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Abstract

Human bocavirus 1 (HBoV1) belongs to the genus Bocaparvovirus of the Parvoviridae fam-
ily, and is an emerging human pathogenic respiratory virus. In vitro, HBoV1 infects well-
differentiated/polarized primary human airway epithelium (HAE) cultured at an air-liquid
interface (HAE-ALI). Although it is well known that autonomous parvovirus replication
depends on the S phase of the host cells, we demonstrate here that the HBoV1 genome
amplifies efficiently in mitotically quiescent airway epithelial cells of HAE-ALI cultures. Anal-
ysis of HBoV1 DNA in infected HAE-ALI revealed that HBoV1 amplifies its sSSDNA genome
following a typical parvovirus rolling-hairpin DNA replication mechanism. Notably, HBoV1
infection of HAE-ALI initiates a DNA damage response (DDR) with activation of all three
phosphatidylinositol 3-kinase—related kinases (PI3KKs). We found that the activation of the
three PI3KKs is required for HBoV1 genome amplification; and, more importantly, we identi-
fied that two Y-family DNA polymerases, Pol n and Pol k, are involved in HBoV1 genome
amplification. Overall, we have provided an example of de novo DNA synthesis (genome
amplification) of an autonomous parvovirus in non-dividing cells, which is dependent on the
cellular DNA damage and repair pathways.

Author Summary

Parvovirus is unique among DNA viruses. It has a single stranded DNA genome of ~5.5
kb in length. Autonomous parvoviruses, which replicate autonomously in cells, rely on the
S phase cell cycle for genome amplification. In the current study, we demonstrated that
human bocavirus 1 (HBoV1), an autonomous human Bocaparvovirus, replicates its
genome in well-differentiated (non-dividing) primary human airway epithelial cells.
HBoV1 infection of non-dividing human airway epithelial cells induces a DNA damage
response. We provide evidence that HBoV1 genome amplification in non-dividing airway
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epithelial cells is facilitated by the DNA damage response-mediated signaling pathways.
Importantly, we discovered that two Y-family DNA repair polymerases, but not cellular
DNA replication polymerases, are directly involved in HBoV1 genome amplification.
Therefore, our study is innovative because it is the first to show that an autonomous par-
vovirus amplifies its genome in non-dividing cells, and that the DNA repair polymerases
are involved in viral genome amplification.

Introduction

Human bocavirus 1 (HBoV1) belongs to the Bocaparvovirus genus in the Parvoviridae family
[1,2]. HBoV1 is one of a group of etiological respiratory viruses that cause acute respiratory
tract infections in young children. Wheezing is one of the most common symptoms of the
virus infection [3,4]. Acute HBoV1 infection, diagnosed by detection of HBoV1-specific IgM/
an increased HBoV1-specific IgG antibody in serum, a virus load higher than 1 x 10* viral
genome copy numbers (gc)/ml, or HBoV1 mRNA in nasopharyngeal aspirates, or diagnosed
HBoV1 viremia, results in respiratory illness [3,5-10]. Life-threatening HBoV1 infections in
pediatric patients have been reported [11].

Studies of children with pneumonia, acute wheezing, asthma, and/or bronchiolitis suggest
that HBoV1 infects the lower respiratory airways down to the bronchioles [3,5]. In vitro,
HBoV1 infects well-differentiated or polarized human primary airway epithelium (HAE) cul-
tured at an air-liquid interface (HAE-ALI) [12]. The in vitro model of HAE-ALIL, which is
derived from primary human bronchial epithelial cells, is a novel system that has provided new
insights into the infection characteristics of human respiratory RNA viruses [13,14], as well as
respiratory DNA viruses [15]. We have demonstrated that HBoV1 infection of HAE-ALI is
long-lasting, persistent, and productive, causing a remarkable loss of epithelial integrity
[16,17], which is consistent with the prolonged primary shedding events of HBoV1 for up to a
year in patients with respiratory illness [18].

In general, autonomous parvovirus replication is dependent on the S phase of the infected
cells because the incoming single-stranded genome of the parvovirus does not support tran-
scription and relies on the host cell DNA replication machinery [19-22]. Except for HBoV1
infection of HAE-ALL there have been no reports to date of productive infection or viral DNA
replication of autonomous parvoviruses in mitotically quiescent cells. Dependoparvovirus
adeno-associated virus (AAV) of the Parvoviridae family, on the other hand, depends on a
helper virus, e.g., adenovirus or herpes simplex virus, or DNA damaging agents [23], for its
genome replication. These helper viruses induce a cellular environment conducive to AAV rep-
lication. AAV DNA replication has been studied extensively in culture of dividing cells; how-
ever, how AAV replicates in the context of the non-dividing cells of the host remains elusive
[23].

In this report, we studied the mechanism underlying genome amplification of human par-
vovirus HBoV1 in well-differentiated (non-dividing) airway epithelial cells of the HAE-ALI
culture. We demonstrated that HBoV1 infection of HAE-ALI induces a DNA damage response
(DDR) that facilitates viral genome amplification. Importantly, we provide evidence that Y-
family DNA repair polymerases, Pol n and Pol k, are involved in HBoV1 genome amplifica-
tion. To our knowledge, this is the first report to show that parvovirus DNA replicates in non-
dividing cells autonomously.
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Results

HBoV1 genome amplification in non-dividing human airway epithelial
cells

We examined the cell cycle status of HBoV1-infected cells of HAE-ALIL. We used polarized
HAE-ALI cultures that had a transepithelial electrical resistance (TEER) of >1.5 KQ for infec-
tion. We found that the HAE cells of the ALI cultures were well differentiated with p27 expres-
sion, which is a marker of GO phase [24], but without expression of proliferating cell nuclear
antigen (PCNA), which is a marker of cellular DNA replication [25], or expression of Ki67,
which marks all phases of the cell cycle including S phase [26]. (S1A, S1B and S1C Fig). There-
fore, polarized HAE-ALI cultures are largely composed of non-dividing cells. HBoV1 infected
p27-expressing cells, as shown by co-immunostaining of anti-p27 and anti-HBoV1 NS1C anti-
bodies (Fig 1A, p27). The anti-NS1C antibody recognizes both the large and small viral non-
structural proteins (NS) expressed during HBoV1 infection [27]. HBoV1-infected cells also did
not express Ki67 (Fig 1A, Ki67). Proliferating primary human airway epithelial cells in mono-
layer culture, for which over half of the cells are proliferating in S phase and do not support
HBoV1 DNA replication [16], were used as negative and positive controls for staining with
anti-p27 and anti-Ki67, respectively, and were not infected by HBoV1 (S1D Fig).

We next used a BrdU incorporation assay to pulse-chase viral genome amplification. In this
assay, denaturation is necessary to detect the BrdU incorporated in double-stranded DNA
(dsDNA), but not single-stranded DNA (ssDNA) [28]. In the absence of HCI treatment (no
denaturation), NS-expressing cells incorporated BrdU into viral ssDNA, as shown by co-
immunostaining of the anti-NS1C and anti-BrdU antibodies (Fig 1B), indicating viral ssDNA
synthesis. Notably, under the denaturation condition, mock-infected HAE cells did not incor-
porate BrdU (Fig 1C), confirming that there was no obvious cellular DNA synthesis in HAE
cells as also supported by the lack of Ki67 staining (Fig 1A), which marks all phases of the cell
cycle.

In infected HAE-ALI, HBoV1 virions were released daily from the apical side, and reached
alevel of > 10'° gc/well at 16-23 days post-infection (dpi) (Fig 1D, 10® gc/ul). Viral ssDNA
genome amplification in infected HAE-ALI was confirmed (Fig 1E and 1F), which undergoes
intermediates of double and mono replicative forms (dRF and mRF, respectively), a procedure
similar to the DNA replication of minute virus of mice (MVM), an autonomous parvovirus
[29]. We observed a roughly linear increase in the ssDNA synthesis vs. a several log increase in
progeny virion release over time (Fig 1D and 1E). We speculate that the synthesized viral
ssDNA genomes are rapidly packaged into capsids, and the matured virions are rapidly
released from the cells.

Collectively, these results confirmed that HBoV1 amplifies its ssDNA genome in non-divid-
ing airway epithelial cells of the HAE-AL culture and produces progeny virions over the course
of infection.

HBoV1 infection of non-dividing airway epithelial cells induces a DNA
damage response (DDR)

Key factors of DNA replication, such as proliferating cell nuclear antigen (PCNA) and DNA
polymerase (Pol) §, are not expressed in non-dividing cells [30]; therefore, how HBoV1
genome amplifies in infected HAE-ALI without these proteins remains an enigma. We there-
fore looked into the DNA damage and repair pathways in HBoV1-infected HAE cells. In N§S-
expressing cells, both RPA32 (replication protein A 32) and histone variant H2AX (H2A his-
tone family, member X) were phosphorylated, as detected using antibodies against p-RPA32
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Fig 1. HBoV1 replicates in non-dividing airway epithelial cells of HAE-ALI cultures. (A) HBoV1 infection of non-dividing cells. At 12 dpi, both mock- and
HBoV1-infected cells of HAE-ALI cultures were trypsinized off the inserts, cytospun onto a slide, and analyzed by IF with anti-HBoV1 NS1C and anti-p27
antibodies, and with anti-NS1C and anti-Ki67 antibodies, respectively. (B and C) Detection of HBoV1 DNA replication by BrdU incorporation assay. At 12 dpi,
mock- and HBoV1-infected cells of the HAE-ALI cultures were trypsinized off the inserts, and were labeled with BrdU. The labeled cells were then cytospun
onto a slide, treated without (B) or with HCI (C), as indicated. The cells were co-stained with anti-BrdU and anti-NS1C. Nuclei were stained with DAPI (blue),
and the cells were visualized by confocal microscopy at a magnification of x100. (D) Quantification of apical virus release. At the indicated dpi, the apical
surface was washed with 100 pl of PBS to collect the released virus. DNase | digestion-resistant HBoV1 genome copy numbers were quantified by gPCR (Y-
axis) and plotted to the dpi as shown. Means and standard deviations from three independent experiments (n = 3) are shown. (E&F) Analysis of viral DNA
replication by Southern blotting. (E) At the indicated dpi, Hirt DNA samples isolated from infected-HAE-ALI cultures were analyzed by Southern blotting with a
probe spanning the HBoV1 NS and Cap genes (upper panel), and with a probe specifically used to detect mitochondrial DNA (Mito DNA; lower panel),
respectively. dRF DNA, double replicative form (RF) DNA; mRF DNA, monomer RF DNA; ssDNA, single stranded DNA. An HBoV1 RF DNA (M), which was
digested from pIHBoV1, was used as a marker (5.4 kb). (F) The level of viral ssDNA detected in the blot was quantified and normalized to the Mito DNA
detected in the same sample, and the % of the viral ssDNA relative to that at 23 dpi is shown. Averages and standard deviations (n = 3) were shown.

doi:10.1371/journal.ppat.1005399.9001
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(the RPA32 phosphorylated on serine 33) and YH2AX (the H2AX phosphorylated on serine
139), over the course of infection (Fig 2A and 2B), suggesting that HBoV1 infection induces a
DDR. It is thought that three phosphatidylinositol 3-kinase-like kinases (PI3KKs) are responsi-
ble for the DDR [31,32], we next looked at the activation status of the three PI3KKs. We found
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Fig 2. HBoV1 infection of HAE-ALI cultures induces phosphorylation of H2AX and RPA32 and activates ATM, ATR, and DNA-PKcs. HAE-ALI
cultures were infected with HBoV1 or mock-infected. (A, B, and C) IF analysis. (A and B) At the indicated dpi, the infected cells trypsinized off the insert were
cytospun and co-immunostained with anti-NS1C and anti-yH2AX (A), and with anti-NS1C and anti-p-RPA32 (B). (C) At 10 dpi, infected cells trypsinized off
the ALI membrane were used for IF analysis with anti-NS1C and p-ATM, with anti-NS1C and anti-p-ATR, and with anti-NS1C and anti-p-DNA-PKcs, as
indicated. Nuclei were stained with DAPI (blue), and the cells were visualized by confocal microscopy at a magnification of x 100. (D and E) Western-blot
analysis. At 10 dpi, cells of the mock-, HBoV1-infected, or HU-treated HAE-ALI cultures were lysed in 1 x SDS-containing loading buffer. Equivalent volumes
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of the lysate were used for Western blot using anti-yH2AX, and reprobed with p-RPA32 and anti-B-actin, sequentially (D), and using with anti-p-ATM, anti-p-
ATR, anti-p-DNA-PKcs, and anti-B-actin, respectively (E). HAE-ALI cultures treated with HU at a final concentration of 2 mM for 2 days were used as positive
control.

doi:10.1371/journal.ppat.1005399.9002

that all three PI3KKs, ATM (Ataxia telangiectasia mutated), ATR (ATM- and RAD3-related),
and DNA-PKcs (DNA-dependent protein kinase catalytic subunit), were activated in infected
cells and colocalized with NS, as assessed by immunofluorescence (IF) analysis using antibod-
ies against the specifically phosphorylated site of each kinase (Fig 2C). Phosphorylation of
RPA32, H2AX, ATM, ATR, and DNA-PKcs was also confirmed by Western blotting (Fig 2D
and 2E). ATM, ATR and DNA-PKcs are phosphorylated at serine 1981, threonine 1989, and
serine 2056, respectively, which are all functional phosphorylation sites that are required for
DDR signaling [33-35]. As a control, treatment with hydroxyurea (HU) also induced phos-
phorylation of these proteins (Fig 2D and 2E).

Inhibition of ATM, ATR, or DNA-PKcs phosphorylation significantly
decreases HBoV1 genome amplification

To functionally interrogate the requirement for PI3KK activation in mediating viral genome
amplification, we applied ATM-, ATR-, or DNA-PKcs-pharmacological inhibitors, which spe-
cially inhibit phosphorylation of their respective kinases, to HAE-ALI cultures and evaluated
their effects on viral genomes released from the apical surface. Application of an ATM-specific
inhibitor, KU60019 [36], at a concentration of 40 pM, decreased apical virion release by 4-5
log starting at 4 dpi (Fig 3A). Application of the KU60019 also prevented infection-dependent
barrier dysfunction, as demonstrated by the lack of a decline in TEER (Fig 3B), no significant
dissociation of the tight junction protein Zona occludens-1 (ZO-1) [37], and no loss of cilia (B-
tubulin IV expression) (Fig 3C), which were all observed in the vehicle (DMSO) treated HBo-
Vl-infected group (Fig 3B and 3C). Application of KU60019 also effectively reduced phos-
phorylation of ATM in HBoV1-infected HAE-ALI cultures to a level observed in mock-
infected cells (Fig 3D).

Similarly, we examined an ATR-specific inhibitor AZ20 [38]. At 20 uM, AZ20 inhibited api-
cal virus release by 4 log over the course of 6-23 dpi (Fig 4A), and prevented airway epithelial
damage, which was marked by disruption of the TEER (Fig 4B) and the dissociation of ZO-1
and no expression of B-tubulin IV (Fig 4C), which were observed in the vehicle-treated HBoV1
infected group (Fig 4B and 4C). Application of AZ20 reduced ATR phosphorylation of HBo-
Vl-infected cells to near background levels observed in mock-infected cells (Fig 4D). Inhibition
of apical virus release using the DNA-PKcs-specific inhibitor NU7441 [39] was also substantial
and gave results strikingly similar to that of KU60019. At a concentration of 20 uM, NU7441
decreased apical virion release by 4-5 log over a period of 5-23 dpi (Fig 5A), and prevented the
epithelial barrier damage caused by virus infection (Fig 5B and 5C). Applying NU7441 nearly
abolished DNA-PKcs phosphorylation in HBoV1-infected cells (Fig 5D).

Applying KU60019, AZ20 and NU7441 alone at the concentrations used did not alter epi-
thelial barrier function. The TEER remained >1.6K Q (Figs 3B, 4B and 5B, compare Mock/
KU, AZ or NU with Mock), and cell viability, which was assessed by cellular ATPase activity,
was unchanged (S2 Fig). However, the three inhibitors reduced the phosphorylation of their
respective kinases in HBoV1-infected cells to a background level of mock-infected cells (Figs
3D, 4D and 5D). Taken together, these results demonstrate that the HBoV1 infection-depen-
dent phosphorylation of ATR, ATM, and DNA-PKcs is critical for HBoV1 genome
amplification.
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Fig 3. An ATM-specific inhibitor decreases HBoV1 infection of HAE-ALI. Two days prior to apical infection of HBoV1, HAE-ALI cultures were treated
with KU60019 at a final concentration of 40 pM in the basolateral chamber, which was refreshed every three days along with the ALI medium in the
basolateral chamber. (A) Quantification of apical virus release. At the indicated dpi, apical washes were collected and quantified for HBoV1 genome copy
numbers (Y-axis), which are plotted to the dpi as shown. Averages and standard deviations (n = 3) are shown. (B) TEER measurement. At the indicated dpi,
the TEER of drug-treated mock-/HBoV1-infected HAE-ALI cultures, as indicated, was measured. Means and standard deviations (n = 3) are shown. (C) IF
analysis. At 23 dpi, the ALI membrane of the infected HAE-ALI cultures was stained with anti-B-tubulin IV or with anti-ZO-1, as indicated. The stained
membranes were visualized for B-tubulin IV/ZO-1 (green) expression by confocal microscopy at a magnification of x 40. (D) Analysis of phosphorylated ATM.
At 23 dpi, equivalent cells of the infected HAE-ALI cultures were analyzed by Western blot for expression of p-ATM and B-actin, respectively.

doi:10.1371/journal.ppat.1005399.9003

Knockdown of ATM, ATR or DNA-PKcs significantly decreases HBoV1
genome amplification

To confirm the function of the three PI3KKs in HBoV1 genome amplification, we used ATR-,
ATM-, or DNA-PKcs-specific ShRNA. We generated lentiviral vectors that co-expressed each
shRNA with an mCherry reporter to transduce monolayer cultures of proliferating airway epi-
thelial cells, prior to seeding for ALI cultures. Stable and efficient transduction was evidenced
by the expression of mCherry reporter in virtually all the cells of well-differentiated ALI cul-
tures at 4 weeks post-transduction (S3A Fig). At this time, the ATM-, ATR-, and DNA-PKcs-
specific ShRNA-expressing HAE-ALI cultures demonstrated decreased expression of ATM,
ATR and DNA-PKsc, respectively (by >4-fold), but the reduction of PI3KK expression was
not observed in the shScram-expressing HAE-ALI (S3B Fig). We then infected these sShRNA-
expressing ALI cultures with HBoV1, and analyzed viral DNA replication in them. Viral DNA
of either the mRF or ssDNA form in shATM-, shATR-, and shDNA-PKcs-expressing ALI
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Fig 4. An ATR-specific inhibitor decreases HBoV1 infection of HAE-ALI. At two days prior to infection, HAE-ALI cultures were treated with AZ20 at

20 uM from the basolateral side. The treated cultures were then infected with HBoV 1. (A) Quantification of apical virus release. At the indicated dpi, the apical
washes were quantified for HBoV1 genome copies by gPCR (Y-axis) and plotted to the dpi as shown. Means and standard deviations (n = 3) are shown. (B)
TEER measurement. At the indicated dpi, the TEER of infected HAE-ALI cultures, as indicated, was measured. Means and standard deviations (n = 3) are
shown. (C) IF analysis. At 23 dpi, the ALI membrane of the infected HAE-ALI cultures were stained with anti-B-tubulin IV or with anti-ZO-1, as indicated. The
stained membranes were visualized for B-tubulin 1V/ZO-1 (green) expression by confocal microscopy at a magnification of x 40. (D) Analysis of
phosphorylated ATR. At 23 dpi, equivalent cells of the infected HAE-ALI cultures were analyzed by Western blot for expression of p-ATR and -actin,
respectively.

doi:10.1371/journal.ppat.1005399.9004

cultures decreased dramatically at both 7 and 22 days, compared to those in shScram-
expressing cultures (Fig 6A). Correspondently, apical virus release decreased by 3-4 log from 7
to 22 dpi, in shATM, shATR, and shDNA-PKcs-expressing HAE-ALIL but not in shScram-
expressing HAE-ALI (Fig 6B). At 22 dpi, significantly decreased phosphorylation of ATM,
ATR and DNA-PKcs was confirmed in their respective sShRNA-expressing HAE-ALIL, but the
HBoV1 infection-dependent phosphorylation in shScram-expressing HAE-ALI remained at
the same level as high as that in the HBoV1-infected HAE-ALI (Fig 6C, 6D and 6E). In
response to the reduced HBoV1 infection, the shATM, shATR, and shDNA-PKcs-expressing
HAE-ALI showed neither a significant decrease in TEER (Fig 6F), nor an obvious dissociation
of the tight junction protein ZO-1, nor a total loss of B-tubulin IV-expressing cilia, which were
otherwise observed in infected shScram-applied HAE-ALI (Fig 6G). As controls, shRNA
expression alone did not affect the barrier function (TEER) (Fig 6F).

PLOS Pathogens | DOI:10.1371/journal.ppat.1005399 January 14,2016 8/25
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Fig 5. A DNA-PKcs-specific inhibitor decreases HBoV1 infection of HAE-ALLI. At two days prior to apical infection of HBoV1, HAE-ALI cultures were
incubated with NU7441 at 20 uM in the basolateral chamber. (A) Quantification of apical virus release. At the indicated dpi, apical washes were quantified for
HBoV1 genome copies gPCR (Y-axis) and plotted to the dpi as shown. Means and standard deviations (n = 3) are shown. (B) TEER measurement. At the
indicated dpi, the TEER of infected HAE-ALI cultures, as indicated, was determined. Means and standard deviations (n = 3) are shown. (C) IF analysis. At 23
dpi, the ALI membrane of the infected HAE-ALI cultures was stained with anti-B-tubulin IV or with anti-ZO-1, as indicated. The stained membranes were
visualized for B-tubulin IV/ZO-1 (green) expression by confocal microscopy at a magnification of x 40. (D) Analysis of phosphorylated DNA-PKcs. At 23 dpi,
equivalent cells of the infected HAE-ALI cultures were analyzed by Western blotting for expression of p-DNA-PKcs and B-actin, respectively.

doi:10.1371/journal.ppat.1005399.g005

Taken together, the above results confirmed that all three PI3KKs (ATM, ATR and
DNA-PKs) play an important role in HBoV1 genome amplification in HAE-ALIL

DNA repair polymerases are involved in HBoV1 genome amplification in
HAE-ALI

Parvovirus DNA replication follows a rolling-hairpin model of DNA replication, in which,
DNA replication factors, i.e., PCNA, RPA32 and Pol 3, are required [40,41]. However, the key
DNA replication factors PCNA and Pol § are not expressed in non-dividing HAE-ALI as
determined by IF analysis and Western blotting (S1A and S1C Fig, Fig 7A and S4 Fig). Simi-
larly, primase Pol o and the leading strand synthesis Pol € are also not expressed in HAE-ALI,
as determined by IF analysis (Fig 7B and 7C) and Western blotting (54 Fig). Thus, we hypothe-
sized that the DNA polymerases utilized in DNA repair might be involved in HBoV1 DNA
replication within non-dividing airway epithelial cells. We next examined the Y-family DNA
repair polymerase Pol 1, Pol t and Pol k, B-family polymerase DNA Pol { and Pol Rev 1, and
the X-family polymerase Pol B, Pol A, and Pol 1, which are important DNA polymerases in
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shown. Averages and standard deviations (n = 3) were shown at the bottom. (B) Quantification of apical virus release. At the indicated dpi, apical washes
were quantified for HBoV1 genome copy numbers by gPCR (Y-axis) and plotted to the dpi as shown. Means and standard deviations (n = 3) are shown. (C,
D, and E) Western blot analysis of p-ATM, p-ATR, and p-DNA-PKcs expression. At 22 dpi, cells in the infected HAE-ALI cultures were analyzed by Western
blotting for expression of p-ATM (C), p-ATR (D) and p-DNA-PKcs (E). B-actin was probed as a loading control. (F) TEER measurement. At the indicated dpi,
the TEER of infected HAE-ALI cultures, as indicated, was measured. Means and standard deviations (n = 3) are shown. (G) IF analysis. At 22 dpi, mock-
infected and HBoV 1-infected HAE-ALI cultures transduced with various shRNA/mCherry-expressing lentiviruses, as indicated, were stained with anti-3-
tubulin IV or with anti-ZO-1. The stained membranes were visualized for 3-tubulin IV/ZO-1 (green) and mCherry (red) expression by confocal microscopy at a
magnification of x 40.

doi:10.1371/journal.ppat.1005399.9006

DNA repair [42]. Notably, Pol n and Pol k were expressed in non-dividing HAE cells of the
ALI cultures (Fig 7D and 7F), while Pol 1 (Fig 7E), Pol Rev1 and Pol { (Fig 7G and 7H), Pol B,
Pol y, and Pol A (Fig 8) were not, as determined by IF analysis and also confirmed by Western
blotting (54 Fig). We next visualized interactions between Pol j and Pol k with nascent repli-
cating viral DNA that was pulse-labeled with BrdU in HBoV1-infected cells using a proximity
ligation assay (PLA). We observed clearly positive fluorescent foci in HBoV1-infected HAE
cells stained with anti-Pol n and anti-BrdU antibodies, as well as with anti-Pol k¥ and anti-BrdU
antibodies, but not in mock-infected cells (Fig 9), suggesting a direct interaction of Pol n and
Pol « with the replicating viral genomes.

We then sought to knock down Pol n and Pol k and directly interrogate their functions in
HBoV1 genome amplification in HAE-ALI, using lentiviral vectors that expressed Pol n- and
Pol k-specific shRNAs (shPol n- and shPol k). The lentiviral vector transduction and polariza-
tion of the transduced airway cells were conducted in the same manner as the PI3KK shRNA
study described above. After HBoV1 infection, the shPol n-expressing HAE-ALI had decreases
in apical virion release of 2-3 log and >3 log at 4-8 dpi and 9-18 dpi, respectively; while shPol
k-expressing HAE-ALI showed a decrease of 1 log at 3-4 dpi and of >2 log at 5-18 dpi in api-
cal virus release, compared with the shScram-expressing HAE-ALI (Fig 10A). At 18 dpi, South-
ern blot analysis of viral DNA replication showed that there was 10-fold and 3-fold reductions
in the level of viral ssDNA in shPol - and shPol k-expressing cells, respectively, compared
with the shScram controls (Fig 10B). Western blotting showed that shPol n and shPol «
knocked down Pol - and Pol «, respectively, by 3.2-fold and 2.5-fold in HAE-ALI (S3C and
S3D Fig). In infected HAE-ALI, shPol n-expressing HAE-ALI demonstrated protection from
HBoV1 infection-dependent decrease in TEER, while shPol k and shScram-expressing
HAE-ALI did not (Fig 10C). However, both shPol n and shPol « protected the infected HAE
from HBoV1 infection-dependent loss of cilia (B-tubulin IV expression) and dissociation of the
tight junction protein ZO-1, to various extents, compared to the shScram-controls (Fig 10D
and 10E). The expression of shRNAs alone did not have an obviously deleterious effect on the
HAE-ALLI, as indicated by the TEER (Fig 10C).

Taken together, our results provide evidence that the DNA repair polymerases Pol n- and
Pol k are involved in HBoV1 genome amplification in non-dividing HAE cells.

Discussion

Autonomous parvovirus DNA replication is thought in general to rely on the activity of host
DNA replication machinery of the cells at S phase of the cell cycle during cell proliferation.
However, we demonstrate for the first time that genome amplification of a member of autono-
mous parvovirus occurs in non-dividing cells. We confirmed that productive infection of
HBoV1 in non-dividing airway epithelial cells employs the cellular DNA damage and repair
machinery to amplify the viral genome. This innovative finding solves the puzzle of how
HBoV1 amplifies its genome in terminally differentiated airway epithelial cells and causes
structural lesions in the airway. Notably, all three PI3KKs (ATM, ATR, and DNA-PKcs) are
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Fig 7. IF analysis of DNA polymerases, Pol 8, Pol a, Pol €, Pol n, Pol 1, Pol k, REV1, and Pol {, in the cells of HAE-ALI. HAE-ALI cultures, labeled as
“Non-dividing,” were infected with HBoV1 or mock-infected. At 12 dpi, HAE cells trypsinized off the Transwell inserts were analyzed by IF using anti-Pol 5 (A),
anti-Pol a (B), anti-Pol € (C), anti-Pol n (D), anti-Pol 1 (E), anti-Pol k (F), anti-Pol Rev1 (G), and anti-Pol ¢ (H) antibodies. Primary airway epithelial cells, labeled
as “Dividing,” cultured as monolayer in a flask were stained with the above antibodies as antibody positive control. Nuclei were stained with DAPI (blue), and
the stained cells were visualized by confocal microscopy at a magnification of x100.

doi:10.1371/journal.ppat.1005399.g007
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Fig 8. IF analysis of DNA polymerases, Pol 8, Pol y, and Pol A, in the cells of HAE-ALI. HAE-ALI
cultures, labeled as “Non-dividing,” were infected with HBoV1 or mock-infected. At 12 dpi, HAE cells
trypsinized off the Transwell inserts were analyzed by IF using anti-Pol 8 (A), anti-Pol py (B), and anti-Pol A (C)
antibodies. Primary airway epithelial cells, labeled as “Dividing,” cultured as monolayer in a flask were stained
with the above antibodies as antibody positive control. Nuclei were stained with DAPI (blue), and the stained
cells were visualized by confocal microscopy at a magnification of x100.

doi:10.1371/journal.ppat.1005399.9008
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Mock HBoV1

Fig 9. Pol n and Pol k colocalize with the replicating HBoV1 genome. HAE-ALI cultures were infected
with HBoV1 or mock-infected. At 12 dpi, infected HAE cells were trypsinized off the Transwell insert, and
labeled with BrdU. The treated cells were then cytospun onto a slide, and were co-stained with a mouse anti-
BrdU and a rabbit anti-Pol n antibody, or with a mouse anti-BrdU and a rabbit anti-Pol k antibody. Proximity
ligation assay (PLA) was performed following the manufacturer’s instructions. Amplified signals were
visualized by confocal microscopy at a magnification of x100.

doi:10.1371/journal.ppat.1005399.g009

Pol n/BrdU

PLA

Pol k/BrdU

phosphorylated at sites (ATM at serine1981, ATR at threonine1989, and DNA-PKcs serine
2056) that are functionally required to transduce DDR signaling [33-35]. Importantly, we
found clues that the Y-family DNA polymerases Pol n and Pol k play a role in HBoV1 genome
amplification. Thus, our study provides direct evidence that the concomitant DDR induced by
virus infection recruits cellular DNA repair polymerases, which can be utilized for viral genome
amplification.

The group of small DNA viruses, including dsDNA papillomavirus and polyomavirus, and
ssDNA parvovirus and circovirus, do not encode viral DNA polymerase, and, therefore, they
must employ host DNA polymerases for their genome amplification. Most of these small DNA
viruses use a strategy of either replicating in dividing cells [40] or inducing infected cells to
enter the S phase of the cell cycle by expressing an oncogenic viral protein [43]. There are only
a few exceptions of small DNA viruses that replicate in differentiated cells, e.g., human papillo-
maviruses (HPV). HPV productive infection is tightly associated with epithelial differentiation
[44], and its active genome amplification is dependent on the activation of the ATM-mediated
DNA repair pathway [45,46]. However, it remains unclear how HPV employs the DNA repair
machinery for viral genome amplification in differentiated epithelial cells [44].

In dividing cells, infection of autonomous parvoviruses induces a DDR with at least one of
the PI3KKs activated [47-52]. Activation of ATM is critical to the replication of the Protopar-
vovirus MVM [49,50] and Bocaparvovirus minute virus of canines (MVC) [47]; whereas activa-
tion of ATR and DNA-PKGcs plays a key role in Erythroparvovirus B19 DNA replication [48].
Notably, an apparent cell cycle arrest at S or late S/G2 phase is always accompanied with the
DDR induced by infections of these parvoviruses [28,51,53]. However, on the other hand,
autonomous parvovirus replication relies on the host cell DNA replication machinery, and is
dependent on the S phase of the infected cells [19-22,51]. Therefore, the DDR-facilitating
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Fig 10. Pol n- and Pol k-specific shRNAs inhibit HBoV1 DNA replication and attenuate the epithelial damage caused by HBoV1 infection. The
HAE-ALI cultures either untreated or treated with shScram, shPol n, and shPol k, as indicated, were infected with HBoV1. (A) Quantification of apical virus
release. At the indicated dpi, daily apical washes were quantified for viral genome copies, which are plotted to the dpi as shown. Means and standard
deviations (n = 3) are shown. (B) Southern blot analysis of viral DNA replication. At 18 dpi, Hirt DNA samples were extracted from infected cultures, and
analyzed for viral DNA (upper) by Southern blot. Mito DNA was probed as a recovery control. A representative blot is shown. The levels of viral ssDNA in the
blot were quantified and normalized to the level of Mito DNA in the same sample. The % of the viral ssDNA relative to that of the “Untreated” sample is shown.
Averages and standard deviations (n = 3) were shown to the right. P values are calculated using a Student’s “t” test (** P<0.05). N.S. (P>0.1) indicates no
statistically significant difference. (C) TEER measurement. At the indicated dpi, the TEER of infected HAE-ALI cultures, which expressed various shRNAs, as
indicated, was measured. Means and standard deviations (n = 3) are shown. (D and E) IF analysis. At 18 dpi, infected HAE-ALI was stained with anti-3-
tubulin IV or with anti-ZO-1. The stained membranes were visualized for 3-tubulin IV/ZO-1 (green) and mCherry (red) expression by confocal microscopy at a
magnification of x 40.

doi:10.1371/journal.ppat.1005399.9010
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parvovirus DNA replication during infections of MVM, MVC, and B19 is likely a result of cell
cycle arrest at the S/late S phase induced by ATM or ATR activation. As for Dependoparvo-
virus, AAV2 infection in the presence of helper virus induces activation of DNA-PKcs and
ATM [54,55]. Without helper viruses and any AAV2 protein expression, the infection of UV-
inactivated AAV?2 infection activates ATR by mimicking a stalled replication fork, and induces
G2/M arrest and apoptosis [56]. Unfortunately, all these studies were performed in dividing
cells. Of note, recombinant AAV (rAAV) vector transduces non-dividing cells efficiently [57],
which is one of the advantages in using rAAV vector in human gene therapy [41]. DNA-dam-
aging agents have been reported to greatly increase the transduction of non-dividing cells by
rAAV [58]. Nevertheless, how the ssDNA genome of rAAV converts to transcription-capable
dsDNA form in non-dividing cells is still elusive. Additionally, AAV replication can also be
stimulated in the absence of helper viruses by treatments that cause cellular genotoxic stress
[59]. These agents include hydroxyurea, topoisomerase inhibitors, and UV irradiation. Exactly
how these treatments create a favorable environment for AAV replication remains unclear.

The involvement of the Y-family DNA polymerase Pol n and Pol x in HBoV1 genome
amplification suggests a DNA repair model of HBoV1 genome amplification. The HBoV1
genome contains heterogeneous terminal repeats at two ends, a DNA molecule similar to
ssDNA break that normally induces ATR activation [60]. The hairpinned HBoV1 genome may
be recognized by ATR and repaired by the Y-family polymerases following a DNA repair
mechanism. DNA polymerase Pol 1) is a eukaryotic DNA polymerase involved in the DNA
repair by translesion synthesis (TLS) [42]. It is particularly important in allowing accurate
translesion synthesis of DNA damage resulting from ultraviolet radiation, and in some cases,
Pol 1 can perform DNA repair at high fidelity [61]. DNA polymerase Pol k that is specifically
involved in DNA repair, also plays an important role in translesion synthesis, where the normal
high-fidelity DNA polymerases cannot proceed and DNA synthesis stalls [62]. The translesion
DNA synthesis by the Y-family DNA polymerases is mediated via interaction with mono-ubi-
quitination of PCNA [63]. However, that fact that PCNA is not expressed in non-dividing air-
way epithelial cells suggests that HBoV1 genome amplification follows a PCNA-independent
DNA repair pathway. The activation of ATM and the importance of its signaling suggest that
the homologous recombinational repair (HRR) pathway plays a role in HBoV1 genome ampli-
fication of differentiated epithelial cells. The high fidelity HRR has been implicated in HPV late
gene amplification in differentiated epithelial cells [46,64].

Studies have revealed that the majority of the rAAV vector genomes persist as circular epi-
somes of monomers or concatemers in tissues [65,66], and have identified host DNA repair
factors in ATM and DNA-PK pathways involved in processing AAV genomes in non-dividing
cells [67,68]. In addition, during replication of the Protoparvovirus MVM, the 3’ end of the
newly synthesized complementary strand is ligated to the right-end hairpin of the viral
genome, resulting in the formation of a covalently closed RF DNA, which is the major conver-
sion product [69]. It is impossible that this ligation is carried out by the DNA-PK complex. In
fact, DNA-PK has been proved to play a role in AAV replication using both in vivo and in
vitro replication assays [70].

The detailed mechanism underlying how ATR, ATM, and DNA-PKGcs, functioning either
independently or synergistically, mediate HBoV1 genome amplification in non-dividing cells,
especially the involvement of the DNA repairing factors, warrants further investigation.
Although AAV?2 is a Dependoparvovirus, it was observed that the AAV2 genome replicates
autonomously in a skin raft model of differentiated keratinocytes [71]. We believe that a differ-
entiation (DNA repair)-dependent viral DNA replication probably exists as a general mecha-
nism of parvovirus DNA replication in non-dividing cells. We find HBoV1 infects only cells of
polarized primary airway epithelium, and thus, we could not examine the DDR-supported
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viral DNA replication in other types of non-dividing cells. The non-dividing HAE infection
model is essential in understanding the mechanism underlying the role of parvovirus infec-
tion-induced DDR signal transduction in facilitating viral DNA synthesis, without disturbing
the cell cycle as in dividing cells. We speculate that it is highly likely that other small DNA
viruses, in addition to HBoV1, utilize cellular DNA repair factors, in particular the Y-family
DNA polymerases, for their genome amplification in non-dividing cells. Viruses have evolved
in a way to utilize various host DNA polymerases depending on which ones are available in the
host cells. A concrete understanding of these pathways may enhance the development of anti-
viral therapies and also may improve the utility of recombinant vectors that utilizes these
viruses for gene therapy.

Materials and Methods
Ethics statement

Primary human airway (tracheobronchial) epithelial cells were isolated from the lungs of
healthy human donors at Cell Culture Core of the Center for Gene Therapy, University of
Iowa, under IRB approval by the Institutional Review Board of the University of Iowa (IRB ID
No. 9507432). We obtained the well differentiated (polarized) human airway epithelium
(HAE) ALI cultures from at the Cell Culture Core without any identification information on
them, and, therefore, an IRB review was waived.

Human airway cell culture and ALI differentiation

Primary human airway (tracheobronchial) epithelial cells were cultured on collagen-coated,
semipermeable membrane inserts (0.6 cm?, Millicell-PCF; EMD-Millipore, Billerica, MA;

or 0.33 cm?, Transwell, Corning, Tewksbury, MA), and then were differentiated at an ALI for
3-4 weeks [16]. This procedure was carried out at the Tissue and Cell Culture Core of the Cen-
ter for Gene Therapy, University of Iowa. In some circumstances, primary human airway epi-
thelial cells of HAE-ALI cultures were propagated within a fibroblast feeder cell system in F
medium, in which cells were co-cultivated with irradiated 3T3 fibroblast (J2 strain) with the
addition of ROCK inhibitor Y-276322 [15,72], and then were transferred into a Transwell
insert (0.33 cm?, Transwell) for ALI differentiation. Briefly, 2x10* airway cells were seeded
onto the Transwell insert. In the first 2 to 3 days, F medium was fed in both the apical and
basolateral chambers of the insert. Then, F medium was aspirated from both chambers, and
the cells were fed only with 500 pl of PneumaCult-ALI medium (StemCell, Vancouver, BC,
Canada) in the basolateral chamber. The medium was changed every 3-4 days, and the ALI-
cultured HAE took 3-4 weeks for full differentiation. We chose the cultures with a transepithe-
lial electrical resistance (TEER) of over 1,500 Q-cm?, as determined with an epithelial Ohm-
voltmeter (Millicell-ERS; EMD-Millipore), for subsequent HBoV1 infection.

Virus, infection, and quantification of apical virus release

HBoV1 virions were collected from apical washes of the HBoV1-infected HAE-ALI and were
used for infection at a multiplicity of infection (MOI) of 1 viral genome copy number (gc)/cell,
as described previously [17].

At various time points, 100 pl aliquots of phosphate buffered saline, pH7.4 (PBS) were
added to the apical chamber of the HAE-ALI culture, and were harvested as apical washes. All
the washes were stored at 4°C for quantification of viral genome copy numbers using a quanti-
tative PCR (qPCR) with HBoV1-specific primers and probe, essentially following the method
described previously [16].
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@’PLOS | PATHOGENS

Parvovirus Replication of Non-dividing Cells

Chemicals and treatments

Hydroxyurea (HU; Calbiochem, EMD Millipore) was dissolved in deionized water to make a 200
mM stock solution. The following pharmacological inhibitors were used in this study: KU60019
(an ATM-specific inhibitor, Tocris Bioscience, Bristol, UK), AZ20 (an ATR-specific inhibitor,
Selleckchem, Houston, TX), and NU7441 (a DNA-PKcs-specific inhibitor, Tocris Bioscience).
All inhibitors were dissolved in dimethyl sulfoxide (DMSO) to make stock solutions at 10 mM.

Inhibitors were applied 2 days prior to infection, and were included in the ALI medium
throughout the experimental period, which was refreshed every three days.

Immunofluorescence (IF) analysis

Differentiated airway epithelial cells on the ALI membrane support of the HAE-ALI cultures
were treated with 0.05% trypsin for 5 min, washed once with PBS, and collected in 200 ul of
PBS (~5 x 10* cells). The proliferating primary human airway epithelial cells or the differenti-
ated airway epithelial cells isolated from the ALI membrane were cytospun onto a slide at 2,000
rpm for 5 min. The cells were then air-dried for 1 hr at room temperature. For analysis of -
tubulin IV and ZO-1 expression in differentiated cells on the ALl membrane, we directly
stained the ALI culture.

IF analysis was essentially followed using a method described previously [16], with antibod-
ies against proteins as indicated in the figures. Confocal images were taken with an Eclipse C1
Plus confocal microscope (Nikon) controlled by Nikon EZ-C1 software. DAPI (4’,6-diami-
dino-2-phenylindole) was used to stain the nucleus.

BrdU incorporation assay

Differentiated airway epithelial cells were treated with 5 mM EDTA for 5 min and then trypsi-
nized off the insert of the infected HAE-ALL Approximately 1 x 10° cells were resuspended in
1 ml of the PneumaCult-ALI medium (StemCell) with BrdU (Sigma, St Louis, MO) at a final
concentration of 30 uM and incubated for 20 min. Next, cells were cytospun onto slides for IF
analysis with anti-BrdU and anti-HBoV1 NS1C antibodies. For the detection of cellular DNA
replication, BrdU-incorporated cells were further treated with 1 M HCl for 30 min to denature
chromosome DNA [28].

Proximity ligation assay (PLA)

PLA was performed using the Duolink PLA Kit (Sigma) according to the manufacturer’s
instructions. HAE cells were collected from the Transwell insert and were labeled with BrdU as
described above. At room temperature, the cells were fixed with 3.7% paraformaldehyde for 15
min, permeabilized with 0.2% Triton X-100 for 5 min, and blocked with Duolink Blocking
Buffer for 30 min. Then, the cells were incubated with primary antibodies, mouse anti-BrdU
and rabbit anti-Pol 1 or with mouse anti-BrdU and rabbit anti-Pol «, for 1 hr. Two diluted
PLA probes, which are specific to mouse and rabbit IgG, respectively, were applied to the cells
and incubated for 60 min at 37°C. The hybridized oligonucleotides were ligated in the Ligation
Solution at 37°C for 30 min and amplified in Amplification Solution for 100 min. Finally, the
cells were washed and mounted with Duolink In Situ Mounting Medium with DAPI and visu-
alized under a Nikon Eclipse C1 Plus confocal microscope.

Western and Southern blot analyses

For Western blotting, the HAE cells on the insert of the ALI culture were lysed in 200 pl of
1 x SDS-loading buffer. Lysed samples were loaded for SDS-polyacrylamide gel electrophoresis
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(PAGE), transferred, and blotted with antibodies as indicated in the figures, as previously
described [16]. Images were developed under the imager FUJIFILM LAS 4000 (FUJIFILM Life
Sciences) and quantified with Multi Gauge V2.3 software (FUJIFILM Life Sciences).

For Southern blotting, HAE cells were trypsinized off the insert of the ALI culture, washed
and collected for extraction of low molecular weight (Hirt) DNA [73,74]. Southern blotting was
performed using an HBoV1 NS and Cap gene probe, as previously described [27]. A mitochon-
drial DNA probe was used as a control for the recovery of the Hirt DNA [75]. Images were
developed with a Typhoon FLA 9000 phosphor imager and quantified using ImageQuant TL
8.1 (GE Healthcare).

Lentiviral vector production and transduction of HAE-ALI cultures

pLKO-mCherry backbone vector was constructed by inserting a CMV-driven mCherry gene
into pLKO.1 vector (Addgene, Inc., Cambridge, MA) through the BstB I and Mfe I sites.
shRNAs sequences, which are generated by annealing oligonucleotides synthesized at Integrated
DNA Technologies (IDT; Coralville, IA), were cloned into the pLKO-mCherry using the Age
and EcoR I sites. Lentiviral vectors were produced and purified as previously described [76].

To generate shRNA-expressing HAE-ALI cultures, proliferating airway epithelial cells cul-
tured as monolayer were infected with lentiviral vector at an MOI of ~10. After 1 day, trans-
duced cells were transferred into Transwell inserts. After 2-3 days, PneumaCult-ALI medium
(StemCell) was used to establish an ALI for polarization, as described above.

Cytotoxicity assay

Cell viability was quantified using a Cytotoxicity Assay kit (Promega, Madison, WTI) following
the manufacturer’s instructions. Briefly, HAE-ALI cultures were treated with KU60019

(40 uM), AZ20 (20 pM), and NU7441 (20 uM) for 23 days. Staurosporine was used as a positive
control in different final concentrations (2, 20, and 200 uM) for 2 days. DMSO at 0.1% was
used as a vehicle control. At the end of treatment, HAE cells were collected from the Transwell
inserts and seeded into a 96-well plate, followed by addition of the cytotoxicity assay reagents.
After incubations, luminescence was measured by a Synergy H1 microplate reader (BioTek
U.S., Winooski, VT). Then, lysis reagent was added into the mixtures, after incubation lumi-
nescence was measured again. The dead cell numbers and total cell numbers were determined
from the first luminescence and second luminescence results, respectively. The cell viabilities
were normalized to the “Untreated” group.

Antibodies used

Rat anti-HBoV1 NS1C antibody was produced previously [77]. The following antibodies were
purchased: anti-p27, anti-PCNA, anti-Ki67, and anti-BrdU from BD Biosciences (San Jose,
CA), anti-phosphorylated H2AX (y-H2AX) from Millipore, anti-phosphorylated replication
protein A32 (p-RPA32 on serine 33), anti-p-ATR (Thr1989), anti-Pol 1, and anti-Pol € from
GeneTex (Irvine, CA), anti-p-ATM (Ser1981), anti-p-DNA-PKcs (Ser2056), anti-ATR, anti-
Pol k, anti-Pol £, and anti-Pol n from Abcam (Cambridge, MA), anti-ATM from Cell Signaling
Inc. (Danvers, MA), anti-DNA-PKcs from Biolegend, anti-Pol o, anti-Pol 3, anti-Rev1 and
anti-Pol B from Santa Cruz (Dallas, Texas), and anti-B-actin from Sigma. An anti-Pol v anti-
body from Bethyl Laboratories, Inc. (Montgomery, TX) was used for Western blotting.
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Oligonucleotides used to generate shRNA sequences

The following shRNA sequences were chosen to target the genes of interest: ShRNA specific to
ATM (shATM), 5- CCG GGA TTT GCG TAT TAC TCA GTC TCG AGA CTG AGT AAT
ACG CAA ATC CTT TTT G-3’ [78]; shRNA specific to ATR (shATR), 5’- CCG GGG CGT
CGT CTC AGC TCG TCT CCT CGA GGA GAC GAG CTG AGA CGA CGCCTT TTT G-3;
shRNA specific to DNA-PKcs (shDNA-PKcs) [78], 5-CCG GGA TCG CAC CTT ACT CTG
TTC TCG AGA ACA GAG TAA GGT GCG ATC TTT TTG-3’ [79]; shRNA specific to Pol n
(shPol 1), 5-CCG GCC CGC TAT GAT GCT CAC AAG ACT CGA GTC TTG TGA GCA
TCA TAG CGG GTT TTT G-3’ [80]; shRNA specific to DNA Pol « (shPol «), 5-CCG GGC
CAT TGC TAA GGA ATT GCT ACT CGA GTA GCA ATT CCT TAG CAATGG CTT TTT
G-3’ (Sigma, TRCN0000115999). The following scrambled shRNA (shScram) was used as an
shRNA control: 5-CCG GCC TAA GGT TAA GTC GCC CTC GCT CGA GCG AGG GCG
ACT TAA CCT TAG GTT TTT G-3’ [48].

Supporting Information

S1 Fig. Cell cycle status of the HAE-ALI cultures and HBoV1 infection of dividing cells. (A,
B, and C) Primary airway epithelial cells of HAE-ALI cultures are well differentiated. (A and
B) Immunofluorescence (IF) analysis. Both monolayer- and ALI-cultured epithelial cells,
marked as “Monolayer” and “HAE-ALL” respectively, were trypsinized, cytospun onto slides,
and analyzed by IF with anti-PCNA (A) and anti-p27 (B). Nuclei were stained with DAPI
(blue), and the cells were visualized by confocal microscopy at a magnification of x 60. (C)
Western blot analysis. Both monolayer- and ALI-cultured epithelial cells, marked as “Mono-
layer” and “HAE-ALL” respectively, were analyzed by Western blotting using antibodies
against proteins as indicated. Each blot was reprobed for B-actin as a loading control. (D)
HBoV1 infection of dividing cells. Monolayer-cultured (dividing) primary airway epithelial
cells were used to infect HBoV1 at an MOI of ~10, or were mock-infected. At 3 dpi, infected
cells were analyzed by IF with anti-NS1C and anti-p27 antibodies, and with anti-NS1C and
anti-Ki67 antibodies, respectively.

(TTF)

S2 Fig. Cell viability analysis of inhibitor-treated HAE-ALI cultures. HAE-ALI cultures
were treated with pharmacological inhibitors, as indicated. At 23 days post-treatment, cells
were harvested to assess viability based on ATP release using the Cytotoxicity Assay kit (Pro-
mega). The normalized viabilities, relative to the “Untreated” group, are plotted. Means and
standard deviations (n = 3) are shown. Staurosporine was used as positive control at various
concentrations but only for 2 days. N.S. (P>0.1) indicates no statistically significant difference.
“**P<0.01 and ****P<0.001 (by Student’s “t” test).

(TIF)

S3 Fig. Expression of shRNAs in HAE-ALI cultures. Proliferating primary airway epithelial
cells cultured on Transwell inserts were transduced with shRNA-expressing lentiviruses, as
indicated, or were untreated. One day later, the cells were cultured at an ALI (A) mCherry
expression. At weeks after an ALI, as indicated, the transduced cells were monitored for
mCherry expression by taking images at a magnification of x10 under an Eclipse Ti-S micro-
scope (Nikon). (B) Western blot analysis of ATM, ATR, and DNA-PKcs knockdown. At 4
weeks at ALL cells of the HAE-ALI cultures treated with shRNA, as indicated, or of untreated
were analyzed for expression of ATM, ATR and DNA-PKGcs, as indicated, with B-actin as a
loading control by Western blotting. (C and D) Western blot analysis of Pol ) and Pol k knock-
down. At 4 weeks at ALI, prior to virus infection, cells of each shRNA-transduced HAE-ALI
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culture were analyzed for expression of Pol n (C) and Pol k (D), with B-actin as a loading con-
trol by Western blotting. Representative blots are shown. The bands of Pol n (C) and Pol x (D)
were quantified and normalized to the B-actin band of each lane. The % of Pol 1 (C) or Pol

K (D) expression level relative to that of the “Untreated” sample is shown. Averages and stan-
dard deviations (n = 3) are shown. **P<0.05, N.S.: P>0.1 (by Student’s “” test).

(TIF)

S4 Fig. Western blot analysis of DNA polymerases expressed in HAE-ALI. Monolayer
(Dividing)- or ALI (Non-dividing)-cultured epithelial cells were collected at equivalent num-
bers and lysed for Western blotting using antibodies against DNA polymerases Pol 3, Pol a,
Pol €, Pol 1, Pol 1, Pol , Pol Revl, Pol £, Pol B, Pol y, and Pol A, as indicated. B-actin was
detected as a loading control.

(TTF)
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