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Abstract

Air pollution is well-known as a major risk to public health, causing various diseases includ-

ing pulmonary and cardiovascular diseases. As social concern increases, the amount of air

pollution data is increasing rapidly. The purpose of this study is to statistically characterize

dependence between major cities in China based on a measure of directional dependence

estimated from PM2.5 measurements. As a measure of the directional dependence, we

propose the so-called copula directional dependence (CDD) using beta regression models.

An advantage of the CDD is that it does not rely on strict assumptions of specific probability

distributions or linearity. We used hourly PM2.5 measurement data collected at four major

cities in China: Beijing, Chengdu, Guangzhou, and Shanghai, from 2013 to 2017. After

accounting for autocorrelation in the PM2.5 time series via nonlinear autoregressive models,

CDDs between the four cities were estimated to produce directed network structures of sta-

tistical dependence. In addition, a statistical method was proposed to test the directionality

of dependence between each pair of cities. From the PM2.5 data, we could discover that

Chengdu and Guangzhou are the most closely related cities and that the directionality

between them has changed once during 2013 to 2017, which implies a major economic or

environmental change in these Chinese regions.

1 Introduction

Recently, air pollution has become a significant environmental and social problem in China.

PM2.5 refers to the concentration of atmospheric fine particulate matter (PM) whose diameter

is� 2.5μm. Exposure to PM2.5 is associated with increased mortality rates caused by lung

cancer and cardiopulmonary diseases [1–4]. It is generally accepted that PM2.5 is more harm-

ful to human health than PM with diameter > 2.5μm and� 10μm (PM10) [5, 6]. Sources of

particulate matter include residential wood burning, coal-fired thermal power generation,

agricultural burning, diesel fuel combustion, and natural/industrial dust. PM2.5 can also be

generated indirectly when gases and particles interact in the air. China’s air pollution situation
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is so extreme that ambient air pollution ranked the second highest and household air pollution

ranked the third highest in the G20 in terms of disability-adjusted life-years (DALYs) in 2010

[7]. It has been estimated that the air pollution in China contributed to 1.6 million deaths/year

in 2014 [8]. In addition to the harmful effects of air pollutants on human health and mortality,

pollutants can also have diverse effects on climate and weather due to their complex composi-

tion and sources [9–12].

China has regulated ambient air quality since 1982, when it set limits on total suspended

particulates (TSP), SO2, NO2, lead, and Benzopyrene [13]. In February 2012, China adopted a

new Ambient Air Quality Standard [14], where limits on PM2.5 were set for the first time. In

2012, major cities in China including the Beijing-Tianjin-Hebei region, Yangtze River delta

region, Pearl River delta region, and provincial capitals were required to implement the stan-

dards. The current standards were implemented nationwide in 2016; see [15] for more detail.

Nowadays, a large amount of air quality monitoring data is being accumulated, where air

pollutants are monitored directly on ground level; see Section 2 for more detail. Due to the

increase in the amount of air quality monitoring data in China, numerous studies have been

conducted to characterize China’s air quality status and recent trends [8, 16–18]. However,

most of the studies focus on analyzing temporal trends of air pollutant concentration and visu-

alizing its spatial distributions at various time scales.

In recent years, there have been efforts to uncover possible sources of air pollution in China

[8, 18]. However, it is a challenging task to identify causal effects based on observational data

compared to controlled experimental data due to the effects of unobserved variables [19, 20].

On the other hand, under the consideration that a wide variety of factors may influence the

PM2.5 level, which may be closely related to environmental and industrial factors, we focus on

inferring statistical dependence and causal relations between four major cities in China based

on the PM2.5 measurement data as observational evidence. In this study, we included Beijing,

Chengdu, Guangzhou, and Shanghai as the target cities in China because they are the four

major cities which represent main industrial regions in China.

Approaches to the determination of causal relations based on obserational data include

graphical causal modeling [20] such as causal Bayesian networks and structural equation mod-

els. Graphical causal models determine directed graph structures satisfying certain conditional

independence assumptions called the Markov assumption and faithfulness assumption [19–

21]. However, it is well known that a number of directed graph structures cannot be distin-

guished even if the conditional independence assumptions are satisfied, e.g., X! Y and Y!
X cannot be distinguished.

Alternatively, the concept of directional dependence has been studied in linear regression

settings in the statistics community [22, 23]. Measures of directional dependence using copula

regression were investigated in [24]. More generally, regression-based approaches for deter-

mining cause and effect variables between two random variables have been suggested in the

machine learning community [25–31]. The basic principle is to compare the regression models

in alternate directions and investigate asymmetry in the joint distribution.

The purpose of this study is to infer and validate a statistical measure of directional depen-

dence between the selected cities based on time series of PM2.5 concentrations. Copula direc-

tional dependence (CDD) is a measure of directional dependences between two regions of

interest, which can be applied to non-normal distributions and nonlinear relationships [24, 32,

33]. Contrary to other dependence measures such as correlations and mutual information, the

CDD yields bi-directional dependences which measure statistical influence from one region to

another.

Copula-based modeling has been widely studied and applied in many fields such as macro-

economics and finance [34, 35] and genetics and biology [36, 37]. Gaussian copula generalized
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linear models for longitudinal data analysis were introduced in [38]. Multivariate regression

analysis using Bayesian inference with Gaussian copulas was proposed subsequently [39].

Later, a framework for joint regression analysis of one-dimensional generalized linear models

using Gaussian copulas was proposed [40]. More recently, Gaussian copula marginal regres-

sion (GCMR) models were developed [41].

On the other hand, a regression model called the beta regression was proposed [42], where

continuous responses are assumed to take values in unit intervals. The beta regression is effec-

tive for modeling bounded responses such as rates and proportions due to its flexibility in

modeling the shapes and asymmetries of distributions. Various extensions of beta regression

models have been proposed [43–46]. For time series data, a beta regression model using the

Gaussian copula for bounded time series was proposed in [47], where stationary autoregressive

moving average (ARMA) models were adopted for addressing the serial correlation.

In this paper, we apply the CDD proposed in [32, 33]. The suggested CDD measure uses

GCMR models [41] and the beta regression model [47]. By using the suggested CDD measure,

non-normal and non-linear relationships in the data can be efficiently modeled without any

complicated processes of structure search or hyperparameter selection. Moreover, since the

CDD is a directional dependence structure, we can further infer directed networks of statistical

dependence between the major cities in China.

The rest of this paper is organized as follows. In Section 2, we describe the PM2.5 data and

their descriptive statistics. In Section 3, we explain the proposed measure of directional depen-

dence using beta regression. And we describe statistical procedures for processing the time

series data and inferring directional dependences between the four cities in China. In Section

4, we present the analyses and results. Discussion and conclusions are given in Section 5.

2 Data

2.1 Air pollution data

Nowadays, air pollutants are monitored at various locations in many countries. A national

real-time air quality monitoring system version 1.0, known as the Air Reporting System, has

been operating on the China National Environmental Monitoring Center (CNEMC) website

(http://www.cnemc.cn/) since January 2013. The Air Reporting System version 2.0 has been

operating since January 2014 and covers 945 sites in 190 cities according to the Ambient Air

Quality Standard (GB3095-2012). Other approaches to air quality monitoring include satellite

data-based approaches [48–50] and geoscientific modeling [51]. Current air quality monitor-

ing systems such as the Air Reporting System can provide the hourly concentration of various

types of air pollutants measured directly at ground level.

Even though the Air Reporting System of China monitors the ambient air quality in a wide

range of Chinese regions and cities in real time, most air quality monitoring history is not pub-

licly available. Independently from the Chinese national air quality monitoring system, the US

Mission in China started monitoring air quality in 2008 at the US Embassy in Beijing. Since

then, monitoring stations have been subsequently established at the US consulates in Shanghai

(2011), Guangzhou (2011), Chengdu (2012), and Shenyang (2013) [17]. The air quality status

and hourly PM2.5 concentration are available at http://www.stateair.net/.

The PM2.5 time series data analyzed in this study were obtained from the US Mission

China air quality website (http://stateair.net). Note that the US Mission China air quality web-

site states that the data are not fully verified or validated; these data are subject to change,

error, and correction (http://stateair.net/web/assets/USDOS_AQDataUseStatement.pdf). The

historical data files on the stateair.net site can be downloaded manually after agreeing to the

data use statement. The obtained data consist of hourly PM2.5 time series of four major

Directional dependence between major cities in China
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Chinese cities, Beijing, Chengdu, Guangzhou, and Shanghai, from January 2013 until June

2017. The original data are hourly measurements of PM2.5 concentration levels measured in

μg/m3. We removed the data with missing values and then took the daily maximum of the

PM2.5 levels.

We note that about 62% of the daily maximum values fell in the night hours (between

21:00 and 4:00) for the 2013 Beijing data. One may consider that air pollution levels during

business hours are an indicator of poor health and not values falling in the night hours when

the population is asleep. In this sense, it will be very interesting to analyze subsets of the air

pollution data measured during business hours for applications to public health in future

work. In this paper, on the other hand, we took the daily maximum values to analyze statisti-

cal dependence between major cities in China. Since the air pollution level is measured at

ground-level, it fluctuates sensitively depending on daily air temperature change. Hence, we

remove the effect of daily air temperature change by taking the daily maximum values, which

can be indicators of other factors such as coal fuel burning, transportation, industrial activity,

and wind.

2.2 Descriptive statistics

Sample time series data of the PM2.5 levels for the year 2013 are illustrated in Fig 1. Hourly

measurements of the PM2.5 levels were obtained in μg/m3. Missing values were set to zero in

the figure. We can see that the PM2.5 levels are relatively high during the winter season (Janu-

ary and December), and Guangzhou and Shanghai show relatively low overall PM2.5 values

compared to the other two cities.

The histograms for the hourly PM2.5 level measurements in the year 2013 are presented in

Fig 2. The marginal distribution for each of the Chinese cities is highly skewed and non-nor-

mally distributed, which implies that typical statistical dependence measures such as the Pear-

son correlation coefficient are not suitable.

We have presented summary statistics of the PM2.5 level data for the years 2013 to 2017 in

Table 1. During 2013 and 2014, the median value of Beijing was the highest among the four cit-

ies. However, it constantly decreased to the second rank in the following years, while Chengdu

ranked the first from 2015 to 2017. The median PM2.5 levels of Guangzhou and Shanghai

were relatively low and kept decreasing from 2013 to 2016. On the other hand, the maximum

of Beijing’s PM2.5 levels was the highest during the years 2013 to 2017 except 2014. The maxi-

mum of Shanghai’s PM2.5 levels was the second highest in 2013, but it kept decreasing rapidly

and ranked 4th among the four cities by 2016. In summary, the overall PM2.5 levels of the four

cities showed a decreasing trend, but each city had its own statistical characteristics.

After removing the data with missing values and taking the daily maximum PM2.5 values,

we generated scatter plots between each pair of cities, which are illustrated in Fig 3. The data

points are distributed in a single cluster, which implies that they were sampled from an identi-

cal distribution. In addition, we can find that the distribution is highly skewed, and linear rela-

tionship between the variables is not apparent.

As a measure of pairwise correlation between the PM2.5 levels of the four cities, we com-

puted Spearman correlation coefficients, which are summarized in Table 2. Note that the

Spearman correlation coefficient is a correlation coefficient between the ranks of the measured

values, so it is independent of the skewed marginal distributions.

We can find that

1. Chengdu (CD) had relatively high Spearman correlations with Beijing (BJ) and Guangzhou

(GZ) from 2013 to 2017.

Directional dependence between major cities in China
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2. Correlations between Beijing (BJ), Guangzhou (GZ), and Shanghai (SH) were relatively low

from 2013 to 2017.

3. Spearman correlations between Beijing (BJ) and Guangzhou (GZ) slightly increased more

recently in 2016 and 2017.

3 Methods

A copula is a multivariate joint distribution function, which is an effective approach for

describing statistical dependencies within a set of non-normal random variables [52, 53]. Sta-

tistical dependence structures can be modeled by choosing a copula function independent of

the marginal distributions of each random variable. Since a normal distribution assumption or

linearity assumption is not required, copulas can be applied to a wide variety of statistical

dependence modeling tasks.

Fig 1. Time series data of PM2.5 levels in the four Chinese cities (Beijing, Chengdu, Guangzhou, and Shanghai) during the year

2013.

https://doi.org/10.1371/journal.pone.0213148.g001
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3.1 Directional dependence based on copula regression

In this paper, we consider bivariate copulas and suggest a measure of directional dependence

between a pair of random variables. A generalization to a measure of directional dependence

using multivariate copulas is left for future works, where computationally efficient methods

need to be developed.

According to Sklar’s theorem [54, 55], any joint distribution function FXY(x, y) of two ran-

dom variables X and Y can be represented by a bivariate function, C(u, v) composed with the

marginal distribution functions, FX(x) and FY(y), as

FXYðx; yÞ ¼ CðFXðxÞ; FYðyÞÞ; ð1Þ

where C(x, y) is called the copula. Note that U = FX(X) and V = FY(Y) have a uniform distribu-

tion on [0, 1]. We can see that copulas are independent and invariant of marginal distribu-

tions. Hence, a copula determines the dependency structure between two random variables

independently of any one-to-one continuous transformations of each variable.

Fig 2. Histograms of PM2.5 levels in the four Chinese cities during the year 2013.

https://doi.org/10.1371/journal.pone.0213148.g002
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Directional dependence refers to asymmetric dependence between random variables. The

concept of directional dependence was first investigated under linear regression models in [22,

23]. A copula can be used to define directional dependence in terms of regression [24]. Let C
(u, v) denote a copula function, which defines the joint distribution of two random variables

(U, V) whose marginal distributions have a uniform distribution on [0, 1]. Let Cu(v) be defined

by the conditional distribution of V given U = u as

CuðvÞ � PðV � vjU ¼ uÞ ¼
@Cðu; vÞ
@u

:

The conditional expectation of V given U = u can be expressed by the copula as [24]

rVjUðuÞ � E½VjU ¼ u� ¼ 1 �

Z 1

0

CuðvÞdv: ð2Þ

Note that the conditional expectation function Cu(v) is the regression function of V on U.

In [24], the directional dependence from U to V is defined, based on the copula regression

function of V, by

r2
U!V �

VarðrVjUðUÞÞ
VarðVÞ

¼
E½ðrVjUðUÞ � 0:5Þ

2
�

1=12
¼ 12E½ðrVjUðUÞÞ

2
� � 3: ð3Þ

Note that the copula directional dependence (CDD) in Eq (3) is the proportion of the vari-

ance of V which has been explained by the copula regression function rV|U(u). In the same

way, the directional dependence from V to U is defined by the proportion of the variance of U
which has been explained by the copula regression function rU|V(v).

Table 1. Summary statistics of PM2.5 data.

Year Min. 1st Qu. Median Mean 3rd Qu. Max. IQR Skew. Kurt.

2013 BJ 0 30 71 101 137 886 107 2.00 9.03

CD 0 33 65 82 114 487 81 1.25 4.63

GZ 0 27 47 53 73 254 46 1.03 4.49

SH 0 26 44 59 75 651 49 2.62 15.39

2014 BJ 0 27 71 97 132 671 105 1.79 6.87

CD 0 43 66 79 101 688 58 1.93 10.66

GZ 0 20 41 46 64 526 44 1.84 12.53

SH 0 25 39 49 63 406 38 1.86 8.69

2015 BJ 0 21 53 82 108 722 87 2.28 10.10

CD 0 38 58 72 90 399 52 1.72 7.15

GZ 0 18 32 39 50 259 32 1.84 8.08

SH 0 24 38 49 61 364 37 2.13 9.46

2016 BJ 0 18 49 72 95 782 77 2.27 10.16

CD 0 40 61 72 95 281 55 1.14 4.28

GZ 0 13 27 31 42 266 29 1.94 11.39

SH 0 21 35 44 59 212 38 1.53 5.83

2017 BJ 0 18 42 70 84 684 66 2.85 13.16

CD 0 39 58 69 85 333 46 1.81 7.48

GZ 0 18 33 37 52 436 34 2.20 18.55

SH 0 24 39 45 59 188 35 1.20 4.91

https://doi.org/10.1371/journal.pone.0213148.t001
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Moreover, note that the CDD defined in Eq (3) is a version of the Spearman’s correlation

coefficient. The Spearman’s correlation coefficient can also be expressed in terms of a copula

irrespectively of the marginal distributions. The Spearman’s correlation coefficient, ρS, is the

ordinary (Pearson) correlation between U = FX(X) and V = FY(Y). It is well known that ρS can

be expressed in the following form [56–58]:

rS ¼ 12

Z Z

FXYðx; yÞdFXðxÞdFYðyÞ � 3

¼ 12

Z 1

0

Z 1

0

ðCðu; vÞ � uvÞdudv:

ð4Þ

Note that if U and V are statistically independent, then C(u, v) = uv on 0� u, v� 1, which

leads to rV|U(u) = rU|V(v) = 0.5. This implies that the directional dependence in Eq (3) and the

Fig 3. Scatterplot matrix for daily time series data of the PM2.5 levels between the four Chinese cities (BJ: Beijing, CD:

Chengdu, GZ: Guangzhou, SH: Shanghai) during the year 2013.

https://doi.org/10.1371/journal.pone.0213148.g003
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Spearman’s ρS in Eq (4) are measures of the deviations from the joint probability distribution

function for indenpendent random variables. See, e.g., [57] for relations between Spearman’s

ρS and Kendall’s τ.

Moreover, for a pair of random variables U and V, we can estimate and compare the two

CDDs, r2
U!V and r2

V!U , to find which copula regression provides a better fit to the data and

better explains the variance of the response variable.

3.2 Gaussian copula beta regression

The definition of CDD in Eq (3) between two uniformly distributed random variables U and V
can be extended to a pair of continuous random variables X and Y by defining U = FX(X) and

V = FY(Y) and

r2
X!Y � r

2
U!V : ð5Þ

On the other hand, for estimating the CDD, it is necessary to determine a parametric form

of the copula regression function, rV|U(u). Note that both U = FX(X) and V = FY(Y) are uni-

formly distributed and take their values in the unit interval [0, 1]. Since rV|U(u) is a conditional

expectation of V given U = u, both the response variable and predictor variable have bounded

ranges.

In beta regression, the conditional distribution of a response variable V given U = ut is

expressed by a beta distribution, Beta(μt, κt), with the mean 0< μt< 1 and the precision κt>
0 [42]. A beta distribution can flexibly represent a wide range of continuous probabilty distri-

butions defined on the unit interval, that is, various shapes and asymmetries of distributions

can be expressed by a beta distribution. The probability density function of V given U = ut can

Table 2. Spearman correlation coefficients of daily maximums of the PM2.5 levels between each pair of the four

Chinese cities (BJ: Beijing, CD: Chengdu, GZ: Guangzhou, SH: Shanghai) during the years 2013 to 2017.

Year BJ CD GZ SH

2013 BJ 1 0.27 0.21 0.17

CD - 1.00 0.42 0.35

GZ - - 1.00 0.30

SH - - - 1.00

2014 BJ 1 0.3 0.18 -0.02

CD - 1.0 0.25 0.29

GZ - - 1.00 0.23

SH - - - 1.00

2015 BJ 1 0.36 0.17 0.10

CD - 1.00 0.39 0.31

GZ - - 1.00 0.24

SH - - - 1.00

2016 BJ 1 0.34 0.19 0.13

CD - 1.00 0.33 0.33

GZ - - 1.00 0.22

SH - - - 1.00

2017 BJ 1 0.38 0.32 -0.08

CD - 1.00 0.43 0.12

GZ - - 1.00 0.02

SH - - - 1.00

https://doi.org/10.1371/journal.pone.0213148.t002
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be written as

f ðvtj mt; ktÞ ¼
GðktÞ

GðmtktÞGðð1 � mtÞktÞ
vmtkt � 1

t ð1 � vtÞ
ð1� mtÞkt � 1

; ð6Þ

where Γ(�) is the gamma function. The mean parameter μt is a function of the covariate ut,
through the logit function as

logitðmtÞ ¼ utb1 þ b0: ð7Þ

The parameters β0 and β1 can be efficiently estimated based on the maximum likelihood

approach in the Gaussian copula marginal regression (GCMR) [41, 47]. In the literatures

about copula directional dependences, it has been known that the Gaussian copula regression

[39] and GCMR [41] are computationally efficient approaches compared to previously known

copula directional dependence measures using a family of asymmetric copulas [37, 59, 60]. In

the GCMR [41], the cumulative distribution function, F(vt|μt, κt), for the beta distribution in

Eq 6 is used to transform the response variable vt into wt = F(vt|μt, κt). Then, the transformed

variable is related with a standard normal random variable �t by the inverse of the probability

integral transform

C
� 1
ðFðvtjmt; ktÞÞ ¼ �t; ð8Þ

whereC is the cumulative distribution function of the standard normal distribution [47]. The

above relationship between the responses vt and the normal random variables �t is used to for-

mulate the sampling distribution and the likelihood function. See [32, 33, 47] for more details.

3.3 Neural network autoregression

In Fig 1, we can see that the air pollution data are far from white noise processes, while their

mean and variance change dramatically over time. In order to guarantee a feasible maximum

likelihood inference for the beta regression, the serial dependence in the time series data

should be removed via a proper modeling of the data [61].

In [32, 33], financial time series data showing conditional heteroscedasticity and serial

dependence were preprocessed by employing the asymmetric GARCH(p,q) model [62], and

then standardized residuals were generated. In [61], it is noted that GARCH models are

employed frequently to remove serial dependence when dealing with financial log-return time

series.

In the case of meteorological time series data, nonlinear time series models have been

widely applied for addressing irregular or chaotic behavior in the observations [63]. Nonlinear

time series models consider that irregularity in the observations can be attributed to nonlinear

dynamics occuring on a low dimensional chaotic attractor, which can be reconstructed and

used to forecast future observations under appropriate conditions [64, 65]. Traditional linear

stochastic time series models such as ARIMA models [66] have influenced the forecasting

community significantly; however, they cannot capture the nonlinear dynamics underlying

real life observations [67]. On the other hand, many useful nonlinear time series models have

been proposed [67, 68]. Among them, artificial neural networks (ANNs) such as feedforward

neural networks have been suggested as a promising approach for modeling irregular behavior

in time series [69–72]. We adopted the neural network approach for estimating nonlinear

autocorrelations in the data by using the nnetar function in the R package forecast [73].

Let yðsÞit denote the PM2.5 concentration level at a city i = 1, 2, 3, 4, day t = 1, 2, . . ., Ts and

year s = 2013, . . ., 2017. The nonlinear feed-forward neural network model for a lagged time
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series can be written as

yðsÞit ¼ f ðyðsÞi;t� 1; y
ðsÞ
i;t� 2; . . . ; yðsÞi;t� LÞ þ �

ðsÞ
it ; ð9Þ

where L is the lag order and f is a neural network with H hidden nodes in a single layer. The

neural network model with L lags and H hidden nodes is denoted by NNAR(L,H). The model

parameters L and H were determined automatically by default values, i.e., L by the optimal

value according to AIC for a linear AR(p) model, and H by half of the numbers of input values

plus one. In addition, the error process �
ðsÞ
it is assumed to be homoscedastic. See the forecast

package documentation [73] for default preprocessing procedures and default hyper-parame-

ter values for the nnetar function.

After fitting the neural network model in Eq (9) to the data, the fitted values, ŷðsÞit , are the

predicted values which can be written as

ŷðsÞit ¼ f ðyðsÞi;t� 1; y
ðsÞ
i;t� 2; . . . ; yðsÞi;t� LÞ þ �

ðsÞ�
it ; t � Ts þ 1;

ŷðsÞi;Tsþ2 ¼ f ðŷðsÞi;Tsþ1; y
ðsÞ
i;Ts ; . . . ; yðsÞi;t� Lþ2Þ þ �

ðsÞ�
i;Tsþ2;

..

.

ð10Þ

The term �
ðsÞ�
it denotes a value randomly drawn from normal distributions, which can be

used for obtaining prediction intervals. We have �
ðsÞ�
it ¼ 0 because we do not need predicted

values for t> Ts. The residuals can be written as

�̂
ðsÞ
it ¼ yðsÞit � ŷðsÞit ; Lþ 1 � t � Ts:

Due to the model in Eq (9), the residuals, �̂
ðsÞ
it , can be considered to be not serially

correlated.

3.4 Bootstrap confidence interval

Let Dr2
U;V denote the difference, Dr2

U;V ¼ r
2
V!U � r

2
U!V . It measures the difference of the two

directional dependences between the two cities U and V. If Dr2
U;V > 0, then it means that city

U affects the other city V more than V affects U.

For a statistical test of the difference, we use the bootstrap resampling method. We resam-

pled a fixed rate from the data, then computed the CDDs repeatedly. In this way, we can esti-

mate the 95% confidence interval for the difference, i.e.,

Dr2
U;V 2 ½LBðDU;VÞ;UBðDU;VÞ�; ð11Þ

where LB(ΔU,V) and UB(ΔU,V) are the lower and upper limits of the 95% confidence interval. If

the confidence interval does not include zero, then we can reject the null hypothesis that there

is no difference between the directional dependences r2
U!V and r2

V!U with a 95% confidence

level.

3.5 Statistical properties: A review

The proposed CDD using beta regression was proposed recently in [32, 33]. Statistical proper-

ties of the proposed CDD measure using beta regression have been assessed numerically in

[32] by using simulated data sets. The experimental setting and the results can be summarized

as follows. First, an asymmetric bivariate copula was constructed based on the formula of
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Durante [59], which is written as

Cðu; vÞ ¼ C1ðua; vbÞC2ðu1� a; v1� bÞ; ð12Þ

where C1 and C2 are two symmetric copulas and α, β 2 (0, 1) are asymmetry parameters. C1

and C2 were selected as a Frank copula with parameter θ3 = 5 and a Gumbel copula with param-

eter θ4 = 40, respectively [32, 59]. It is challenging to obtain a theoretical CDD value, r2
U!V , of

random variables (U, V) having the specific distribution C(u, v). Instead, a sample of 8,888 cor-

related pairs, {(ui, vi)}, was generated, and the CDD value was estimated by r2
U!V ¼ 0:6421 and

r2
V!U ¼ 0:5937. In order to assess the accuracy of the proposed CDD measure, the CDD value

was estimated from each of the thousand independent subsamples with sample size 1000. Based

on the thousand estimated CDD values, r̂2
U!V , the accuracy of the CDD was evaluated via the

bias and standard error. In summary, the bias was estimated as biasðr̂2
U!VÞ ¼ � 0:0014 and

biasðr̂2
V!UÞ ¼ � 0:0002, and the standard error was estimated as SEðr̂2

U!VÞ ¼ 0:0002 and

SEðr̂2
V!UÞ ¼ 0:0003.

On the other hand, theoretical properties of the CDD using beta regression are under devel-

opment. For example, the exact CDD value of a given bivariate copula is not easy to obtain in

general. In the same way, given a CDD value, it may be interesting to construct an asymmetric

or symmetric copula function in a parametric form.

4 Results

We applied the neural network approach for autocorrelation estimation described in Section

3.3. Details on the feedforward neural networks and their hyper-parameters used in this paper

are presented in Table 3.

The PM2.5 values predicted by the estimated feedforward neural networks are illustrated in

Fig 4, which are for the year 2013. After the prediction, we carried out the Durbin-Watson test

for serial correlation based on the residuals. The obtained p-values for the year 2013 were

0.274 (Beijing), 0.686 (Chengdu), 0.275 (Guangzhou), and 0.318 (Shanghai), all of which were

larger than the significance level α = 0.05. For the other years, we obtained p-values larger than

0.05 as well.

Next, we computed the CDDs between each pair of Chinese cities based on the residuals of

the daily PM2.5 levels in each year. The results are summarized in Table 4. Contrary to the cor-

relation coefficients presented in Table 2, the CDDs are not symmetric and are computed in

both directions, U to V and V to U for each pair (U, V) of the cities. We remark that the CDD

values presented in Table 4 are compared with the square of correlation coefficients rather

than correlation coefficients themselves since the definition in Eq (3) is a version of the coeffi-

cient of determination in multiple linear regression. In addition, we have computed 95% boot-

strap confidence intervals for the difference, Dr2
U;V ¼ r

2
V!U � r

2
U!V . We can find that most of

Table 3. Details on the feedforward neural networks used for autocorrelation estimation. L: the number of input

nodes, i.e., the lag order, H: the number of nodes in the hidden layer.

Year 2013 2014 2015 2016 2017

Num. nodes L H L H L H L H L H
BJ 1 1 4 2 4 2 2 2 3 2

CD 4 2 4 2 1 1 15 8 2 2

GZ 7 4 5 3 1 1 1 1 5 3

SH 17 9 8 4 10 6 7 4 1 1

https://doi.org/10.1371/journal.pone.0213148.t003
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the confidence intervals do not include zero, which means that the difference Dr2
U;V of direc-

tional dependences is significantly different from zero.

The estimated CDD values are visually illustrated in Figs 5 to 9. The labels on the arrows

between the four Chinese cities represent the directional dependences between the cities. Sev-

eral findings from the CDD values are as follows:

1. The CDD between Beijing (BJ) and Chengdu (CD) was relatively high from 2013 to 2017

except in 2016. The CDD from CD to BJ was higher in 2013, but the CDD from BJ to CD

became higher in the later years from 2014 to 2017.

Fig 4. Predicted values (black straight line) of PM2.5 levels of the four Chinese cities during the year 2013 and the observed

PM2.5 measurements (red dotted line).

https://doi.org/10.1371/journal.pone.0213148.g004
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2. The CDD between Chengdu (CD) and Guangzhou (GZ) was relatively high in the years

2013, 2015, and 2017. Similarly, the CDD from GZ to CD was higher in 2013 and 2014, but

the CDD from CD to GZ became higher in the later years from 2015 to 2017.

3. The CDD between Chengdu (CD) and Shanghai (SH) was relatively high in 2014, in which

the CDD from CD to SH was higher than the other direction. The CDD between CD and

SH was relatively low in the other years.

4. The CDD between Beijing (BJ) and Shanghai (SH) was relatively high during 2014, 2015,

and 2017, in which the CDD from BJ to SH was higher in 2014, but the CDD from SH to BJ

was higher in 2015 and 2017.

5. The CDD between Beijing (BJ) and Guangzhou (GZ) was relatively high in 2014, 2016, and

2017, in which the CDD from GZ to BJ was higher in 2014, but the CDD from BJ to GZ

became higher from 2015 to 2017.

The findings described above are overall consistent with the results obtained from the cor-

relation coefficients in Table 2. Contrary to the correlation coefficients, however, the CDDs

could infer directionality between each pair of cities and its structure change over time.

5 Discussion and conclusions

In this work, we presented a statistical measure of directional dependence which is called cop-

ula directional dependence (CDD). We obtained the PM2.5 concentration level data for the

Table 4. Copula directional dependences (CDDs) between ordered pairs of Chinese cities (BJ: Beijing, CD: Chengdu, GZ: Guangzhou, SH: Shanghai) during the

years 2013 to 2017, together with 95% bootstrap confidence intervals (CIs) for the difference of directional dependences. The larger value between the two directional

dependences is marked in bold font.

Year BJ! CD BJ CD BJ! GZ BJ GZ BJ! SH BJ SH

2013 CDD 0.0131 0.0144 0.0020 0.0023 0.0013 0.0029

95% CI (0.0013, 0.0014) (0.0002, 0.0002) (0.0015, 0.0016)

2014 CDD 0.0379 0.0353 0.0053 0.0113 0.0132 0.0126

95% CI (-0.0028, -0.0024) (0.0059, 0.0061) (-0.0007, -0.0005)

2015 CDD 0.0168 0.0157 0.0007 0.0000 0.0191 0.0281

95% CI (-0.0014, -0.0011) (-0.0007, -0.0006) (0.0087, 0.0091)

2016 CDD 0.0000 0.0001 0.0150 0.0121 0.0003 0.0000

95% CI (0.0000, 0.0001) (-0.0030, -0.0027) (-0.0002, -0.0001)

2017 CDD 0.0297 0.0188 0.0630 0.0507 0.0124 0.0230

95% CI (-0.0110, -0.0107) (-0.0127, -0.0123) (0.0106, 0.0108)

Year CD!GZ CD GZ CD!SH CD SH GZ!SH GZ SH

2013 CDD 0.0117 0.0176 0.0050 0.0053 0.0025 0.0026

95% CI (0.0058, 0.0060) (0.0003, 0.0003) (0.0002, 0.0002)

2014 CDD 0.0031 0.0036 0.0215 0.0149 0.0044 0.0064

95% CI (0.0006, 0.0007) (-0.0068, -0.0066) (0.0018, 0.0020)

2015 CDD 0.0277 0.0182 0.0063 0.0080 0.0130 0.0091

95% CI (-0.0096, -0.0093) (0.0016, 0.0018) (-0.0039, -0.0037)

2016 CDD 0.0004 0.0033 0.0000 0.0004 0.0060 0.0137

95% CI (-0.0011, -0.0010) (0.0003, 0.0004) (0.0078, 0.0081)

2017 CDD 0.0776 0.0761 0.0052 0.0005 0.0031 0.0047

95% CI (-0.0016, -0.0013) (-0.0047, -0.0045) (0.0016, 0.0017)

https://doi.org/10.1371/journal.pone.0213148.t004
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four major Chinese cities, Beijing, Chengdu, Guangzhou, and Shanghai, from January 1, 2013

to June 30, 2017. We preprocessed the data by using feedforward neural networks with lagged

inputs, and we statistically analyzed directional dependence between the cities based on the

proposed CDDs. An R source code for preprocessing and analyzing the PM2.5 data in this

study is available at S1 Appendix.

Particulate matter consisting of PM2.5 can be generated from various sources, and its con-

centration can be changed by numerous factors such as wind direction, wind speed, seasonal

change, weather, and industrialization [8, 18]. On the other hand, the proposed CDD can infer

Fig 5. A connectivity map of China based on the directional dependences between the four cities in the year 2013. Base map

figure source: CIA Maps (https://www.cia.gov/library/publications/resources/cia-maps-publications/China.html).

https://doi.org/10.1371/journal.pone.0213148.g005
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dependence structures between the major Chinese cities conveniently without requiring com-

plicated models involving the diverse economic or environmental factors in a meteorological

system. The inferred CDD structure can characterize economic and environmental relation-

ships between Chinese cities, which may indirectly reflect interrelationships between underly-

ing hidden factor variables.

In this study, we applied CDD using bivariate copulas. A multivariate generalization can be

computationally challenging due to the large number of combinations of the variables. Kim

and Jung [74] extended the bivariate copula-based directional dependence to a multivariate

Fig 6. A connectivity map of China based on the directional dependences between the four cities in the year 2014. Base map

figure source: CIA Maps (https://www.cia.gov/library/publications/resources/cia-maps-publications/China.html).

https://doi.org/10.1371/journal.pone.0213148.g006
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version by combining it with time-varying partial correlations. It is necessary to develop com-

putationally efficient methods further in future works.

Based on the directional dependence structures obtained by the CDDs, we could visually

present the interactions between the four Chinese cities over different time periods. Moreover,

we could provide levels of confidence on the directionality of the dependences between the cit-

ies by computing bootstrap confidence intervals.

We remark that the CDD values need to be interpreted with caution. The CDD values

range between 0 and 1, and a larger value implies a stronger correlation between the variables.

Fig 7. A connectivity map of China based on the directional dependences between the four cities in the year 2015. Base map

figure source: CIA Maps (https://www.cia.gov/library/publications/resources/cia-maps-publications/China.html).

https://doi.org/10.1371/journal.pone.0213148.g007
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However, since the CDD is a version of the coefficient of determination in multiple linear

regression according to the definition in Eq (3), it should be expressed with higher precision,

e.g., in three to four digits as in Table 4, than the Pearson and Spearman correlation coeffi-

cients. Note that the methodology presented in this paper consists of several statistical methods

such as copulas, beta regression, and ANNs, each of which can be a source of uncertainty that

affects the CDD values. Therefore, statistical decisions made by the bootstrap confidence inter-

val are not always reliable, especially when the CDD values are relatively small. An alternative

Fig 8. A connectivity map of China based on the directional dependences between the four cities in the year 2016. Base map

figure source: CIA Maps (https://www.cia.gov/library/publications/resources/cia-maps-publications/China.html).

https://doi.org/10.1371/journal.pone.0213148.g008
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method for a reliable decision is to introduce a multiple comparision procedure to determine

significant nonzero CDD values; see, e.g., [75, 76].

It is remarkable that we could see a structural change in the CDD networks, especially in

the directions of the edges of the networks, between the period 2013-2014 and the period

2015-2017. Such a structural change indicates a certain dramatic shift in the states of the

underlying latent factors affecting PM2.5 levels around 2014. Trends in air quality in Chinese

major cities were analyzed in [17] and it was found that Beijing experienced decreased PM2.5

from 2013 to 2015. Overall, Beijing, Chengdu, and Guangzhou experienced improvements in

Fig 9. A connectivity map of China based on the directional dependences between the four cities in the year 2017. Base map

figure source: CIA Maps (https://www.cia.gov/library/publications/resources/cia-maps-publications/China.html).

https://doi.org/10.1371/journal.pone.0213148.g009
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air quality in the recent decade. Note that China released an ambient air quality standard, GB

3095-2012, in 2012 [14], and key cities including the four major cities analyzed in this study

were required to implement the standard. In September 2013, the State Council of China

issued the Air Pollution Prevention and Control Action Plan (APPCAP). Implementation of

the APPCAP led to a control of ambient air pollution and substantial reductions in mortality

and years-of-life-lost (YLLs) [77]. We can guess that continuous efforts in China have resulted

in dramatic changes in air quality and the constituents of air pollutants. Further studies on the

nature of the changes in air quality are necessary in order to make better public health policies.

The proposed CDD can be effectively applied to any further analysis in general settings or for

a more detailed analysis of air pollution.

Supporting information

S1 Appendix. Source code. An R source code for preprocessing and analyzing the PM2.5 data

in this study.

(PDF)
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