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Background and purpose: The cAMP response element binding protein (CREB) plays an 

important role in the mechanism of cognitive impairment and is also pivotal in the switch from 

short-term to long-term memory. Brain-derived neurotrophic factor (BDNF) seems a promis-

ing avenue in the treatment of cerebral ischemia injury since this neurotrophin could stimulate 

structural plasticity and repair cognitive impairment. Several findings have displayed that the 

dysregulation of the CREB–BDNF cascade has been involved in cognitive impairment. The 

aim of this study was to investigate the effect of cerebral ischemia on learning and memory as 

well as on the levels of CREB, phosphorylated CREB (pCREB), and BDNF, and to determine 

the effect of minocycline on CREB, pCREB, BDNF, and behavioral functional recovery after 

cerebral ischemia.

Methods: The animal model was established by permanent bilateral occlusion of both common 

carotid arteries. Behavior was evaluated 5 days before decapitation with Morris water maze and 

open-field task. Four days after permanent bilateral occlusion of both common carotid arteries, 

minocycline was administered by douche via the stomach for 4 weeks. CREB and pCREB were 

examined by Western blotting, reverse transcription polymerase chain reaction, and immuno-

histochemistry. BDNF was measured by immunohistochemistry and Western blotting.

Results: The model rats after minocycline treatment swam shorter distances than control rats 

before finding the platform (P=0.0007). The number of times the platform position was crossed 

for sham-operation rats was more than that of the model groups in the corresponding platform 

location (P=0.0021). The number of times the platform position was crossed for minocycline 

treatment animals was significantly increased compared to the model groups in the corresponding 

platform position (P=0.0016). CREB, pCREB, and BDNF were downregulated after permanent 

bilateral occlusion of both common carotid arteries in the model group. Minocycline increased 

the expression of CREB, pCREB, and BDNF, and improved cognitive suffered from impair-

ment of permanent bilateral occlusion of both common carotid arteries.

Conclusion: Minocycline improved cognitive impairment from cerebral ischemia via enhancing 

CREB, pCREB, and BDNF activity in the hippocampus.

Keywords: vascular cognitive impairment, cAMP response element binding protein, cerebral 

ischamia, neuroprotection

Introduction
Increasing findings have evidenced that cerebral ischemia plays a critical role in the 

pathogenesis of vascular cognitive impairment, and the reduction of cerebral blood flow 
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correlates with the severity of cognitive impairment.1,2 Various 

mechanisms of neuronal injury suffered from cerebral isch-

emia have been proposed, including formation of free radicals, 

oxidative stress,3,4 mitochondrial dysfunction,5,6 inflammatory 

processes,7 genetic factors, environmental impact factors,8,9 

apoptosis,10 and so on. These factors may interact with and 

amplify each other in a vicious cycle of toxicity, leading to neu-

ronal dysfunction and cognitive impairment. The transcription 

factor cyclic AMP response element binding protein (CREB) 

and neurotrophin brain-derived neurotrophic factor (BDNF) 

have emerged as molecules that may play an important role 

in modulating mood, behavior, and memory.11–13 CREB and 

BDNF are known to be dysregulated in animal models and 

in patients suffering from cerebral ischemia, and are deemed 

to be therapeutic targets of cerebral ischemia.14,15 

Minocycline, a tetracycline derivative, protects against 

cerebral ischemia via inhibiting inflammation, oxidative 

stress, and apoptosis.16,17 Previously, we have found that 

minocycline retarded astrocytic reactivation, and restrained 

oxidative stress and neuroinflammation in the hippocam-

pus of cerebral ischemia rats.18,19 In the present study, we 

observed the expression of CREB, phosphorylated CREB 

(pCREB), and BDNF in the hippocampus of cerebral isch-

emia rats with cognitive impairment by permanent bilateral 

occlusion of both common carotid arteries, and explored the 

neuroprotective mechanism of minocycline for the treatment 

of cerebral ischemia injury. We found that CREB, pCREB, 

and BDNF were downregulated after permanent bilateral 

occlusion of both common carotid arteries in a model group, 

and minocycline attenuated cognitive impairment and upreg-

ulated CREB, pCREB, and BDNF in the hippocampus of rats 

with permanent bilateral occlusion of both common carotid 

arteries. Therefore, a hypothesis was made that minocycline 

upregulated CREB, pCREB, and BDNF and improved cogni-

tive impairment from cerebral vascular factors. 

Materials and methods
Animal and drug
Wistar rats (10 weeks old, female, quality 200–250 g, from 

the Field Zoology Research Institute of the Third Military 

Medical University of the People’s Republic of China) were 

randomly divided into sham-operated group (S) (with a 

mean survival time of 16 weeks), ischemia model group (M) 

(with permanent bilateral occlusion of both common carotid 

arteries), and minocycline treatment group (MT) (beginning 

treatment after 4 days from permanent bilateral occlusion of 

both common carotid arteries, minocycline was administered 

by douche via the stomach for 4 weeks). M and MT groups 

were separately subdivided into 4-, 8-, and 16-week groups. 

Each group had six animals. The animal model of cerebral 

ischemia was established with permanent bilateral occlusion 

of both common carotid arteries for chronic bilateral common 

carotid artery occlusion (bCCAo).20,21 

Rats were anesthetized with 10% chloral hydrate (350 mg/kg,  

intraperitoneally) and breathed normally throughout the surgi-

cal procedure. Both common carotid arteries were exposed via 

a midline cervical incision and doubly-ligated with silk suture. 

Sham-operated animals were treated in the same manner, 

except that the common arteries were not ligated. The inves-

tigation was performed according to the Guide for the Care 

and Use of Laboratory Animals published by the US National 

Institutes of Health.22 The animal experiments were performed 

according to internationally followed ethical standards and 

approved by the research ethics committee of Chongqing Medi-

cal University, Chongqing, People’s Republic of China.

Minocycline (100 mg/capsule; Huishi Pharmaceutical 

Limited Company, Shanghai, the People’s Republic of China) 

was diluted to 0.5 mg/mL density by normal saline. S and M 

groups were given the same volume of normal saline through 

douche via the stomach. MT group was given 50 mg/kg/d 

minocycline through douche via the stomach. The minocycline 

dosage used for animals was as described elsewhere.16,17

Morris water maze task
The Morris water maze task (Chinese Academy of Medical 

Sciences, People’s Republic of China) includes a place 

navigation test and spatial probe test, and is widely used 

in behavioral neuroscience to study spatial learning and 

memory.23 The rats were placed in a large circular pool with 

an invisible platform that allows them to escape the water. 

The time it took a rat to find the platform and escape was 

measured for up to four trials a day for 5 days. The time it 

took to find the platform is referred to as escape latency (the 

earliest learning measure). After training was complete, the 

spatial probe trial was conducted in which the escape plat-

form was removed from the pool and the animal allowed 

to swim for 120 seconds. The spatial probe test was for 

the measurement of preservation-of-experience (memory) 

capacity, ie, looking for the platform position. The time it 

took to find the unmoved platform (learning latency) and the 

times a rat crossed the corresponding position of the removed 

platform in 120 seconds (memory latency) were recorded. 

Immunohistochemical assay
Tissue samples were collected after surgery and immediately 

frozen with liquid nitrogen. Prior to immunohistochemistry 
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assay, frozen sections were prepared with a cryostat (FACS 

caliber; Becton Dickinson, Franklin Lakes, NJ, USA) at 

-20°C, dried at room temperature, and fixed with acetone. 

The peripheral blood mononuclear cells were routinely 

isolated and the slides were prepared with a cytospin. The 

avidin-biotin-peroxidase complex immunohistochemical 

assay was carried out according to the protocols we described 

before anti-CREB (Sigma-Aldrich Co., St Louis, MO, USA), 

anti-pCREB (Sigma-Aldrich Co.), and anti-BDNF (Santa 

Cruz, LA, CA, USA) were prepared. The second antibody, 

a goat anti-mouse IgG labeled with biotin, was purchased 

from Vector Co. (Burlingame, CA, USA). Two hundred cells 

were counted and the intensity of staining for each of those 

cells was adjusted. Five grades were employed to express the 

degrees of staining, which represent five reaction coefficients, 

respectively. The five products of every coefficient and the 

corresponding cell number were added up, which resulted in 

the value of a positive score.16,18 All slides were measured in 

duplicate. Those samples with a positive score over 10 or a 

frequency over 5% were considered as positive.

Western blotting
Rat tissues were dissected and homogenized in Tissue 

Protein Extraction Reagent (T-PER) buffer in the presence 

of protease inhibitors. After homogenization, the lysates were 

centrifuged at 100,000 × g, and the supernatants were saved 

for Western blotting. Equal amounts of lysates were subject 

to sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

and Western blotting analysis using antibodies specific for 

the following: CREB (1:1,000; BioSource International, 

Inc., USA), pCREB (1:1,000; BioSource International, Inc.), 

BDNF (1:500; Sigma-Aldrich Co., St Louis, MO, USA), and 

β-tublin (1:200; BioSource International Inc., Camarillo, 

CA, USA). The optical densities of the specific bands were 

scanned and measured by image analysis software (Tongji 

Qianping Company, Wuhan, Hubei Province, People’s 

Republic of China).

Statistical analysis
Quantitative data were expressed as mean ± standard devia-

tion. All statistical analyses used the SPSS software for Win-

dows 13.0 (SPSS, Inc., Chicago, IL, USA) and Student’s 

t-test for intergroup analysis. Student–Newman–Keuls test 

was performed when variance was equal, and Games–Howell 

test was performed when variance was not equal. Pearson’s 

correlation analysis was also performed on some indices. 

P0.05 was considered as statistically significant.

Results
Minocycline improved behavioral deficits
Cerebral ischemia was induced in 10-week-old Wistar rats by 

bCCAo as described previously.18,19 After the performance of 

bCCAo, rats were subjected to the Morris water maze. Escape 

latency decreased after 1 day of training. On days 3, 4, and 5, 

S animals immediately swam toward the platforms in the 

water maze, whereas M rats swam longer distances before 

finding the platform (Figure 1A). In general, escape latency 

decreased with bCCAo duration (P=0.0004), the M rats, after 

minocycline treatment, swam shorter distances than control 

rats before finding the platform (P=0.0007) (Figure  1A). 

Figure 1 Morris water maze performance. 
Notes: Rats were randomly divided into S (with a mean survival time of 16 weeks), M (with permanent bilateral occlusion of both common carotid arteries), and MT (after  
4 days of permanent bilateral occlusion of both common carotid arteries, minocycline was administered by douche via the stomach for 4 weeks) groups. The M and MT 
groups were subdivided further into 4-, 8-, and 16-weeks groups, with six rats in each group. (A) During place navigation (learning), S rats swam shorter distances than  
M animals before finding the platform (*P0.01) and escape latency gradually decreased with the duration of cerebral ischemia after MT (*P0.01). (B) In the probe trials 
(memory), the number of times the platform position was crossed for S rats was more than for the bCCAo rat groups in the corresponding platform location (*P0.01). The 
number of times the platform position was crossed for MT animals was significantly increased compared to the bCCAo rat groups in the corresponding platform position 
(*P0.01).
Abbreviations: bCCAo, bilateral common carotid artery occlusion; M, ischemia model; M4, bCCAo 4 weeks; M8, bCCAo 8 weeks; M16, bCCAo 16 weeks;  
MT, minocycline treatment; MT4, MT 4 weeks; MT8, MT 8 weeks; MT16, MT 16 weeks; S, sham-operated.
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In the probe trials, the number of times the platform position 

was crossed for the S group was more than for the bCCAo rats 

groups in the corresponding platform location (P=0.0000) 

(Figure 1B). The number of times the platform position was 

crossed for MT animals was significantly increased compared 

to bCCAo rat groups in the corresponding platform position 

(P=0.0016) (Figure 1B). 

Minocycline upregulated CREB 
and pCREB 
The results of immunohistochemistry and Western blotting 

showed that expression of CREB and pCREB in the MT 

group was significantly higher than that of the M group at 

the corresponding time. Expression of CREB and pCREB by 

immunohistochemistry in the M groups was more decreased 

than in the control group (P=0.0009; P=0.0023), whereas 

expression of CREB and pCREB in the MT groups was more 

increased than in the control groups (P=0.0001; P=0.0005) 

(Figure 2). Expression of CREB and pCREB by Western 

blotting in the M groups was lowered more than in the control 

group (P=0.0010; P=0.0031), whereas expression of CREB 

and pCREB in the MT groups was more enhanced than in 

the control groups (P=0.0004; P=0.0003) (Figure 2).

Minocycline enhanced BDNF activity
The results of immunohistochemistry showed that expression 

of BDNF in the MT animals was higher than that of the 

M ones (P=0.0005), whereas expression of BDNF in the 

M groups was decreased compared to the control group 

(P=0.0001). Western blotting analysis found that BDNF in the 

MT groups was higher than that of the M group (P=0.0006), 

while expression of BDNF in the M groups was more reduced 

than in the control group (P=0.0000) (Figure 3). 

Correlation between cognition 
and CREB, pCREB, and BDNF
The number of times the platform position was crossed 

during the probe trial for the S group was higher than for 

M rats (P=0.0021). Therefore, we determined correlation 

analysis between the number of times the platform position 

was crossed and CREB, pCREB, and BDNF expression. 

Linear correlation analysis shows that the optical density 

(OD) values of immunoblotting protein for CREB, pCREB, 

and BDNF were negatively correlated with the number 

of platform position crossings (r=-0.314, P=0.0062; 

r=-0.352, P=0.0004; r=-0.381, P=0.0031) respectively 

(Figure 4). We inferred that downregulation of CREB, 

Figure 2 (Continued)
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pCREB, and BDNF contributed to cognitive impairment 

from chronic cerebral ischemia.

Discussion
Minocycline, a semisynthetic tetracycline antibiotic that 

effectively crosses the blood–brain barrier, has been reported 

to have significant neuroprotective effects in cognitive 

impairment,24,25 schizophrenia,26 cerebral ischemia,27 amyo-

trophic lateral sclerosis,28 Alzheimer’s disease,25,29 Hunting-

ton’s disease,30,31 and Parkinson’s diseases.32 Minocycline 

can inhibit ischemic-induced inflammation,33,34 astrocyte 

reactivation,35 microglia activation,32 oxidative stress,36,37 

apoptosis,37,38 and so on. One common manifestation after 

brain ischemic damage is cognitive impairment. In this 

Figure 2 The expression of CREB and pCREB in the hippocampus by immunohistochemistry and Western blotting. 
Notes: (A, B) The expression of CREB and pCREB in the MT groups was higher than that of the M groups (*P0.01). The scale bar is 25 µm. (C) Western blotting revealed 
that the MT groups had significantly higher levels of CREB and pCREB than in the M groups (*P0.01).
Abbreviations: bCCAo, bilateral common carotid artery occlusion; CREB, cAMP response element binding protein; M4, bCCAo 4 weeks; M8, bCCAo 8 weeks;  
M16, bCCAo 16 weeks; MT4, minocycline treated 4 weeks; MT8, minocycline treated 8 weeks; MT16, minocycline treated 16 weeks; OD, optical density; pCREB, 
phosphorylated CREB; S, sham-operation group.
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Figure 3 Assessment of BDNF. 
Notes: (A) Assay of protein level of BDNF by immunohistochemistry. Optical density value in MT and S groups was significantly higher than that of M groups (P,0.01). 
Expression of BDNF in MT was more increased compared to control group (M) (P,0.001). The scale bar is 25 µm. (B) assay of BDNF by immunoblotting. The level of 
BDNF in control groups (M) was more decreased than in the MT groups (P,0.001). Expression of BDNF in the MT and S groups was more increased than in the control 
groups (M) (P,0.001).
Abbreviations: bCCAo, bilateral common carotid artery occlusion; BDNF, brain-derived neurotrophic factor; M, ischemia model; M4, bCCAo 4 weeks; M8, bCCAo 
8 weeks; M16, bCCAo 16 weeks; MT, minocycline treatment; MT4, MT 4 weeks; MT8, MT 8 weeks; MT16, MT 16 weeks; OD, optical density; S, sham-operation.

present study, we established the cerebral ischemia model by 

a permanent bilateral occlusion of both common carotid arter-

ies. The results from Morris water maze test showed that cog-

nitive impairment occurred with the ischemic brain damage 

model, and cognitive impairment of control animals had been 

attenuated after minocycline administration. Furthermore, 

minocycline increased the levels of CREB, pCREB, and 

BDNF in the hippocampus of rats by a permanent bilateral 

occlusion of both common carotid arteries. 

The results from the Morris water maze test showed 

that cognitive impairment occurred with chronic cerebral 

ischemia injury, and minocycline reduced cognitive impair-

ment caused by permanent bilateral occlusion of both com-

mon carotid arteries. To further examine the mechanism 

by which cognitive impairment occurred with chronic 

cerebral ischemia and by which minocycline improved 

behavioral deficits, the expression of CREB, a bio-marker of 

memory,39 was examined in the hippocampus tissue of rats.  
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CREB, belonging to the family of leucine zipper transcription 

factors, is critical to induce its effects at phosphorylation of 

a serine residue (S133) in its kinase-inducible domain. Phos-

phorylation of CREB can be accomplished by a number of 

upstream signaling cascades.40,41 Studies indicate that these 

pathways are perturbed in patients suffering from cognitive 

impairment and they are also known to be influenced by 

anti-cognitive impairment treatment.42,43 CREB has a role 

to play in the pathogenesis of cognitive impairment and in 

anti-cognitive impairment action.39,44,45 In the present study, 

both CREB and pCREB were downregulated after cerebral 

ischemia injury, and downregulation of CREB and pCREB 

contributed to cognitive impairment from cerebral ischemia 

injury by correlation analysis. Both CREB and pCREB were 

upregulated in the hippocampus tissue after minocycline 

administration. In addition, the cAMP–CREB signaling 

cascade is critical to the generation of new neurons in the 

rodent hippocampus, and also facilitates their subsequent 

morphological maturation. Thus, CREB’s neuroprotec-

tive and survival-enhancing properties can act in a manner 

analogous to that of anti-cognitive impairment. Therefore, 

minocycline can mediate overexpression of CREB in the hip-

pocampus and has an anti-cognitive impairment-like effect 

in the process of cerebral ischemia injury.

To further clarify the mechanism by which minocycline 

improved behavioral deficits, the expression of BDNF  

(a neurotrophin that play a critical role in the development of 

the brain and continues to have a seminal role in shaping plas-

ticity in the mature nervous system) was investigated. BDNF 

is the most widely expressed member of the nerve growth 

factor family of growth regulators, collectively termed the 

neurotrophins.46–48 The neurotrophins play a critical role in the 

development of the brain and continue to have a seminal role 

in shaping plasticity in the mature nervous system.49 BDNF 

has also been shown to elicit rapid action potentials, thus 

influencing neuronal excitability, and it has a demonstrable 

role in activity-dependent synaptic plasticity events like long-

term potentiation, learning tasks, and memory.50,51 BDNF is 

involved in structural remodeling, neuronal plasticity, and 

synaptic restructuring,52,53 and is promising as a candidate 

molecule underlying the structural changes associated with 

cerebral ischemia damage, and as a potential target for 

cerebral ischemia damage.54 In the present study, BDNF 

was downregulated in the hippocampus tissue after chronic 

cerebral ischemia injury, whereas BDNF was upregulated 

after minocycline administration. Thus, it is speculated that 

minocycline has an anti-cognitive impairment-like effect in 

behavioral models of vascular cognitive impairment through 

enhancing the expression of BDNF in the hippocampus.

The hippocampus is a key limbic region whose structure 

and function is compromised in cognition disorders. In the 

hippocampus, increased activity of the CREB–BDNF cascade 

results in anti-cognition responses.13,55,56 Hippocampal over-

expression of BDNF and CREB is capable of mimicking 

Figure 4 Correlation between cognition and CREB, pCREB, and BDNF.
Notes: Correlation between the number of times that the platform position was crossed and OD value of immunoblotting protein for CREB, pCREB, and BDNF.
Abbreviations: BDNF, brain-derived neurotrophic factor; CREB, cAMP response element binding protein; OD, optical density; pCREB, phosphorylated CREB.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2015:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

514

Zhao et al

both the structural consequences of sustained anti-cognition 

treatment as well as exerting anti-cognition-like behavioral 

effects.56 Activation of the cAMP–CREB cascade results in 

increased neurogenesis of dentate granule cell progenitors, 

and increased dendritic length and branching. It is possible 

that CREB, a transcriptional activator of BDNF, recruits this 

neurotrophin to mediate its effects on structural plasticity.57,58 

BDNF, in addition to being a target of CREB, can itself 

recruit this particular transcription factor by activating the 

MAP kinase cascade, thus setting up a potential positive feed-

back loop. Taken together, elevated CREB–BDNF, through 

its protective influences on vulnerable hippocampal neurons 

and ability to directly promote structural reorganization, 

could result in repair of the region known to be damaged in 

cognitive impairment. Moreover, the well-established role 

of BDNF and CREB in hippocampal-dependent learning and 

memory may play a critical role in ameliorating the cognitive 

symptoms.13,59 In the present study, minocycline efficiently 

improved behavioral deficits and increased CREB, pCREB, 

and BDNF that had been down-regulated by cerebral isch-

emia. It is possible that minocycline recruits CREB–BDNF 

cascade to mediate its effects on structural plasticity and set 

up a potential positive CREB–BDNF feedback loop. Taken 

together, elevated CREB–BDNF activity by minocycline, 

through its protective influences on vulnerable hippocampal 

neurons and ability to directly promote structural reorganiza-

tion, could result in repair of the region known to be damaged 

in cognitive impairment.

Conclusion
In conclusion, this study is the first to evaluate the influence 

of minocycline on the transcription factors (CREB, pCREB, 

and BDNF) as potential key players in the treatment of 

vascular cognitive impairment in the process of cerebral 

ischemia injury. From a clinical point of view, the ability of 

minocycline to modulate cognitive impairment may be of 

great importance in the selection of neuroprotective agents, 

especially in chronic cerebral ischemia procedures.
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