was selected based on Bayes Factors (Baele et al. 2013) 
whose values were interpreted following Jeffreys (1961) (Suppl. material 1: Table S1).

Finally, to investigate whether African Cyprinidae experienced some mass extinctions 
events (if so, when), the CoMET [Compound Poisson Process (CPP) on Mass Extinction 
Time) approach was used (May et al. 2016). This approach has the advantage of being 
able not only to fit all possible birth-death models to the data at hand but also to specifi-
cally model mass extinction events. Briefly explained, the CoMET approach treats the 
number of speciation-rate shifts, extinction-rate shifts, mass-extinction events, as well as 
the parameters associated with these events as random variables, and then estimates their 
joint posterior distribution. For this analysis, hyperpriors was set both a priori and empiri-
cally as implemented in the R package TESS (Höhna et al. 2015). The results of a priori 
hyperpriors are reported below as they are similar to that of the empirically set priors.

Results

The phylogenetic tree of African Cyprinidae is presented in a study that is currently un-
der review and provided here as Suppl. material 1. Based on this tree, the overall diversi-
fication rate of African Cyprinidae is 0.08 species per million year (when extinction rate 
is very high, i.e., ε = 0.9) and 0.11 species per million year (when ε = 0). This overall rate 
is lower than the rate reported for African Cichlids (see details in Discussion below).
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Figure 1. Diversification patterns of African Cyprinidae. A Histogram depicting the frequency of 
branching time on the phylogeny of African Cyprinidae; red colour shows the most frequent branching 
events which occurred the last 10 million years; blue colour indicates earlier branching events i.e., prior to 
10 million years ago B lineage-through-time plot of the phylogeny of African Cyprinidae.

Most diversification events occurred in the last 10 million years (my) (Figure 1A), 
and the temporal pattern of these events, represented as an LTT plot (Figure 1B), fol-
lows an anti-sigmoidal shape, which is indicative of an overall constant diversification 
punctuated by a mass extinction event.

To assess whether there was a significant rate variation over the diversification pe-
riod, the gamma statistic was first calculated (gamma = 6.23), and this positive gamma 
value (which is indicative of an increase diversification rate over time) is significantly 
different from the expected gamma under a rate-constant diversification model (Con-
fidence Interval CI = 0.80–4.31; Figure 2A). This suggests that a non-constant diversi-
fication model is best suitable to explain the accumulation of African Cyprinidae over 
time. This result is also supported by the comparative analysis of the observed LTT 
plot of the African Cyprinidae with the simulated LTT plots under a rate-constant 
diversification (Figure 2B). This comparative analysis clearly showed that the observed 
LTT plot is different from the expected ones (Figure 2B).

Given this evidence of non-constant diversification, the next step was to identify the 
best model for the diversification pattern of African Cyprinidae. The non-constant episod-
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ic birth-death model was decisively supported (see BF interpretation in Table 1) as the best 
model explaining the diversification pattern of the African Cyprinidae (BF > 28) and the 
rate-constant model never outperformed any of the non-constant models tested (Table 2).

Finally, the overall evolutionary events that shaped the diversification of African 
Cyprinidae are summarized in Figure 3. This figure showed that the speciation rate 
(Figure 3A) was roughly constant to 0.3 species per million year over the first 40 my. 
However, within the last 10 my, the following rate variations were observed. A first and 
sudden rate decrease to ~0.05 species/my occurred around 10 million years ago (Ma), 
then this rate increased almost simultaneously to 0.15 where it remains constant until 
~ 2 Ma before a sudden rate increase to 0.4 occurred followed by a punctual decrease 
to 0.1 around 1–0 Ma (Figure 3A). Nonetheless, 50 Ma, the extinction rate that was 
at 0.2, decreased to 0.1 around 45 Ma but increased steadily to 0.2 until ~ 37 Ma and 
remained constant to the present (Figure 3B). There was only one but not decisive 
mass extinction (Figures 3C, D) and 12 non-significant extinction shifts (Figure 3E). 
However, there was five speciation shifts, of which two are significant: the first at ~10 
Ma (rate decrease) and ~2 Ma (rate increase; Figure 3F).

Figure 2. Comparative analysis of the fit of observed diversification pattern of African Cyprinidae to the 
constant-rate birth-death model using posterior-predictive simulation. Left panel (A): The posterior-pre-
dictive distribution for the gamma statistic; the dashed red lines indicate the 95% credible interval, and the 
“x” indicates the location of the value of the observed gamma statistic. Right panel (B): Lineage-through-
time plot for the simulated phylogenies (grey) and for the phylogeny African Cyprinidae (bold black).

A B
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Table 1. Interpretation of Bayes factors following Jeffreys (1961). Abbreviations: M0 Model 0; M1 model 
1, BF Bayes Factor.

Interpretations BF(M0,M1) ln(BF(M0,M1)) log10(BF(M0,M1))
Negative value is a support for model M1 <1 <0 <0
Barely M0 worth mentioning 1 to 3.2 0 to 1.16 0 to 0.5
Substantial support for model M0 3.2 to 10 1.16 to 2.3 0.5 to 1
Strong support for model M0 10 to 100 2.3 to 4.6 1 to 2
Decisive support for model M0 >100 >4.6 >2

Table 2. Bayes Factor (BF) values calculated for each pair of birth-death models tested on the phy-
logeny of African Cyprinidae. Abbreviations: ConstBD = constant-rate birth-death model; DecrBD = 
continuously variable-rate birth-death model; EpisodicBD = episodically variable-rate birth-death model, 
and; MassExtinctionBD = explicit mass-extinction birth-death model. The interpretations of these values 
should be done in comparison with the reference values in Table 1.

Model0 Model1 BF
EpisodicBD ConstBD 28.635868
DecrBD ConstBD 20.886607
EpisodicBD MassExtinctionBD 20.276659
DecrBD MassExtinctionBD 12.527398
MassExtinctionBD ConstBD 8.359210
EpisodicBD DecrBD 7.749261
ConstBD ConstBD 0.000000
DecrBD DecrBD 0.000000
EpisodicBD EpisodicBD 0.000000
MassExtinctionBD MassExtinctionBD 0.000000
DecrBD EpisodicBD -7.749261
ConstBD MassExtinctionBD -8.359210
MassExtinctionBD DecrBD -12.527398
MassExtinctionBD EpisodicBD -20.276659
ConstBD DecrBD -20.886607
ConstBD EpisodicBD -28.635868

Discussion

The subfamily Labeoninae is embedded within the subfamily Cyprininae on the phy-
logenetic tree presented in Suppl. material 1 (see paper in review). The topology our 
tree puts in question early treatments of Labeoninae (Thai et al. 2007; Tang et al. 2009; 
Zheng et al. 2010) but supports the most recent treatment of Yang et al. (2015) who 
reported that the former Labeoninae is actually Cyprininae.

Using this phylogenetic tree, we found that the diversification rate of African Cy-
prinidae, even in the absence of extinction, is 0.11 species/ Myr, which is far lower than 
the rates reported for the Cichlids in various Lakes on the same continent. For example, 
in the Lake Malawi, McCune (1997) reported a rate between 3.00–5.99 species/Myr. 
In the Lake Victoria, an unusually high rate of 8.29–62.15 species/Myr was reported 
(Verheyen et al. 2003) whereas a latter study found that African Cichlids radiated in 
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Figure 3. Summary of all evolutionary events (A–F) reported in this study. This summary was presented 
using the Compound Poisson Process (CPP) on Mass Extinction Time (CoMET) model. Diversification 
hyperpriors are specified a priori and empirically. Result reported are for priors set a priori as this does not 
differ from when empirical priors were set.

the Lake Tanganyika with a rate six time slower (1.67–2.71) than the rates in Lakes 
Malawi and Victoria (Day et al. 2008). The particularly lower radiation rate found in 
the present study suggests that the environment of African freshwaters is certainly less 
conducive for the radiation of Cyprinidae. For example, the rapid radiation of Cichlids 
and perhaps many other fish groups in African Lakes may have caused these groups 
to be the first to occupy much of the available ecological niches (Fryer and Iles 1972; 
Kornfield and Smith 2000), thus leading to strong competitions between these groups 
and Cyprinidae. Such competitive interactions may drive the low radiation of Cyprini-
dae as predicted in the density-dependent radiation model (McPeek 2008). However, 
even the rapid radiation of African Cichlids in the last 150,000 years (potentially pro-
moted by hybridization; Meier et al. 2017; see also review in Seehausen 2015), could 
perhaps be an exception to the global Cichlids radiation, as a rate-constant radiation 
was instead reported for the South-American Cichlids (Hulsey et al. 2010). What is 
the temporal diversification pattern for African Cyprinidae?
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Figure 4. The Great Rift Valley used as a model river system to interpret the diversification of African 
Cyprinidae. Abbreviations: LV, Lake Victoria; LT, Lake Tanganyika, LM, Lake Malawi.
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All analyses performed in this study pointed to a non-constant diversification for 
African Cyprinidae. Specifically, the episodically variable-rate birth-death model was 
the best model found for the diversification pattern of African Cyprinidae. This model 
suggests that some decisive rate shifts have occurred during the speciation and extinc-
tion events of African Cyprinidae but, between two consecutive rate shifts, the diversifi-
cation rate was constant (Stadler 2011; Höhna, 2015). Indeed, as showed in Figures 3A, 
F, two decisive rate shifts were observed in the last 10 million years (see also Bloom et al. 
2013 for New World freshwater fishes), and these were interspersed by constant radia-
tions. The first constant speciation was before the last 10 million years and the second 
constant radiation occurred between 10 and 2 million years ago. In addition, there was 
evidence for 12 extinction events (Figure 3E), confirming frequent extinction events 
reported in freshwaters; e.g., extinction rates in freshwaters are 60 times greater than in 
marine waters (Bloom et al. 2013). However, none of the 12 extinction events found 
for African Cyprinidae was statistically decisive (see Table 1 for interpretation of BF).

The observed rate shifts can only be understood if analysed within the African con-
text of geological and paleo-climatic events (Danley et al., 2012). Geological events are 
well established as drivers of vicariant speciation especially in freshwaters (Burridge et al. 
2006; Albert and Carvalho 2011). For example, vicariance-promoting diversifications 
were reported in freshwater fishes (including Cyprinidae) within the south-western 
Cape Floristic Region during the Miocene-Pliocene transition (Chakona et al. 2013).

We used the example of the Great Lakes (Figure 4) as a model system to interpret our 
results, as this is a major river system that has been very well studied on the continent. 
These geological events first drive the formation of some major freshwater ecosystems in 
Africa, e.g., the Great Lakes (Figure 4), known as key “cradles” and “museums” of fish 
diversity (Danley et al. 2012). These events include shift of tectonic plates and opening 
of rifts, e.g., the East Africa rift system (Figure 4). This system, in particular, is made of 
eastern and western rifts (Nyblade and Brazier 2002). The eastern rifting started 30–35 
Ma (Roberts et al. 2012) and generated some stress that was later transported westward, 
resulting in the creation of the western branch of the rift ~ 12–10 Ma (Roberts et al. 
2012), a period that coincided with the first sudden decrease in speciation rate of Afri-
can Cyprinidae (Figure 3A, F). This suggests that the geological rifting and the inherent 
stress likely mediated the speciation rate decrease. Later, the Lakes Tanganyika and Ma-
lawi were created (Ebinger et al. 1989; Mortimer et al. 2007); both experienced rifting 
around 9–12 Ma and 8–12 Ma (Cohen et al. 1993), respectively, and this may have fur-
ther contributed to the observed decrease of fish speciation. During the same period, the 
Lakes underwent an extension northward and southward (Talbot and Williams 2009), 
causing the opening of new ecological niches that may have triggered the rapid specia-
tion observed immediately after the rate decrease (between 10 and 2 Ma; Figure 3F).

In addition, there has been an extension and uplift concurrently with the rifting 
causing a back-ponding between the eastern and the western rifts, creating the Lake 
Victoria (Johnson et al. 1996; Nicholson 1996) (Figure 4). This new Lake, the largest 
freshwater lake in the tropics and the second largest in the world, provided new eco-
logical niches. The fact that this lake was formed around 1.6–0.40 Ma (Danley et al., 
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2012), a period that coincided with the significant speciation-rate increase of African 
Cyprinidae, may have triggered the speciation shift.

What’s more, the dynamic of the African paleoclimate over the last 10 million years 
(Kingston et al. 2002) may have also mediated the diversification patterns. Around 8–10 
Ma, a period that corresponds to the first significant speciation shift, African climate 
was humid (Cerling et al. 2011), and then became arid around 7–5 Ma (Cerling et al. 
1997). Around 5–3 Ma, the climate became warmer and wetter across Africa (Raymo 
et al. 1996), and this wetter condition has driven the expansion of Lake Tanganyika 
(Meyer 1993), further opening new ecological niches that may have predisposed Afri-
can Cyprinidae to the second speciation shift. The great depths of several African Lakes 
facilitated the persistence of fish lineages (most African Cyprinidae are benthic) during 
stressful environmental conditions (rifting, lake desiccation, mega-drought, etc.; Lip-
pitsch 1997). In such conditions, species hybridized and the hybrid clades developed 
adaptive genetic (e.g., polyploidy) and ecological novelties. Indeed, Cyprinidae devel-
oped a wide range of polyploidy levels (Tsigenopoulos et al. 2002) that predispose for 
large ecological tolerance (Otto and Whitton 2000), a key evolutionary mechanism 
of speciation (Soltis and Soltis 1999). Additionally, several African Labeobarbus species 
have evolved unique anatomical features (Sibbing et al. 1998), piscivory (De Graaf et al. 
2008) and lacustrine spawning (De Graaf et al. 2005) to survive harsh conditions. When 
the conditions became suitable (e.g., ~12–13 thousand years ago (ka)), lake levels filled 
to their current level (Stager and Johnson 2008), and the pre-adapted lineages may have 
shifted their speciation rate to fill new niches. However, around 2.0 Ma, Africa became 
drier (Trauth et al., 2005) and the extreme climatic variation in the last 500ka led to the 
desiccation of several African Lakes (Johnson et al. 1996), potentially leading to the sud-
den decrease of diversification of African Cyprinidae toward the present-day (Figure 3F).

Overall, the diversification rate of African Cyprinidae is much lower than that 
reported for African Cichlids. Most of diversification events of African Cyprinidae 
occurred in the last 10 million years following an episodic birth-death diversification 
model. This is in accord with what has been reported for Cyprinidae in the Asian 
freshwater (Yuan et al. 2010). Specifically, Yuan et al. (2010) reported that the specia-
tion events of Cyprinidae in Chinese freshwaters likely occurred between 11.4 and 2.3 
Mya, perhaps pointing to a simultaneous diversification at global scale.

In addition, 12 extinction events were observed during this diversification, sup-
porting an earlier report that extinction event is frequent in freshwaters (Bloom et 
al. 2013). All these events could have been mediated through geological events and 
historical climate fluctuations on the continents (Danley et a. 2012; Chakona et al. 
2013). As we should caution against interpreting evolution events based on a single 
analysis, we also tested our findings assessing their sensitivity to an automatic empirical 
hyperprior, and we found consistency for the findings reported in the present study. 
However, one potential caveat to this study is that it relies solely on a mitochondrial 
marker which could potentially show saturation and thus underestimate the branch 
lengths towards the origin of the phylogenetic tree (Revell et al. 2005). If this is true 
for the phylogeny of African Cyprinidae based on COI marker alone, we should expect 
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a burst of speciation at the base of the radiation because of underestimation of older 
branch lengths. Our results did not corroborate a burst of speciation towards the origin 
of diversification, thus undermining potential bias due to the use of COI alone.

Nonetheless, although we do not foresee any reason why the marker used may blur 
the diversification pattern, it is important to remind us that the present study is based 
on a single gene marker and that “type 2” species outnumber the “type 1”. The study 
should therefore be regarded as a basis for further investigation. We call for more studies 
that should use more markers to revisit the diversification patterns reported in this study.
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