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Abstract: While naturalistic stimuli, such as movies, better represent the complexity of the real
world and are perhaps crucial to understanding the dynamics of emotion processing, there is limited
research on emotions with naturalistic stimuli. There is a need to understand the temporal dynamics of
emotion processing and their relationship to different dimensions of emotion experience. In addition,
there is a need to understand the dynamics of functional connectivity underlying different emotional
experiences that occur during or prior to such experiences. To address these questions, we recorded
the EEG of participants and asked them to mark the temporal location of their emotional experience as
they watched a video. We also obtained self-assessment ratings for emotional multimedia stimuli. We
calculated dynamic functional the connectivity (DFC) patterns in all the frequency bands, including
information about hubs in the network. The change in functional networks was quantified in
terms of temporal variability, which was then used in regression analysis to evaluate whether
temporal variability in DFC (tvDFC) could predict different dimensions of emotional experience. We
observed that the connectivity patterns in the upper beta band could differentiate emotion categories
better during or prior to the reported emotional experience. The temporal variability in functional
connectivity dynamics is primarily related to emotional arousal followed by dominance. The hubs in
the functional networks were found across the right frontal and bilateral parietal lobes, which have
been reported to facilitate affect, interoception, action, and memory-related processing. Since our
study was performed with naturalistic real-life resembling emotional videos, the study contributes
significantly to understanding the dynamics of emotion processing. The results support constructivist
theories of emotional experience and show that changes in dynamic functional connectivity can
predict aspects of our emotional experience.

Keywords: naturalistic study; dynamic functional connectivity; phase-locking value; arousal; dominance

1. Introduction

Real-life emotional experiences are dynamic and contextual. The lack of context
may result in ambiguity, which is a problem with isolated stimuli such as pictures (e.g.,
Ekman’s face [1]) and sounds (e.g., oddball tones [2]). In contrast, emotional films provide
a contextual and narrative structure for eliciting a more representative and better emotional
experience [3,4]. In addition, they may preserve the natural timing relations between the
constituting functional components, which could be studied using EEG.

To date, EEG has been used to understand emotion processing with mostly static [5–7]
and a few dynamic stimuli [8–11]. More beta oscillatory activity in frontal, central and
parietal sites were found with affective pictures [6]. International Affective Picture System
(IAPS) images with negative valence induced more beta power than neutral images when
participants were explicitly instructed to rate the strength of the picture’s influence on their
own emotional state [7]. Significant enhancement in the power of the beta band (in the
range 25–30 Hz) was observed for negative pictures in comparison to neutral pictures [12].
There is increased long-distance EEG connectivity in the parietal lobe and temporal lobe
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in the beta band during affective picture processing [9]. A high synchronous activity
between the posterior parietal electrodes and the prefrontal electrodes in the beta band was
observed with highly arousing affective images [5]. In addition to beta oscillations, brain
activity in other frequency bands has also been reported for affective images [7,13–15]. For
instance, a study found higher power for pleasant and unpleasant emotional pictures than
neutral pictures in the delta, theta, and alpha bands [13]. Other than beta event-related
synchronization (ERS), an higher elicited delta ERS response was observed with positive
and negative pictures than with neutral pictures [7]. For moderate and high arousal IAPS
pictures, larger synchronization in the theta band over bilateral posterior regions was
observed [14]. In addition, larger ERS activity in the alpha band (alpha divided into three
bands) over the occipital and posterior regions was also observed [14].

Even though multimodal film stimuli should be more effective in eliciting emotions [3],
EEG studies with such stimuli are very limited. Moreover, they did not probe felt emotions
or limited themselves to very few emotional categories [8]. For instance, multimodal
emotion perception (not felt emotions) for anger and fear for complex stimuli such as short
video clips, body language, and audio–visual information reported early interaction of
audio-visual modalities in the alpha and beta bands [8]. In another study [9], participants
were shown emotional movies eliciting positive and negative emotions and parietal and
temporal lobe electrodes had higher accuracy for emotion categorization in the beta band.
The inter-regional synchronization of oscillatory activity in the beta band has been shown
to be reduced due to emotionally arousing video stimuli [15]. The research using static
and multimodal stimuli indicates a complex interplay of frequency bands and emotion
processing, which requires further clarification.

Although some studies were performed with dynamic emotional stimuli [8,9,16], they
did not explicitly probe brain activity just before an emotional experience. These studies
with film stimuli assumed that the emotion would be felt for the whole duration of the
film and did not temporally localize emotion to understand the dynamics of processes
leading to emotional experience. Analyses based on the whole duration [10,11] may include
significant non-emotional processing or mixed processing associated with emotions elicited
at different points in time. Given that different emotions can potentially be elicited at
different time points with a video, a design with a temporal marker for the emotional
experience is needed to understand the mechanisms that underlie the generation of an
emotional experience.

Recent studies investigated the functional connectivity of the human brain during
rest and emotional conditions [17]. For instance, participants were shown all neutral or all
negative IAPS pictures in the static condition and images from different categories were
shown between the first and last two images in the dynamic condition [18]. The functional
connectivity between prefrontal and parietal scalp electrodes was higher in the beta band
in the static condition in comparison to the dynamic condition. Functional connectivity
has been rarely studied using multimodal emotional stimuli [19]. Brain networks were
investigated using phase-locking-value (PLV) during positive and negative emotions,
and they found that PLV values between left posterior (P7) and temporal (T7) locations and
between right temporal (T8) and inferior frontal (F8) were significantly different for high
and low valenced audio + visual stimuli in the beta band [19].

The temporal variability in the connectivity profile provides information about the
task-related re-organization of functional networks and hubs over time that promotes
flexibility and adaptability of the networks to dynamic contexts present in naturalistic
stimuli. The dynamic functional connectivity (DFC) calculation was proposed to detect the
time-varying changes in FC measurements [20]. The most commonly used DFC estimation
method is the sliding window approach with fixed-length segments. The network charac-
teristics for each time segment is used for the quantification of temporal variability in the
dynamic functional connectivity [21]. Calculation of temporal variability of DFC (tvDFC)
is a relatively new developed analysis technique [22,23], which was used in task-free [24],
task-based [25,26], and clinical [27,28] conditions.
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With respect to emotions, the correlation of dynamics of cohesion within and between
salience, default mode (DMN), and executive control networks with the affective dimen-
sions was probed using fMRI while participants watched stressful naturalistic stimuli
during the first viewing [29]. During the second viewing, participants recalled and rated
their emotional arousal on the arousal scale, followed by continuous ratings of valence
values during the third viewing. The dynamic cohesion within the salience network was
correlated with emotional arousal. The cohesion between the salience and executive control
network was highest during the modest stress-related arousal. The results indicate that the
dynamic activity within the functional network is related to emotional arousal. Another
study [30] found that the dynamics of functional connectivity covaried with the emotional
intensity. With higher emotional intensity, the connectivity between the salience and medial
amygdala networks was stronger, supporting constructionist theories of emotion. Continu-
ous enjoyment ratings were associated with the momentary intersubject synchronization
in auditory, default mode, and striatal networks, whereas sadness ratings were associated
with the limbic and striatal networks [31]. These studies [29–31] presented a stimulus more
than once to obtain emotional ratings. On the other hand, Lettieri et al. [32] studied the
association between time-varying inter-subject brain synchronization (tISFC) to variations
in the perceived affective states during movie watching with two different groups. They
obtained continuous behavioral ratings from one group and fMRI recordings from another
group. The correlation between emotional intensity and polarity was observed with the
connectivity dynamics of the default mode and control networks.

The studies described above were performed with fMRI, which has low temporal
resolution. In addition, the length of the window to calculate the dynamics of neural
synchronization is longer (≈20 s), which may not be suitable for use with the transient
or fast-changing nature of the emotions. Moreover, they required participants to watch
a stimulus more than once to obtain neural and behavioral data. To date, no EEG study
investigated the relationship between simultaneously recorded subjective feedback of felt
emotional events embedded within a context and time-varying reorganization of brain
activity. EEG research with multimodal emotional stimuli investigating different frequency
bands and functional connectivity is very limited and inconclusive. In addition, the tempo-
ral dynamics of emotional experience are also not well understood due to the unavailability
of information about the time at which such an experience occurs. Furthermore, the knowl-
edge of tvDFC for emotion processing is lacking. Hence, we probed the spatio-temporal
dynamics of the emotional experience embedded within a dynamic context and multimedia
stimuli. We particularly analyzed temporally marked EEG signals related to emotional
events when participants watched film stimuli. Given the importance of the beta band
during emotion processing, we expected that the emotion-related functional networks
could be more distinguishable in the beta band than in other bands, and the variability in
functional networks could be associated with different dimensions of emotional experience.

2. Materials and Methods
2.1. Participants

Forty-three students participated in order to fulfill a course requirement and signed
a written consent form as required by the Institutional Review Board. After removing
three participants due to excessive movement, 40 participants were finally considered
(Mean age = 23.3, SD = 1.4, female = 3).

2.2. Stimuli and Apparatus

The emotional stimuli were taken from the stimuli dataset [33]. The list of emotional
stimuli used in the training and EEG experiment is available online at [34].

Non-emotional stimuli were selected from a separate validation study. Twenty par-
ticipants (different from 40 EEG participants with the same age range) were shown 10
non-emotional stimuli downloaded from YouTube with scenes such as a running train,
news item reading, etc. Those stimuli were regarded as non-emotional, which had mean va-
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lence and arousal ratings of around 5. Additionally, we checked whether participants rated
the stimulus as non-emotional (by not assigning any emotional category to the stimulus).
The purpose was to provide a more neutral non-emotional stimulus to avoid accumulation
of emotional effects over the course of the experiment. The first non-emotional stimulus
was about the world’s longest road routes and the second was an animated history of the
Babylonian era.

The videos were presented on a 15.6-inch monitor with a resolution of 800 × 600.
The audio was presented using a Sennheiser CX 180 Street II in-Ear Headphone. Responses
were obtained using a mouse and keyboard.

2.3. Experiment Paradigm

Before starting the main experiment, participants were trained using four emotional
stimuli. The training stimuli were also taken from the same dataset, which we validated in
an earlier study [35]. During the training, participants were informed about the experiment
procedure, rating scales (given a quiz to assure they understood the self-assessment scales
well), and trained to perform a mouse click when they felt any emotion and labeling these
clicks with emotion categories. We gave participants definitions of the emotional categories
from the Oxford Lexico Dictionary [36]. We also asked participants if they were able to
understand the categories, and they had no issues understanding these words related to
common emotions.

During the main experiment, after reading the instruction screen, the baseline sig-
nal (eyes open looking at the cross mark) was recorded for 80 s. Then, 11 one-minute
multimedia stimuli (two non-emotional and nine emotional videos) were presented. One
non-emotional video was presented just after the baseline recording, whereas another
non-emotional video and nine emotional videos, selected randomly out of 16 emotional
videos, were presented in random order. The second non-emotional video was presented at
some point between the fifth and eighth videos. Every stimulus video was preceded by an
inter-stimulus interval and followed by response windows to respond on self-assessment
scales: valence, arousal, dominance, liking, familiarity, relevance, and emotional category
selection. Valence, arousal and dominance scales ranged, respectively, from unpleasant
(1) to pleasant (9); inactive (1) to active (9); and submissive (1) to dominant (9). Liking,
familiarity, and relevance scales ranged, respectively, from least (1) to fair (3) to much (5);
less-familiarity (1) to high-familiarity (5); and from not related (1) to completely related (5).
Emotional categories were presented in the form of a drop-down menu. The complete
paradigm is shown in Figure 1. Particularly, physiological arousal is the activation state of
emotion, which ranges from inactive to active state Russell and Mehrabian [37]. On the
other hand, dominance ranges from feelings of total lack of control or influence on events
and surroundings to the opposite extreme of feeling influential and in control [37].

While watching the video, participants marked the moment of their emotional feelings
with a mouse click. They could click any number of times while watching the video.
After they finished watching the video, they were asked to give an emotion label that best
described their felt emotion when they made their clicks. To help recall the felt emotion,
participants were shown three frames extracted around the time duration when they
did a mouse click for feeling an emotion. This simple method allowed us to localize a
participant’s emotional experience temporally while at the same time not interrupting the
watching of the video. To provide an emotion category for each click, the participants were
given a list of emotions in the form of a drop-down menu for each of the four quadrants of
valence-arousal space to freely select the emotion they felt. However, to avoid overlapping
with adjacent clicks, participants were explicitly instructed that they should not click again
and again for the emotional feeling elicited by a similar event in the scene. Data for
420 emotional events for 24 self-reported emotions were collected from 40 participants.
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Figure 1. Experiment Paradigm: Each participant was shown 11 60-s long video stimuli. One non-
emotional stimulus was shown after the baseline recording. Nine emotional stimuli were presented
with order randomized. Another non-emotional stimuli was shown after the fifth and before the
eighth video. There was no time limit during the ratings and inter-trial interval. Participants could
resume watching the next stimulus after clicking the left button on the mouse.

2.4. EEG Data Acquisition and Pre-Processing

EEG recordings were obtained using a 128-channel (Geodesic EEG 400) system with
active electrodes. Impedance was below 30 kΩ (consistent with previous evidence [38–41]).
Netstation software was used to acquire the raw signal at 250 Hz sampling rate. The raw
signal referenced to the Cz electrode was imported. A Butterworth bandpass filter with
the passband 1 Hz to 40 Hz was used. Then the Emotional and baseline events were
extracted from the filtered signal with the time duration, respectively, 6 s before clicking
to 1 s after the click and 10 s to 70 s. However, in the processing, only seven second long
segments were randomly extracted from the baseline signal. We observed that there were
only 18 cases of overlapping clicks considering emotional events with a length of seven
seconds. We did not consider these 18 clicks.

Each participant’s emotional events were concatenated and checked manually for
electrodes with very high amplitude (probably due to the detachment of electrodes due to
neck movement [42]). Further, ICA is applied to remove the artifacts, including eye blink,
muscle activity, heart activity, line noise, and channel noise. The IC components obtained
from ICA were labeled using ICLabel tool [43]. The ICA components were calculated
separately for each subject and the number of selected ICA components labeled as “brain
signals” by ICLabel tool varied from 25 to 45 across subjects (agreeing with the emotion
analysis done by Hsu et al. [44] on dense EEG with 128 channels). The figure depicting
EEG preprocessing on the studied data is available (See Figure 2 in [45]).

2.5. Analysis
2.5.1. Emotion Grouping

Since we had only a small number of instances per emotion, we grouped 24 self-
reported emotions based on two criteria. First, the distance-based proximity of mean
(calculated for each emotion) on V-A space, and second, approximately equal instances
across emotion groups. The distance-based proximity here is related to the calculation of
Euclidean distance among emotional categories. The mean valence-arousal vector was
used to calculate the Euclidean distance. This procedure was earlier adapted by [46]. Based
on these criteria, we obtained eight emotion groups with approximately 50 samples in each
emotion group (as shown in Figure 2). The mean (sd) ratings of self-assessment scales for
each group are presented (see Figure 2). We used this grouping for further analysis.
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Figure 2. Representation and statistics of emotion groups: The histogram plot shows the number of
time participants has rated any emotion category to express their emotional experience. Histogram
bars in the same color form an emotion group. The legend shows the number of emotional instances
per emotion group. The grouping criteria is described in Section 2.5.1. G1: happy, amused, delighted,
joyous; G2: aroused, adventurous, excited, passionate, lust; G3: startled, tense, alarmed; G4: disgust,
hate; G5: afraid; G6: distress, angry; G7: miserable, taken aback, dissatisfied, melancholic, depressed,
despondent; G8: sad.

2.5.2. Frequency Bands

Frequency bands evaluated in the study are as follows. 1–4 Hz (delta), 4–8 Hz (theta),
8–12 Hz (alpha), 12–20 Hz (Lower beta), 20–30 Hz (Upper beta), 30–40 Hz (Gamma).

2.5.3. EEG Signal Segmentation

The duration of the extracted EEG signal corresponding to each emotional event
was 7 s. The sampling rate was 250 Hz. Each emotional event signal was divided into
segments containing 250 samples (75 samples overlapping). The segmenting was based
on the recent work by Lettieri et al. [32]. Like them, we also considered a 33% overlap
between consecutive windows. In this way, we obtained nine segments to perform further
analyses. Segments are: seg-0 (1–250); seg-1 (175–425); seg-2 (350–600); seg-3 (525–775);
seg-4 (700–950); seg-5 (875–1125); seg-6 (1050–1300); seg-7 (1225–1475); seg-8 (1400–1650).

2.5.4. EEG Dynamic Functional Connectivity and Temporal Variability of the Functional
Connectivity Profile

We used PLV as a measure for calculating connectivity between EEG Electrode
pairs [47]. The obtained connectivity matrix for each emotion group was contrasted with
the baseline state connectivity matrix, and a non-parametric approximate permutation test
(multiple hypothesis comparisons using a single threshold technique) was calculated. This
experimental contrast method helped us deal with the issue of crosstalk to some extent [48].
We assumed that the spurious phase synchronization due to crosstalk would affect both
the conditions approximately similarly [49]. However, this method has a limitation as the
effects of crosstalk are highly dependent on the amplitude of underlying (noise) sources.
Channel pairs were approved to be significant in the permutation test if the Bonferroni-
holm adjusted p-value is less than the critical α level 0.01. The significant connections are
plotted on the head cartoon in Figure 3.
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Figure 3. Significant functional connections in the upper beta band: Only significant connections
are plotted. The color coding is as per the stats value as follows: magenta (5 < stats 6 6), black
(6 > stats). Above each plot the information about duration of the segment is provided. Functional
connections for Group-03 is presented here. See Figure S1 for plots related to other groups.

We performed a multiple-comparison non-parametric permutation hypothesis test for
related data corrected for family-wise type-1 error (FWER) to find out the significant func-
tional connection among pair of electrodes [50]. The null hypothesis is that permuting the
labels of related samples assigned to different experimental conditions leads to an equally
likely statistic of interest. That means the statistic for actual labeling is in the confidence
interval of obtained permutation distribution after a sufficient number of relabeling. Hence,
the p-value is the proportion of the statistics greater than or equal to the statistics t corre-
sponding to the correctly labeled data. This multiple-comparison test was performed for all
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electrode pairs. The family-wise type-1 error rate, due to family-wise multiple comparisons,
was controlled using a single threshold test. The key idea behind the single threshold test is
that given a critical threshold (single threshold), functional connections with statistic values
exceeding this threshold have their null hypothesis rejected. The critical threshold was
decided using the distribution of the maximum statistics. This distribution of the maximal
statistic was computed from the statistic image obtained after several permuted relabeling.
The omnibus hypothesis at level α is rejected if the maximal statistic calculated for actual
labeling was in the confidence interval 100α% of permutation distribution. The critical
value is the (c + 1)th largest member of the permutation distribution, where c = bαNc.

As mentioned above, by definition, the single threshold technique (with maximum
statistics) assumes the uniformity of null sampling distribution over all electrode pairs (pairs
of electrodes making a link). However, using mean difference statistics may not guarantee
this uniformity because an area with high variability in mean difference (across samples)
can dominate the maximum statistics. Hence, the statistics should be normalized by this
variability in mean difference. To this aim, instead of using mean difference as the statistic,
we used t-statistics, which also account for the variability in values across samples. A
sample here means an emotional event reported by the subjects. During each permutation
(using condition relabeling), the t-statistic was corrected for FWER by considering the
maximum statistics of the statistical image. The single threshold technique is claimed to be
very effective in FWER [51,52]. Hence, the method we adapted inherently accounts for the
variability across subjects.

Calculating distance between connectivity patterns: We obtained the connectivity
network representation for each emotion group on the scalp space (Figure 3). For different
phases of cooperating and competitive control processes, the subgraphs in functional
networks fluctuate [53]. Similarly, for different emotional experiences, there could be
fluctuations in subgraphs in functional networks. Following this assumption, a multi-hot
embedding vector for each time segment was created from the functional connections.
The Euclidean distances between the connectivity vectors for all combinations of emotion
pairs at each frequency band and segment were calculated. We used these distances between
connectivity networks to find the frequency bands with relatively more information (more
information means connectivity distances are higher). The higher the distance between
connectivity vectors of pair of emotion groups, the more separation between networks. We
calculated the average distance for each emotion pair by pooling the distances across all the
segments in each frequency band, giving us 28 average distances at each frequency band.
These average distances were compared with the population mean, which was calculated
by further taking the average across all the frequency bands (we call this overall average a
global threshold Gcst). The Gcst was used as the population mean in a one-sample t-test,
which tested whether the distances among connectivity patterns of emotion groups were
significantly greater than the population mean. The one-sample t-test was performed for
each frequency band.

Temporal variability of dynamic functional connectivity (tvDFC): The dynamic func-
tional connectivity calculation has been used in the literature during resting state, task
conditions, and drug-induced conditions to detect time-varying changes in functional
connectivity (FC) measurements [20]. The most commonly used DFC estimation method in
the literature is the sliding window approach with fixed-length segments. The network
characteristics for each time segment are used to quantify temporal variability in the dy-
namic functional connectivity [21]. Calculation of tvDFC is a relatively newly developed
analysis technique [22,23], which had been used in task-free [24], task-based [25,26], and
clinical [27,28] conditions. The temporal variability of different brain regions reflects the
dynamic association of these regions in functional modules based on the task demand,
promoting the brain’s flexibility and adaptability.

The significantly connected electrode pairs at each time segment were considered
to obtain the temporal variability. We followed an approach similar to Rolls et al. [54].
The difference is that they calculated the temporal variability of limited brain regions,
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whereas we calculated for the whole scalp. Another difference is that instead of using a
similarity index such as a correlation coefficient (to achieve dissimilarity, they subtracted
the mean correlation coefficient from 1), we used a dissimilarity metric (euclidean distance).
The dissimilarity metric is calculated between consecutive time segments. The mean of
these dissimilarity metrics was used as the measure of temporal variability.

Regression analysis between self-assessment scales and temporal variability: To understand the
relation between different dimensions of emotional experience and temporal dynamics of
functional connectivity, we performed regression analysis. We fit linear mixed effects models
with rating scales as the outcome variable, temporal variability as fixed effects and subject
as a random intercept. For the mixed effect regression models, bobyqa optimizer was used.
The coefficient calculation was made using the REML procedure. Significance and confidence
intervals were calculated using the Wald test. All model assumptions were checked for
conformity. The regression model was,

scale ∼ tv +
1

subject

where scale outcome variable represents different self-assessment scales, tv predictor variable
represents the temporal variability of functional connections and subject is the random effect.

2.5.5. Hub Calculation

Hubs are regarded as the center of the information flow in the functional networks [55,56].
During the processing of natural audiovisual stimuli, the hub connectivity in the beta band is
increased compared to the alpha band [55]. A multimodal study with EEG and fMRI probed
the hub dynamics during the negative affective experience and identified the DLPFC as the
central hub using IAPS pictures [56].

We calculated hubs on the scalp network to know the hubs’ configuration in the
network profile for different emotions. We used eigenvector centrality-based calculation
to find hubs. A node in consideration will have a high eigenvector centrality score if it
is connected to another node with higher centrality than the peripheral node. Intuitively,
the eigenvector centrality score shows that if a node (in consideration) is connected to a hub
node than some peripheral nodes, it is processing more information. Hence, eigenvector
centrality identifies which node has a wide-reaching influence within a given network [57].
The significance of the centrality values was checked against several random graphs. Ten
thousand Erdos-ranyi random models were created with preserved connection probability
to perform the significance test. The hubs with less than a 5% chance of being randomly
selected were designated as the significant hubs.

2.6. Code Accessibility

The code/software described in the paper is freely available online at [58]. The code is
available as Extended Data. The code was run on Linux systems. The python-3.8, matlab
(R2019b) and R version 3.6.3 were used for the programming.

3. Results
3.1. Distribution of Labeled Emotional Experiences

The stimuli were taken from a validated dataset [33]. We selected stimuli from the dataset
that had primarily elicited 16 emotional categories, including Adventurous, Afraid, Alarmed,
Amused, Angry, Aroused, Calm, Disgust, Enthusiastic, Excited, Happy, Joyous, Melancholic,
Miserable, Sad, and Triumphant. Although the probability of eliciting a particular category
was not very high, we observed that the emotion labeling by participants during the EEG study
generally matched with the top two labels reported in the dataset (the distribution of rated
emotion categories by our participants is shown in Figure 4). We could think of the primary
emotional category as target emotions, but our purpose was not to compare the emotional
categories elicited in our study with those elicited in the video stimuli database [35].
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Figure 4. The figure shows the distribution of emotion categories in which participants rated their
emotional events while watching the stimulus. The title of each subgraph shows stimulus ID.
The number of times participants rated an emotional category is shown on the y-axis.

3.2. Band Specificity for Emotion Processing and Connectivity Networks for Different
Emotion Groups

We wanted to see in which frequency band the connectivity profile of emotion groups
was more different. The connectivity profiles related to different emotion groups for differ-
ent segments are shown in Figure 3. EEG functional networks were created by calculating
phase-based synchronization metric (PLV) among pairs of EEG electrodes. Only the signifi-
cant connections (non-parametric permutation test with corrected p < 0.01) were considered
to constitute the functional networks for different emotion groups. These functional links
among pairs of nodes were considered to create functional link vectors. It was a weighted
vector with the weight of the link if the link is present in the network, otherwise it is set
at zero. The distance among these vectors for different emotion groups was calculated
for each segment in each frequency band. We calculated the average distance for each
emotional pair by pooling the distances across all the segments in each frequency band.
The calculated average distances among all pairs of emotion groups for each frequency
band were considered to calculate the global average Gcst. The Gcst = 8.24 was used
as the population mean in one-sample t-test. Only for upper beta and lower beta bands,
distances among connectivity patterns (28 pairwise comparisons among eight emotion
groups) were significantly greater than Gcst (Bonferroni corrected for multiple compar-
isons; upper beta − t(27) = 3.28, p = 0.008, d = 0.63 (medium); lower beta −
t(27) = 2.88, p = 0.023, d = 0.54 (medium). Moreover, we tested which fre-
quency band had relatively more distinct connectivity patterns. We performed a pair-
wise t-test among lower beta and upper beta bands. We found that distances among
connectivity patterns in the upper beta band were significantly greater than lower beta
(t(27) = − 2.23, p = 0.034, 95%CI = [−3.76 − 0.16], d = − 0.62 (medium)) band.
Hence, we did further analysis with the signal in the upper beta frequency range.

3.3. Temporal Variability of Emotional Functional Networks are Correlated with Emotional Arousal
and Dominance

We used the segment-wise functional connectivity to calculate temporal variability in
functional networks. The calculated temporal variability was checked for the regression
with different dimensions of emotional experience. The regression analyses showed that
the temporal variability of functional connectivity was significantly correlated with arousal
followed by dominance dimensions of emotional experience (respectively, β = 0.514,
SE = 0.073, 95%CI = [0.37, 0.66], t(229.56) = 7.03, p < 0.001; β = 0.31, SE = 0.078,
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95%CI = [0.16, 0.46], t(221.919) = 4, p < 0.001). The relationship was stronger for arousal
than dominance. Following these results, we further checked whether the interaction
between arousal and dominance is the predictor of probability of high temporal variability
using logistic mixed effect model. We did not find any such relationship.

3.4. Nodes Contributing More in Temporal Dynamics of Emotional Functional Networks

We performed hub analysis to find the influential nodes that contributed more to
the temporal variability of the functional connectivity. We identified 15 hub electrodes
with the significant centrality values (p < 0.05). These hub nodes with centrality values
were P9 (0.254), F10 (0.195), Fpz (0.173), Fz (0.215), TP9 (0.206), CP1 (0.156), F2 (0.172), P1
(0.174), T9 (0.248), O2 (0.178), P2 (0.16), TP10 (0.156), TP8 (0.156), FC1 (0.207), and Poz
(0.172) (Figure 5). As can be seen in the EEG layout (Figure 5), hubs with high connections
and centrality are lateralized to the right frontal region, whereas on the posterior sites, hub
electrodes with high centrality and connections are bilateral.
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Figure 5. Representation of hubs on the layout of used EEG cap: Map of EEG electrodes with
color code according to the number of times the node is active in the network across emotion groups.
The electrodes with a large size are calculated as hubs using eigenvector centrality with less than 5%
chance of being falsely detected as hubs (permutation test with 10,000 Erdos-ranyi random models).
See Figures S2 and S3 & Table S1 . Abbr. are– Fc: fronto-central, Fp: Frontopolar, Af: Anterior frontal,
CP: centroparietal, TP: temporo-parietal, PO: parietooccipital.
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4. Discussion

In this study, we used the more naturalistic video stimuli, given that constructivist
theories of emotion argue that our emotions depend on context [59]. Video stimuli allowed
us to present a narrative context that contributes to elicit different emotions. Such stimuli
allow us to better understand the neural mechanisms underlying emotions and also enable
us to better generalize to real-life contexts [3]. However, our feelings may change as we
watch a video or a movie and elicit multiple emotions [30]. This requires one to find the
time at which emotion was experienced to isolate better the neural mechanisms specific
to that emotional experience [3]. An important contribution of the study is the temporal
localization of emotion experience to probe the frequency band that best captured the brain
dynamics of such experiences.

We found that the connectivity patterns in the upper beta band could represent distinct
emotion groups better than in other bands. The hubs of the networks were mostly found in
the fronto-temporo-parietal (FTP) sites. In a multi-modal EEG-fMRI study, activity in these
FTP sites was related to activity in Insula, parahippocampal gyrus (posterior temporal
lobes) and ACC [56]. Furthermore, the metric quantifying the temporal variability of the
network dynamics is correlated with arousal and dominance subjective ratings.

4.1. Emotion-Specific Activity in the Beta Band

We observed significant differences in the connectivity patterns of different emotions
in the upper beta band compared to other bands. The higher the difference, the lesser the
overlap among connectivity vectors for emotions and the higher the chances of distinct net-
work profiles for different emotion groups. Activity in the upper beta band was observed in
some studies using static stimuli such as affective pictures [5,6,12] and emotional faces [60].
For instance, a coherent beta band brain activity in the prefrontal and posterior sites was
observed while participants were stimulated with the high arousing IAPS affective pictures
[5] and unpleasant and pleasant IAPS pictures [6,12].

Very few EEG studies with multimedia emotional stimuli [19] exist. An earlier study
with emotional movies [19] found differences in PLV values in the beta band but also in
the alpha and gamma bands. We found connectivity differences only in the beta band.
The difference in results could be due to multiple methodological differences between the
two studies. We restricted our analysis to segments during or just before the report of
the emotional experience instead of the whole stimulus. In addition, they used a shorter
duration stimulus and repeated the stimuli in different formats.

In the literature, the beta band has been associated with diverse cognitive functions, in-
cluding maintenance of information in working memory, motor planning, content-specific
modulation, decision making, top-down perceptual processing, long-range communication,
and preservation of the current brain state [61]. However, recent evidence suggests a role
for the beta wave, particularly in content-specific reactivation and maintenance during
endogenous information processing as demanded by the current task [61]. Reactivation
of content is needed for the construction of perception. Furthermore, the maintenance of
the activated information and integration with the information acquired in the current
context is supported by the computational model of cell assemblies [62]. Beta-synchronized
cell assemblies are self-sustaining even in the absence of continuing input. After receiv-
ing further input, these assemblies create coexisting spiking activity rather than creating
competitive spiking activity, which promotes the reactivation and maintenance of the
information [61,62]. Hence, we suggest that in our results, the reactivation of emotional
episodes in the beta band contributes to the distinct connectivity patterns for different
emotion groups.

In addition, the multimedia stimuli with video are more effective [19], situated, rich in
context and have an explicit temporal order of events compared to static stimuli [3,4,63].
The potentially rich context effects allow us to interpret the results using constructivist
theories of emotions. The reconstructed and maintained information in the beta oscillations
primarily serve the endogenous top-down-controlled processing through long-range con-
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nections [64] and are involved in making top-down predictions. Hence, we suggest that
the activity dynamics in the beta band observed in our results are due to emotion-specific
content reactivation and maintenance. This re-activated content modulates the cortical
processing via top-down activity.

4.2. Temporal Variability in Dynamic Functional Connectivity

With our regression modeling, we observed a positive regression coefficient between
arousal and temporal variability in the organization of functional networks. High arousal is
associated with higher variability in functional networks. Our results are in line with past
studies that observed the re-organization of functional networks associated with arousal.
For instance, it has been suggested that the arousal system resets functional brain networks
in support of specific behavior suited to the environmental demands [65,66]. An fMRI study
along with pupilometry has shown a brain-wide decrease in between-network integration
at low relative to high arousal [67]. Studies with caffeine have reported higher temporal
variability for high arousal [68]. A graph-theoretic study has shown restructuring of the
global network in response to high arousal emotional word stimuli [69]. Our work has
uniquely studied the relationship between temporal variability of functional networks for
emotional experiences and emotional arousal with a more realistic emotional context.

Dominance refers to an individual’s sense of having an ability to control and influence
the situation or event and a dimension associated with emotions [46]. The social situation
contains greater variations in the dominance-submissiveness dimension [70]. There is
very little research on dominance, and our finding that temporal variability of functional
connectivity predicts dominance is a novel and potentially important result for dimensional
theories of emotional experience.

In this study, we aimed to work with the information that can be best provided by the
EEG. EEG has good time resolution while covering the whole scalp space. Hence, working
with the time-frequency information could be more informative. We did not aim to find
out specific pathways for different emotion categories. Finding the emotion-specific neural
pathways would be appropriate with fMRI alone or fMRI together with EEG using the
same paradigm, given the better spatial resolution of fMRI. It is to be noted that a meta-
analysis on emotion research hints that there is very little evidence for emotion-specific
pathways [71]. Of course, this does not exclude the possibility completely. Using the
naturalistic emotional paradigm that can capture emotional events (as we presented in the
study) could give some interesting results with better spatial and time resolution recordings
of brain activity.

4.3. Hub Activity in Right Frontal and Bilateral Posterior Brain Regions

In addition to investigating the temporal variability of dynamic functional connectivity,
we also analyzed how the configuration of high information trafficking nodes might recon-
figure over time to accommodate the situated emotional experience. Hub calculations were
done using eigenvector centrality. Eigenvector centrality has been used in neuroimaging
research and reported to be modulated by the current state of the subject [57].

The right hemisphere hypothesis regarding emotions argues for a general dominance
of the right hemisphere for all emotions regardless of their valence, especially in the frontal
cortex [72–74] (although, see [75]). Our hub analysis results show that the hubs in the
frontal regions are dominant on the right side and are consistent with the hypothesis that
the right frontal cortex plays a significant role in emotional processing. Hubs mediate
the information flow in a network and influence the processing of emotional information
leading to emotional experience, which seems to be more influenced by right frontal activity.
In addition, we observed that this activity takes place in the upper beta band. As described
above, the activity in the upper beta band had been reported for the content-based re-
activation and maintenance [76,77]. In addition to the maintenance of the task-related
content (or the ‘status quo’) [61], recent investigations revealed that central and parietal
upper beta band activity is related to temporal integration [78]. The temporal integration
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and the content-specific beta activity may be essential for constructing perception out of a
coherent temporal sequence in a naturalistic stimulus. Together, both the functionalities of
the upper beta band relate it with the temporal expectations, which may serve the planning
of the active and constructive perception of the emotional event.

Recently, a multimodal study using EEG and fMRI was performed with negative and
neutral affective pictures as stimuli [56]. They traced the functional connectivity in time and
reported four brain networks with their chronological order. Though the timing aspects are
not comparable between the two studies (due to the use of static stimuli), the dynamics
of brain activity can be compared. In their study [56], the earliest network involves brain
regions from the parietal, frontal and occipital lobe (first network); followed by the second
network comprising regions in the frontal and temporal lobe; the third network comprising
frontal, parietal and occipital; and fourth network occipital, parietal and temporal lobe.
In our results (see Figures S2 and S3), fronto-parietal-temporal activity in seg-0 is followed
by occipital and parieto-occipital regions. In seg-2, activity in parietal and temporo-parietal
electrodes is followed by frontal and then frontal, temporal and parietal regions till seg-7.
During the seg-8, the activity in frontal, parietal, and temporo-parietal electrodes increased.
We witnessed less activity in nodes within the occipital lobe in our results. The primary
reason may be that the study [56] was made with affective images, and results are limited
to the analysis of 1000 ms only, which might not have captured other aspects of emotions.
In comparison, we used emotional film stimuli, and the data analysis was for a longer
duration of 7 s.

Our results of changes in the hubs configuration (temporally) are also in line with a
recent study [79] probing the temporal flow of hubs for resting state. The non-static and
non-re-occurring nature of hub activity is reported to emphasize that there may be no
global hub network underlying the well-defined global patterns of shortest paths in brain
connectivity. The dynamics of hub configuration adapt to the dynamics of active content
representation in the brain.

Groups-2, 3, and 4 show more connectivity both when looking at hubs only (Figure S2b)
and overall connectivity (Figures 3 and S1). Another pattern that can be observed is that the
frontoparietal connectivity is higher in these emotion groups than the emotion groups 1, 5, 6,
7, and 8. These results can be interpreted in light of a study [18] in which static and dynamic
conditions for emotional feelings were experimentally created. They found that during the
static condition (i.e., no emotion transition), the functional connectivity between prefrontal
and parietal scalp electrodes was higher in the beta band, contrary to the dynamic condition
(with emotion transition), which showed lower functional connectivity. The rationale behind
the decreased functional connectivity is that a more loose prefrontal–posterior coupling may
be related to the loosening of the prefrontal cortex’s control over emotional information. Thus,
the brain becomes more affected by emotional fluctuations. On the other hand, increased
prefrontal-–posterior coupling may be related to strong control and the tendency to protect
oneself from becoming emotionally affected. Some other studies [80] also reported right
frontal and bilateral parietal activity (as we observed in our results in Figures 5 and S2a).
For instance, judging the emotional context in IAPS stimuli reportedly evoked activity in the
right frontal and left parietal regions. In a recent study, beta frequency bands in the right
frontal and bilateral parietal lobe were reported to be sensitive to different emotions [81].

The activity in frontal and frontocentral electrodes is reported mainly during inte-
roceptive processing. Interoceptive awareness about the afferent signal from the body
contributes in perceiving and feelings of emotional experiences. For instance, [82] reported
activity in frontal and frontocentral electrodes during the heartbeat perception task. Our
recent study also reported activity in frontal and frontocentral electodes while probing
the interaction between cardiac and brain activity [45]. Another study reported activity
in frontal electrodes during the emotional processing of IAPS pictures [83,84]. The con-
scious perception of visceral activity is generally reported in the right hemispheric part
of the Insula [85] that contributes in the experience of emotions in the beta band [86].
Marshall et al. [84] reported activity in frontal, frontocentral and frontotemporal electrodes
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in top-down anticipation of the heartbeat signal with increased sensory perception in the
context of emotionally negative and neutral faces. Activity in the medial prefrontal regions
of the brain in the beta band showed distinguishing patterns for two positive emotions (ten-
derness and amusement) [87]. In our case, the electrodes in the frontal midline were active
as hubs for both the positive and negative emotions. Activity in the posterior electrodes
is reported in the hedonic evaluation by van Bochove et al. [88]. During episodic events
retrieval, the functional connectivity between frontal and parietal regions is reported. EEG
activity in the right parietal regions in the beta frequency domain was related with the
anticipation of avoidant response to angry facial expression [89]. The likely possibility is
that the episodic memories related to an emotional event are fetched, which then could
motivate the sensory-motor response to an aversive situation.

In terms of applications, the beta band-specific results may be useful in emotion
recognition and affective computing. Clinically, studies of schizophrenia often report that
the synchronization activity and long-range temporal correlations in the beta band are
modified due to clinical conditions [90]. However, it is difficult to directly compare our
results with the clinical population because our study is done with a healthy population.
However, activity in the beta band during emotional experience could be considered in
future research to discover any pathological markers related to emotional experience.

4.4. Limitations

One limitation is the narrow age range of the sample population since the sample
used in the study are university students. Given that emotional processing changes with
age [91], studying dynamic functional connectivity associated with emotions across dif-
ferent age groups would be important. Another limitation is the gender of the sample,
which consists of predominantly male students since the sample came from a techno-
logical university that consists of a male majority population. Given gender differences
in emotional processing [92], there is a need to perform a similar study with male and
female participants.

5. Conclusions

Our study shows that the connectivity patterns for different emotion groups in the
beta band is more distinct than in other bands. Our results show that the pre-experience
activity in the brain has enough information in connectivity patterns of different emotions.
These connectivity patterns vary with time and are linked to self-assessed dimensions of
an emotional experience such as arousal and dominance. The current study did not aim to
study the dynamics associated with specific emotions over time, but future studies could
focus on specific emotions and their underlying neural mechanisms, including dynamic
functional connectivity.

6. Data Statement

EEG Dataset is available at openneuro [93].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci12081106/s1, Figure S1: Significant functional connections
in the upper beta band: Only significant connections are plotted. The color coding is as per the stats
value as follows: magenta (5 < stats 6 6), black (6 > stats). Above each plot the information about
duration of the segment is provided; Figure S2: (a) The significance of centrality values is tested
using 10000 erdos-reny random graph. ‘*’ mark shows Electrodes with significant centrality value
(p < 0.05). (b) Dynamics of hubs for each emotion group. Hubs are changing across time for each
emotion group. It supports the notion that brain hubs are flexibly changing to adapt the context
(‘flexible hub theory’); Figure S3: Temporal dynamics of hubs when all the groups are combined.
Hubs configuration is changing from time to time. Y-axis represents the number of time hubs in
region (on x-axis) is appeared across all the groups. The blank space represents that no hub from
the region appeared in any emotion group during the segment duration; Table S1: EEG electrodes
emotion group-wise activation and total count. Eigenvector centrality calculation is done to find out

https://www.mdpi.com/article/10.3390/brainsci12081106/s1
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the enlisted hubs. The cell value represents number of times these hubs appeared in the segment-wise
network profile for any emotion group. ‘G’ indicates groups in columns.
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