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Latent HIV reservoir is the main obstacle that prevents a cure for HIV-1 (HIV). While antiretroviral therapy is ef-
fective in controlling viral replication, it cannot eliminate latent HIV reservoirs in patients. Several strategies have
been proposed to combat HIV latency, including bone marrow transplantation to replace blood cells with CCR5-
mutated stemcells, gene editing to disrupt theHIVgenome, and “Shock andKill” to reactivate latentHIV followed
by an immune clearance. However, high risks and limitations to scale-up in clinics, off-target effects in human
genomes or failure to reduce reservoir sizes in patients hampered our current efforts to achieve an HIV cure.
This necessitates alternative strategies to control the latent HIV reservoirs. This review will discuss an emerging
strategy aimed to deeply silenceHIV reservoirs, the development of this concept, its potential and caveats for HIV
remission/cure, and prospective directions for silencing the latent HIV, thereby preventing viruses from rebound.
© 2019 University of North Carolina at Chapel Hill. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With a stable and long-lived reservoir, HIV-1 (HIV) remains a global
health problem as the proviral HIV DNA is transcriptionally suppressed
in peripheral blood of patients, but is capable of producing infectious
particles when antiretroviral therapy (ART) is interrupted [1]. HIV-
infected individuals do not achieve a complete immunologic reconstitu-
tion during ART [2]. While residual replication in deep tissue sites may
account for a viral rebound after therapy interruption [3], chronical im-
mune activation-induced reactivation of latent HIV reservoirs could be
te of Global Health & Infectious
el Hill, NC 27599, USA.
g).

l Hill. Published by Elsevier B.V. Thi
involved, as HIV infection causes mucosal damage, leading to transloca-
tion of bacterial products from lumen in the gut into the systemic circu-
lation [4]. This immune activation cannot be resolved by ART. Attempts
to intensify the therapy have failed to reduce the reservoir size, creating
another obstacle to achieve a cure [5,6]. Under ART, the replication of
HIV is effectively suppressed, thereby low to no viral particles are ac-
tively produced. Even though some viral components can be made by
defective proviruses in patients under ART, they may not be effectively
detected for clearance by a compromised host immune surveillance in
patients [7,8]. The inability of ART to eradicate HIV from latent viral res-
ervoirs necessitates the need to develop novel therapeutic approaches
to eradicate the virus from infected individuals in order to discontinue
ART. The latent HIV reservoirs are created after CD4+ T cells encounter
the virus where some infected CD4+ T cells revert to a resting state and
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persist asmemory T cells; thesememory T cells remain quiescent while
harboring the stable HIV proviral DNA [1]. This reservoir is established
during the primary HIV infection after CD4+ T cells are activated and
proliferated to generate effector cells that clear the pathogens [1].
These latently infected CD4+ T cells are stable and long-lived due to
their long half-lives (44 months). Because of this, it may take over
73 years of ART to eradicate latent HIV since the low turnover rate of
these memory cells [9–11]. The longevity and persistence of viral reser-
voirs and their capabilities of producing infectious particles upon ART
interruption poses a major challenge to the current treatment strate-
gies. Therefore, approaches to eradicate the latent reservoirs in patients
are urgently needed [12].
2. Molecular basis underlining current HIV cure strategies

Two opposite strategies are currently under development to attack
HIV latency, “Shock and Kill” and deep latency, by manipulating the
same signaling pathways that are essential for latency establishment.
In “Shock and Kill”, the latent HIV is reactivated by latency reversal
agents (LRAs) followed by an immune clearance. In deep latency strat-
egy, the goal is to induce the proviral HIV towards a deeply silenced
state so that HIV would not rebound or it is significantly delayed even
when the ART is discontinued. HIV latency is established and main-
tained throughmultiple cellular andmolecularmechanisms that exploit
cellular and viral factors, which modulate the viral promoter, i.e. the 5′
long terminal repeat (LTR), thereby suppressing the transcription of
the virus into latency. These mechanisms include: epigenetic silencing
by chromatin remodeling at the viral promoter, such as histone
deacetylation, histone methylation, DNA methylation and possibly the
newly defined histone decrotonylation [13–16], low level expression
or sequestration of essential transcription factors for HIV expression,
suppression of the viral trans-activator Tat, and post-transcriptional
mRNA splicing [17,18]. It has been shown that HIV proviral DNA inte-
grates into an actively transcribed host genome [19] in resting CD4+ T
cells in HIV-infected patients receiving suppressive ART [20]. This viral
integration could be involved in transcriptional interference that linked
to HIV latency [21,22]. Epigenetic silencing occurs due to chromatin
modifications at the viral promoter [17]. This alters the physical struc-
ture of the chromatin on nucleosomes by epigenetic modulators such
as histone deacetylases (HDACs) and histone methyltransferases
(HMTs). Nuclear factor kappa B (NF-κB)/CBF1, Myc/Sp1, YY1/LSF, and
AP4 in the nucleus recruit HDACs or HMTs, such as Suv39h1, EZH2 or
G9a, into the HIV LTR, resulting in deacetylation or methylation of his-
tone tails at the HIV LTR. These modifications of histone tails inhibit
the transcription initiation of HIV to induce HIV latency [17]. Sequestra-
tion of cellular cofactors required for HIV expression in the cytoplasm is
another important mechanism for the establishment and maintenance
of latency. Transcription factors such as NF-κB and the nuclear factor
of activated T cells (NFAT) are crucial for initiating HIV transcription at
the 5′-LTR. However, it was shown that NF-κB plays a bigger role in
HIV transcription than NFAT [23]. In addition to this canonical NF-κB
signaling pathway, the non-canonical NF-κB pathway emerged recently
as an important player that may be involved in HIV replication and/or
latency reversal. This pathway is triggered by NF-κB inducing kinase
(NIK), which phosphorylates IKKα, the latter further phosphorylates
p100, leading to its cleavage into p52 and nuclear translocation of
RelB/p52 to drive transcription of its target genes. In cancer cells, this
pathway is inhibited by cIAPs, which can degrade NIK via its E3 ubiqui-
tin ligase activity, thereby turning off the non-canonical NF-κB pathway
[24]. Interestingly, although not clear, cIAPs can negatively regulate HIV
transcription. SMAC mimetic (SMACm) binds to cIAPs, triggering
ubiquitination signaling to degrade cIAPs protein, reducing thedegrada-
tion of NIK, and allowing NIK to activate the non-canonical NF-κB sig-
naling pathways for reactivation of latent HIV [25]. In conclusion, the
establishment of HIV latency is complicated and involves multiple
layers of signaling pathways. This poses an immense challenge to find
a cure for HIV.

3. Challenges of current cure strategies

Ten years ago, Timothy Brown (referred to as the Berlin Patient)was
declared cured of HIV infection after receiving a bone marrow trans-
plantation from a donor with stem cells harboring a CCR5 deletion mu-
tation [26]. This was followed by several clinical attempts to duplicate
this therapy, but unfortunately were unsuccessful. This year, a second
patient (referred to as the London Patient) showed a successful out-
come by the same strategy: bone marrow transplantation [27]. Despite
that, CCR5 Δ32 mutation appears to reduce protection against some
other viral infections such as influenza and West Nile virus [28,29]. It
was estimated that an individual who is homozygous for the Δ32 allele
has a 21% increase of mortality rate [30]. These studies demonstrated
that, while effective for cure of HIV, bone marrow transplantation is a
risky procedure and is not tolerated by most patients. Therefore, it is
not a scalable treatment [31]. Another emerging strategy of HIV cure
is to disrupt HIV proviruses with DNA editing. This rapidly developing
gene editing technology may make gene editing of the HIV genome
achievable. However, it is not knownwhat the optimal targeted HIV ge-
nome sequences are. How can we deal with a gene editing escape dur-
ing the residual replication of HIV in deep tissues? And how can we
effectively deliver the editing system in vivo? Recent studies have
shown that gene editing off-targetsmay bemore common thanwe pre-
viously thought [32]. It may also induce wide-ranging off-target RNA
edit [33]. As of now, these questions still remain and need to be resolved
before the technology is tested in patients. As mentioned previously,
“Shock and Kill” strategy has been proposed as a therapeutic therapy
to reduce the frequency of infected cells by targeting molecular mecha-
nisms of HIV latency. However, whether or not this strategy can achieve
a virological control in the absence of ART is still under active investiga-
tion. Although clinical trials have showed that latent HIV reservoirs can
be flushed out [34,35], a significant reduction of reservoir size has not
been observed in patients yet, indicating that the reactivation of latent
HIV reservoirs alone does not necessarily cause a reservoir clearance
[34,35]. Several lines of evidence may explain this daunting obstacle.
First, in vivo, the reactivation process by current LRAsmay not be strong
enough. Therefore, new potent LRAs need to be developed. In the last
few years, numerous LRAs have been developed, including epigenetic
compounds such as HDAC inhibitors, HMT inhibitors, bromodomain in-
hibitors, protein kinase C agonists, and TLR7 agonist [16,36]. More re-
cently, SMAC mimetics were investigated and reported as effective
latency reversal agents, some were even able to induce clearance of
the reservoirs [25,37]. Furthermore, because multiple signaling path-
ways are involved in latent HIV establishment, a combination therapy
to target two or more sites within the virus replication pathways was
proposed [38]. Currently, a combination strategy to reactivate latent
HIV that targets both NF-κB and p-TEFb signaling pathways was
shown to be more effective than any other combination strategy
[39,40]. Unfortunately, the efficacy to trigger an effective host immune
response is still unknown even though the reactivationwas robust. Sec-
ondly, unlike patients during acute HIV infection, in chronically HIV-
infected patients under ART, the cytotoxic T lymphocytes (CTLs) func-
tion is compromised and fails to clear the resting CD4+ T cells after ac-
tivation with LRAs. Some patients were found to retain a broad-
spectrum viral-specific CTL response in addition to an antigen-specific
stimulation prior to reactivating latent HIV-1 which can kill some in-
fected cells [41,42]. Thirdly, the degree of the reactivation of latent
HIV differs among patients. It also differs among resting CD4+ T cells
within the same individual due to multiple layers of regulations of HIV
latency. This was evidenced that, following the first round of reactiva-
tion in resting CD4+ T cells, a second round of PHA treatment increased
the efficacy of latency reactivation [43]. Lastly, recent studies have
shown that HIV integrates into the same sites of the host genome in
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different clones of resting CD4+ T cells within the same patient [44],
suggesting that HIV-infected resting CD4+ T cell clones can be ex-
pandedwhilemaintaining latency in patients. Althoughmechanistically
not clear, the latent HIV in these expanded clones may be regulated by
the similar epigenetics as mentioned before. Therefore, in addition to
targeting epigenetics at HIV LTR, eradicating these clones may require
a tool to suppress their expansion and/or cellular proliferation of the
resting CD4+ T cells in patients under ART. In conclusion, HIV “steriliz-
ing cure” is faced withmany challenges to achieve an efficient reactiva-
tion and an effectively killing.

Meanwhile, HIV can also infect and establish viral reservoirs in the
central nervous system (CNS) [45]. Although it is not clear how the la-
tency is established and which cell types harbor these reservoirs in
the CNS, persistent infection in the CNS is clearly associatedwith neuro-
logical impairment in patients under ART, such as HIV associated
neurocognitive diseases (HAND) [46]. As patients live longer under sup-
pressive ART, the incidence of HAND is increased [46]. This is a misera-
ble challenge for elder patients in theART era. Unfortunately, the “Shock
and Kill” strategy to flush out latent HIV may be not appropriate for
eradication of HIV reservoirs in the CNS because the reactivation of la-
tent HIV generates HIV particles or its viral components, such as Tat,
which can damage neurons and are toxic to the CNS [47]. Because of
these limitations, a novel way to deeply curtail the HIV proviruses in
order to achieve a “functional HIV cure” is emerging.

4. Deeply silencing proviral HIV to achieve a functional HIV cure

Around 8% of the human genome consists of sequences conse-
quent of ancient retrovirus DNA elements [48]. These human endog-
enous retroviruses (HERVs) are silenced unless stimulated by
environmental factors or pathogenic infections. Reactivated HERVs
produce envelope (Env) proteins, which are associated with the pa-
thognomonic features of multiple sclerosis (MS) and amyotrophic
lateral sclerosis (ALS) by activating multiple pathophysiological sig-
naling pathways [49]. Similarly, HERVs have the common provirus
structure of coding open reading frames flanked by two long-
terminal repeats [50]. Through evolution and consequences of host
defense mechanisms, HERV activity is reduced in most somatic tis-
sues. However, germline cells directly control and permit HERV ex-
pression at different levels [51]. This is achieved through epigenetic
regulation via DNA methylation in normal tissues [52,53], indicating
that CpG methylation is an important mechanism of silencing and
turning off expression of HERV [53–55]. The regulation of HERVs by
selective hypomethylation at HERV LTR is critical during embryonic
development, such as in the placenta during the course of pregnancy
[51,55,56]. The ability for host cells to manage HERV expression
through epigenetic regulation suggests that this acquired neutraliza-
tion strategy could be exploited for current efforts to combat latent
HIV. To some extent, latent HIV resembles endogenous retroviruses
that harbor in our genomes. Like HERVs, latent HIV is able to return
to an active state for replication when it is in inflammatory condi-
tions or during co-infection of pathogens in patients. Therefore, it
may be possible to achieve a silence state by epigenetically shutting
down or fine tuning the HIV replication machinery to a level that
the interaction of latent HIV with host controls viral replication at
the HIV LTR region of chromatin in the context of host immune sur-
veillance, preventing or greatly delaying HIV rebound when ART is
discontinued.

The concept of HIV deep silencing originates from some early obser-
vations that viral rebound could be prevented. In the early 1990's, stud-
ies showed that modulating HIV transcription machinery prevented
virus from reactivation. In 1993, attempts to suppress viral reactivation
were tested using HIV latently infected U1 cells by targeting protein ki-
nase C signaling. Two compounds (Gö 7775 and Gö 7716) in the
nanomolar levels of concentrationwere reported to show a strong inhi-
bition of infectious virus particles released into the supernatant after the
cells were induced by PMA or TNFα [57]. In the same year, Feorino et al.
screened a broad range of antiviral compounds targeting distinct bio-
chemical pathways to interfere with the reactivation of latent HIV in
chronically HIV-infected OM-10.1 cells. Up to 58 compounds were
tested, including nucleoside analogues, cytokines, steroidal and nonste-
roidal anti-inflammatory agents, polyoxometalates, a Tat inhibitor,
TIBO, porphyrins, oligomers and several other natural products.
Among these compounds, only nucleoside 3′-fluoro3′-deoxythymidine,
IFN-γ, the Tat inhibitor Ro 5-3335, and the iron chelator
desferrioxamine, modestly prevented TNFα-induced reactivation of la-
tent HIV. This was determined by measuring CD4 expression levels
and the activity of reverse transcriptase of HIV [58]. While these find-
ings were interesting, indirect evidence of HIV replication was deter-
mined by measuring CD4 levels. Therefore, it was not clear whether
HIV replication or latent HIV reactivation was actually inhibited in this
study. Later on, by using the same cell linemodel, Hashimoto K et al., re-
ported that heat shock can induce the reactivation of latent HIV, which
can be blocked by anti-TNFα antibody, the PKC inhibitor staurosporine,
the NF-κB inhibitor pentoxifylline, or the HIV Tat inhibitor Ro 5-3335.
Staurosporine was found to inhibit up to 90% of latency reactivation
without cellular toxicity [59]. Ro 5-3335 analog, Ro 24-7429, was
thought to have a potential for cure and was advanced to phase II clini-
cal trials. While the drug was well tolerated in patients, it failed to show
clinical benefit in controlling viral replication. Recently, it was shown
that Ro 5-3335 is also an inhibitor of RUNX1 and was able to reactivate
latentHIV in cell culturemodels of latency in vitro, but not in PBMCs iso-
lated from patients under ART ex vivo [60]. Taken together, these early
studies showed a promise in preventing latency reactivation by directly
targeting HIV transcription mechanisms. However, this idea was not
tested in proper HIV latency models, which limited further exploration.

Recently, this concept was renewed as the efforts to eradicate latent
HIV for an HIV cure was accelerated. In 2014, Ian Anderson et.al, discov-
ered that the heat shock protein 90 (HSP90) was required for HIV gene
expression. HSP90 acted on the NF-κB pathway upstream of IkBα by
binding to IKKγ and recruiting Cdc37, keeping the IKK complex func-
tional [61]. The inhibition of HSP90 reduced degradation of IkBα and
blocked nuclear translocation of transcription factor p65/p50, thereby
suppressing theNF-κB pathway [61]. The inhibition of HSP90/NF-κB sig-
naling with specific HSP90 inhibitors, such as 17-(N-allylamino)-17-
demethoxygeldanamycin and AUY922, prevented the expression of
HIV from reactivating in CD4+ T cells [61]. These data indicated that se-
lectively targeting HSP90may provide a powerful approach to suppress
HIV reactivation from latency. Some HSP90 inhibitors are tested in
phase II clinical trials to treat cancers, neuro-degenerative diseases
and cystic fibrosis. Soon after, Murry et al., reported that chemical inhib-
itors of the sulfonation pathway also prevented virus reactivation
in vitro and ex vivo by blocking the initiation of HIV transcription [62].
In 2015, Zhu's group reported that the innate immuneprotein IFI44 sup-
pressed HIV replication via its recruitment into HIV LTR and prevented
reactivation of latent HIV [63]. Taken together, these studies suggested
that by targeting the transcription machinery of HIV, reactivation of la-
tent HIV could be blocked. However, a concept called “Block and Lock”
to directly prevent latency reactivation (block) and induce provirus si-
lencing (lock) as a tool for functional HIV cure was not proposed until
recently.

In 2015, Valente's group reported that the HIV Tat inhibitor called
didehydro-cortistatin A (dCA), an analog of the natural steroidal alka-
loid to specifically bind to the unstructured basic region of Tat to block
Tat/Tar interaction [64], effectively reduced the residual levels of viral
transcription in several HIV latency models by breaking the Tat-
mediated transcriptional feedback loop to establish a nearly permanent
state of latency. This was based on their previous findings that dCA sup-
pressed Tat-dependentHIV transcription [65]. Unfortunately, dCA failed
to effectively prevent or delay viral rebound in an in vivo humanized
mouse model of latency [66]. However, these are the important studies
which are found among the initial attempts to test the idea that
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targeting HIV Tat along with ART can possibly delay or even halt viral
replication, reactivation, or replenishment of the latent viral reservoirs
in order to achieve a functional HIV cure.

It is worth noting that while the recent development of long-acting
antiretroviral drugs will greatly improve patient life (Conference on
Retroviruses and Opportunistic Infections in Seattle, March 7th, 2019),
latent HIV reservoirs have to be eliminated in order to have a cure for
HIV. Similar to drugs used in the conventional ART, these long-acting
medicines are as effective as daily pills to inhibit HIV replication, but
cannot purge HIV. Due to this reason, the viruses will rebound when
the therapy is discontinued. The ultimate goal of deep latency is to epi-
genetically silence viral replication to a low level so that HIV won't sig-
nificantly rebound, even ART is disrupted.

5. Outstanding questions raised from early studies

Current studies of the new “Block and Lock” strategy were devel-
oped based on the ideas of preventing the reactivation of latent HIV or
viral rebound and are advocating for a possible complete silencing for
a remission ofHIV. Such studies aremoving forward asmore discoveries
are being reported [63,67], which indicate that compounds with the ca-
pability to prevent a reactivation of latent HIV and cure HIV may be
attained. One of themost attractive targets to suppress HIV and prevent
its rebound is the inhibition of Tat protein by using dCA. In addition to
dCA, several Tat inhibitors were shown to inhibit Tat expression, either
transcriptionally or translationally [68]. The development of specific
and potent Tat inhibitors is urgently needed. Nevertheless, limitations
to this approach do exist. One of these limitations is that these inhibitors
exert their effects on viral protein Tat. This might cause the virus to ac-
quire a drug resistance during the residual replication such as the case
with ART drugs, meaning the treatment might fail. To avoid this out-
come, host cellular proteins, such as NFAT, NF-κB and p-TEFb could be
exploited for this purpose. Fortunately, a number of small molecules
are available to inhibit these host signaling pathways, which can be
evaluated for their efficacy for the induction of deep latency [69]. Like
the “Shock and Kill” strategy, a combination therapy to target multiple
signaling pathways is probably required in order to achieve an effective
silencing of latent HIV. However, it is not known if the outcome of
preventing the viral rebound can bemaintained for an extended period
of time. Also, it is not clear to what extent the reduction of HIV provirus
expression can be achieved so that HIV may not rebound and the in-
duced silencing can be effectively maintained. Therefore, the real chal-
lenges for the deep latency strategy are: 1) how to effectively induce
silencing to prevent the viral rebound (block); 2) after the deep silenc-
ing is induced, how tomaintain the complete silenced state in reservoirs
(lock). Without a real “lock” to prevent a reactivation, proviral HIV will
rebound as we routinely see in patients after ART is discontinued. To
achieve these goals, firstly, an epigenetic remodeling has to be induced
in order to maintain the deep latency. It may be possible to epigeneti-
callymodify the local chromatin environment atHIV LTR into a suppres-
sive state during the induction of deep latency. This prospective
scenario is a reminder of how genomes of HERVs achieved their dor-
mancy after its integration into the human host genome. Essentially,
an epigenetic regulation of HIV LTR is a dynamic and flexible process,
as we have seen during the latency reversal. When latent HIV is
disrupted by LRAs, its epigenetic marks are also reversed. Inhibition of
HIV transcriptionmachinerymay eventually be able to transform an ac-
tive histone epigenetic environment into a repressive histonemodifica-
tion environment, such that after long-term inhibition of HIV
transcription machinery, the temporary suppressive chromatin could
be maintained at HIV LTR (Fig. 1). While no data have shown an effec-
tively epigenetic lock during induction of deep latency, a recent study
does indicate a potential lock by formations of heterochromatin-like en-
vironment at HIV LTR when HIV Tat is targeted for deep silencing [70].
Secondly, host immune recovery may be needed to facilitate a preven-
tion of viral rebound when the residual viral replication is controlled
by deep silencing. This viscous feedbackmay reinforce the epigenetic si-
lence. Similar to the “Shock and Kill” strategy, a combination tool could
be included to enhance the immune response during the inactivation of
provirus in patients.

6. Conclusion and prospective

Although initially doubted, with tremendous support from both the
government, community, and patients alongwith extensive research ef-
forts, exciting progress has been made in both understanding HIV la-
tency and clinical practice for an HIV cure. This is particularly
evidenced by the substantial benefit of early ART to substantially reduce
reservoir sizes in HIV-infected patients and the successful clinical prac-
tice in the Berlin patient, the London Patient, theMississippi baby cases,
and many others. Undoubtedly, we are in the infancy stage of anti-
latency studies, but with the discovery of new mechanisms of HIV la-
tency, the numerous strategies under investigations, and the hundreds
of different classes of compounds that are available for testing, we
may be closer to curing HIV and/or HIV remission. Time will tell
whether a strategy of deep latency can help us achieve the ultimate
goal during this treacherous journey.
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7. Search strategy and selection criteria

We have searched throughout PubMed to examine the concept of
deep latency or silencing for functional HIV cure on June 3, 2019. Search
terms included “HIV deep latency”, “HIV deep silencing”, “HIV latency”,
“latent HIV”, “HIV reservoir”, “HIV persistence”, “Shock and Kill”, “Kick
and Kill”, “HIV cure”, “HIV functional cure” and “HIV rebound”. Evidence
of prevention of HIV rebound and silencing of HIV were found in vitro,
ex vivo, and in vivo. However, the prevention of HIV rebounding was
mainly investigated in either the early 1990s or in recent years after
2010. Concept of deep latency or silencing was found after 2015.
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