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Activity induces traveling waves, 
vortices and spatiotemporal chaos 
in a model actomyosin layer
Rajesh Ramaswamy & Frank Jülicher

Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a 
model describing a contractile active polar fluid sandwiched between two external media. The external 
media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-
homogeneous activity measuring the strength of the active stress that is generated by processes 
consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude 
the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory 
dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the 
active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These 
results demonstrate that level of activity alone can be used to tune the operating point of actomyosin 
layers with qualitatively different spatiotemporal dynamics.

Biological systems like cytoskeletal filaments1–3, bacterial suspensions4, cell aggregates and tissues4, and flocks of 
birds5 are examples of active living matter2,4,6. Such active systems consist of a set of interacting agents that exhibit 
coordinated motion or flows induced by energy consumption4,6. Energy consumption in active matter leads to 
chaotic motion in bacterial suspensions4, cell polarity inducing flows in the actomyosin cortex of single cell C. 
elegans embryos7–9, and traveling waves and swirling motion of actin filaments in vitro10. Characterizing and 
understanding the behavior of active matter is crucial to understand the physics of such biological phenomena 
and other mechanochemical processes mediating morphogenesis9.

Several morphogenetic processes in biological systems are brought about by the actomyosin cortex11. 
The dynamics of the actomyosin cortex play a crucial role in cytokinesis12, cell migration2,11, gastrulation in 
Drosophila13, and cell polarity establishment in C. elegans7,8 that are fundamental morphogenetic processes dur-
ing organism development. The actomyosin cortex is composed of polar actin filaments crosslinked by motor 
proteins, such as myosin, that undergo conformational changes driven by a chemical fuel. Large numbers of 
driven conformation changes of motor proteins induce contractile active stresses in the cortex11,14. The resulting 
activity that quantifies the contractile active stresses subsequently induce flows in the system making it highly 
dynamic. Studying activity induced dynamics of active gels such as the actomyosin cortex is therefore essential to 
understanding morphogenesis15.

Inspired by dynamics of cytoskeletal systems such as the actomyosin cortex, the continuum theory of active 
polar fluids was developed1–3,16. The theory models the mechanics of uniaxial active agents such as actin fila-
ments, embedded in a viscous bulk medium, in which active stresses are induced due to dissipation of energy4,6. 
The average orientation of the agents is characterized by a polarity field. The spatiotemporal dynamics of the 
polarity field is governed by an equation of motion accounting for energy consumption, alignment or tumbling 
of the polarity field by local shear flow, and the tendency of the polarity field to resist spatial distortions2,17. The 
relationship between the strain rate and the stress in the fluid is provided by a constitutive equation that accounts 
for polarity and consumption of energy. These equations, along with conservation of momentum, provide a con-
tinuum hydrodynamic description of active polar fluids1–4,16 characterized by material constants, and a scalar 
field called activity measuring the active stresses in the system. The nonlinearities in the hydrodynamic equations, 
however, render the prediction of complex spatiotemporal dynamics analytically intractable.

Earlier studies have revealed interesting dynamics of active polar and nematic fluids. By using linearized 
hydrodynamical equations, instabilities of spatially-homogeneous steady states have been deciphered2,17–20. 
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These studies have predicted spontaneous flow transitions2,18,19, and transitions between polar patterns such as 
asters, spirals and vortices as a function of activity2,20. Such transitions have been observed experimentally in the 
organization of microtubules in vitro upon varying the concentration of motor proteins21. Numerical approaches 
have confirmed spontaneous flow transitions22,23 and transitions between polar patterns24 in active polar fluids. 
Numerical studies have also been used to find a rich variety of patterns in active nematic and polar fluids25–27. 
Additionally, using an extended Toner-Tu model of active fluids, irregular dynamics that could correspond to 
chaos and possibly turbulence as experientially seen in bacterial suspensions have been observed28,29. Chaos-like 
irregular dynamics have also been demonstrated in two-dimensional active nematic and polar fluids where the 
activity is coupled to the filament concentration governed by an advection-diffusion equation26,27.

Here, we consider a layer of active polar fluid with finite thickness sandwiched between two plates. At the 
boundary of the fluid, frictional forces are imposed relative to the surface of the plate. Such a set-up represents a 
simple model for a layer of active fluid such as the actomyosin cortex that is sandwiched between the cell mem-
brane and the cytosol. The nonlinear dynamics of such an active polar fluid at low Reynolds number subjected 
to strong spatially-homogeneous activity, however, remains unexplored. We numerically explore the spatiotem-
poral dynamics as a function of spatially-homogeneous activity of the system. We make use of a recently devel-
oped hybrid particle-mesh method to numerically solve the hydrodynamic equations of active polar fluids24. The 
numerical results show that the nonlinear dynamics as a function of activity depend on the nature of interaction 
between the polarity field and the local shear generated by the flow. In the flow-aligning regime, where the fil-
aments tend to align along the flow direction, we find two transitions as the activity is increased: transition to 
spontaneous flow, and a transition to traveling waves accompanied by traveling vortices in the flow field. In the 
flow-tumbling regime, we find an additional transition to spatiotemporal chaos. We characterize this chaotic state 
by computing the maximum Lyapunov exponent of the spatiotemporal dynamics. The transitions to traveling 
waves and spatiotemporal chaos are effects that are due to nonlinearities in the hydrodynamics of active polar 
fluids. This is the first time such transitions have been shown in active polar fluids subjected to spatially homoge-
neous activity. The results therefore demonstrate that the level of activity alone can tune the operating point of an 
actomyosin layer characterized by qualitatively different spatiotemporal dynamics.

Model
We consider a two-dimensional active polar fluid in the x-y plane described by a continuum hydrodynamic the-
ory (see Hydrodynamic equations of active polar fluids in Sec. Methods). This corresponds to the case of a 
three-dimensional system with translational invariance and zero polarity component in the z-direction. The x and 
y components of the polarity field p at each point is denoted by px and py, such that =p 1. The components of 
the velocity field υ are denoted by υx and υy. The fluid has a thickness Ly in the y-direction, and length Lx in the 
x-direction. We impose a friction boundary condition for the flow along =y 0 and =y Ly so that the shear 
stress σ µ υ( , = ) = ( , = )x y x y0 0xy b x  and σ µ υ( , = ) = − ( , = )x y L x y Lxy y t x y , where µb and µt 
denote the friction coefficients at the bottom and top surfaces respectively. This flow boundary condition is a 
generalized slip boundary condition that models the effect of (different) frictions due to the cytosol on one side of 
the actomyosin gel and the membrane on the other. The normal component of the velocity υy at =y 0 and 
=y Ly vanishes. The polarity along the surface =y 0 and =y Ly are anchored parallel to the surface (see Fig. 1 

for an illustration of the model).
The hydrodynamic model is parametrized by the following material constants: viscosity of the fluid η, orien-

tational friction of the polar filaments γ, the elastic constants of the polarity field K (considering = =K K Ks b ), 
and a coefficient ν coupling the rate of change of polarity with the strain rate (see Hydrodynamic equations of 
active polar fluids in Sec. Methods for more details). The fluid is subjected to activity α that is 
spatially-homogeneous. We choose these parameters by constraining our active polar fluid model to be contrac-
tile11,14 and spontaneously flowing like an actomyosin cortex in biological cells7,8. First, in order to ensure that the 
active stresses are contractile, we enforce that α > 0 (see Eq. 1). In addition, spontaneous flow of the fluid 
requires that the coupling coefficient ν > −1 (see Sections Critical activity αc for spontaneous flow transition and 

Figure 1.  Model illustration. Model active polar fluid layer sandwiched between two external media. The 
sandwiched model active layer spans a length of Lx in the x-direction and Ly in the y-direction. The layer is 
sandwiched between y =  0 and =y Ly.
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Model parameters in Sec. Methods for details). If ν < 1, the active fluid model is known to be in a flow-tumbling 
regime and in the flow-aligning regime otherwise17,22. Individual actin filaments have been observed to be 
flow-tumbling30 supported by theoretical predictions and experimental observations of similar rod-like poly-
meric liquid crystals31. Response of individual actin filaments that are chemically interacting with other biomol-
ecules in an in vivo actomyosin cortex is, however, unclear. We therefore study the flow patterns in the 
flow-tumbling as well in the flow-aligning regimes. See Model Parameters in Sec. Methods for the values of all 
parameters for the two regimes used in our study.

With the given parametrization of the model and periodic boundary condition in the x-direction, we numer-
ically solve the equations governing the hydrodynamics using a recently developed general hybrid particle-mesh 
method for incompressible active polar viscous gels24. The method imposes the unit vector polarity and incom-
pressibility constraints exactly, and has shown to be consistent, stable and therefore convergent24. The initial con-
dition and settings used for the numerical simulations are presented in Sec. Methods (see Settings for numerical 
simulation).

Results
We present the numerical solution to the hydrodynamic equation governing the model system24. We study the 
polarity and flow dynamics as activity α induces larger contractile stresses in the active polar fluid model. 
Specifically, we characterize the polarity and flow dynamics as α α/ c is increased over two orders of magnitude 
where αc is the critical activity (lower bound of Eq. 9) beyond which spontaneous flows occur. Over this range of 
activities, nonlinearities in the hydrodynamics become significant and cannot be ignored. As the activity is 
increased, we observe that the contractile active polar fluid in the flow-tumbling regime undergoes 3 transitions: 
spontaneous flow transition, transition to oscillatory dynamics, and finally a transition to spatiotemporal chaos. 
In contrast, the flow-aligning regime only shows 2 transitions: the spontaneous flow transition and the transition 
to oscillatory dynamics. The oscillatory dynamics and the chaotic dynamics are not predicted by the linearized 
equations. These transitions are therefore due to the nonlinearities in the hydrodynamic equations that are 
neglected in the linearized regime. In the following sections, we present the results in the flow-tumbling regime 
before summarizing the differences for the flow-aligning regime towards the end of the section.

Spontaneous flow.  For activities such that 0 <  (α/αc) <  1, the steady-state polarity field is spatial homoge-
neous and the velocity is zero. When α α( / )c  is increased beyond 1, the active polar fluid undergoes a spontaneous 
flow transition as predicted by the linear perturbation analysis (see Critical activity αc for spontaneous flow tran-
sition in Sec. Methods). Figure 2 shows the steady-state polarity and velocity fields when (α/αc) =  3 for the 
flow-tumbling regime. We observe that the steady-state polarity and velocity fields are translationally invariant 
along the x-direction with a finite velocity in the x-direction. The translational invariance in the x-direction along 
with the incompressibility constraint render velocity υy  in the y-direction zero. The velocity υx along the 
x-direction, however, is finite owing to non-zero gradients in the polarity field in the y-direction.

In summary, the numerical solution confirms the theoretical prediction of spontaneous flow transition beyond 
critical activity. Previous numerical studies have also confirmed such spontaneous flow transition in active polar 
fluids albeit with no slip boundaries22,27 instead of the friction boundary conditions used in the current study.

Figure 2.  Spontaneous flow. Steady-state polarity and velocity fields for (α/αc) =  3 after a long time t =  400. 
The polarity field is indicated by cylindrical rods. The Franck free-energy density of the polarity field (Eq. 5) 
is color coded. In the velocity plot, the arrows denote local velocity normalized by the maximum magnitude 
of velocity across the computational domain. The direction of the arrows therefore indicate the local flow 
direction, and the length of the arrows indicates the relative magnitude of velocity. The local speed of flow is 
color coded. See Sec. Model for model details and Sec. Model Parameters in Sec. Methods for the parameters 
used to simulate the model. The horizontal direction towards the right is the positive x-direction and the 
vertical direction towards the top is the positive y-direction.
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Traveling waves and traveling vortices.  As the activity α is further increased, we observe that the trans-
lational symmetry in the x-direction is spontaneously broken beyond α α( / ) ≈ 12c . Figure 3(A) shows a snapshot 
of the polarity and velocity fields after a long time for α α( / ) = 15c  in the flow-tumbling regime. The polarity 
and velocity fields in Fig. 3(A) show no translational invariance in the x-direction, rendering υy non-zero. In 
addition, closed streamlines of the velocity field show the presence of vortices in the flow fields.

The spatial polarity and velocity pattern observed in Fig. 3(A) travel in the x-direction with time. In order to 
demonstrate the traveling wave pattern, we compute the spatiotemporal correlation function δ δ δ( , , )C x y t  of the 
polarity field (see Spatiotemporal correlation in Sec. Methods). Figure 3(B) shows δ δ δ( , , )C x y t  for three values 
of δ = ,t 0 2 and 4. We observe that δ δ δ( , , )C x y t  is merely translated in the x-direction as δt is increased beyond 
0. This observation shows that the polarity field and the velocity field travel in the x-direction with time.

We next analyze the spatiotemporal frequency spectrum of the polarity field to characterize the nature of the 
traveling wave pattern. The spatiotemporal Fourier spectrum θ ω( , , )^ k kx y  is computed as a function of angular 
wavenumber kx along the x-direction, angular wavenumber ky along the y-direction and angular temporal fre-
quency ω. Subsequently, the power spectrum θ ω| ( , , )|^ k kx y

2 is computed normalized by the total power. 
Figure 3(C) shows the power spectrum θ ω( , )^ kx

2
 after integrating out the dependence on ky. We observe that a 

significant fraction of the power is concentrated around ω = − c kgx x with ≈ .c 1 3352gx . A constant cgx indicates 
that the traveling wave is non-dispersive with a constant group velocity cgx in the x-direction.

Figure 3.  Traveling wave with traveling vortices. Spatiotemporal evolution of polarity and velocity fields for 
(α/αc) =  15. (A) Polarity and velocity fields after a long time t =  400. The polarity field is indicated by cylindrical 
rods. Along with the polarity field, the distortion or Franck free-energy density of the polarity field (Eq. 5) is 
color coded. In the velocity plot, the arrows denote local velocity normalized by the maximum magnitude of 
velocity across the computational domain. The direction of the arrows therefore indicate the local flow 
direction, and the length of the arrows indicates the relative magnitude of velocity. The one-dimensional curves 
are the instantaneous streamlines of the velocity field. The local speed of flow is color coded. See Sec. Model for 
model details and Sec. Model parameters in Sec. Methods for the parameters used to simulate the model. The 
horizontal direction towards the right is the positive x-direction and the vertical direction towards the top is the 
positive y-direction. (B) The color field represents the spatiotemporal correlation function C(δx, δy, δt) (See Sec. 
Spatiotemporal Correlation in Sec. Methods for the definition) for δ =t 0, 2 and 4. (C) The color field represents 
the logarithm of the spatiotemporal power spectrum θ ω( , )^ kx

2 of the polarity angle θ as a function of angular 
wavenumber kx along x-direction and angular temporal frequency ω. θ̂ is the Fourier transform of the polarity 
angle θ. The power spectrum θ ω( , )^ kx

2
 is obtained by first computing the complete normalized spatiotemporal 

power spectrum θ ω| ( , , )|^ k kx y
2, and then integrating out the dependence on the angular wavenumber ky along 

the y-direction. The hollow circles in (C) trace the line ω = − c kgx x along which significant fraction of the 
power is concentrated.
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In summary, as the activity increases the contractile active fluid in the flow-tumbling regime shows oscillating 
spatiotemporal patterns. These spatiotemporal patterns consist of non-dispersive traveling waves accompanied 
by traveling vortices in the flow field. Such oscillating spatiotemporal patterns are not predicted by the linear 
perturbation analysis (see Critical activity α c for spontaneous flow transition in Sec. Methods), and is therefore 
an effect mediated by nonlinearities in the model.

Spatiotemporal chaos.  As the activity is further increased beyond α α( / ) ≈ 90c , we observe that the trav-
eling waves in the polarity and velocity fields disappear. Figure 4(A) shows the polarity and the velocity fields at 
two close time-points for α α( / ) = 100c  in the flow-tumbling regime. Visual inspection of the polarity and the 
velocity fields indicates irregular spatiotemporal dynamics. In addition, the velocity fields in Fig. 4(A) shows 
several vortices characteristic of a turbulent flow pattern.

In order to investigate whether the dynamics is chaotic, we compute the maximum Lyapunov exponent32 (see 
Maximum Lyapunov exponant in Sec. Methods). The maximum Lyapunov exponent λ is a measure of sensitivity 
to small perturbations, with a positive value signifying chaos32,33. We find that λ ≈ . ± .0 14 0 025. A positive max-
imum Lyapunov exponent indicates that a small perturbation in the polarity field gets amplified over time making 
the dynamics temporally decorrelated. Since the velocity field is coupled to the polarity field, we conclude that 
both the polarity and velocity fields shown in Fig. 4(A) are therefore temporally chaotic.

To investigate if the spatiotemporal dynamics are irregular, we compute the spatiotemporal correlation func-
tion33 δ δ δ( , , )C x y t  of the polarity field (see Spatiotemporal Correlation in Sec. Methods). Figure 4(B) shows 
δ δ δ( , , )C x y t  for increasing δt. We observe that spatial correlations progressively disappear as δt is increased. This 

implies that the polarity field gets spatially decorrelated in time33. Taken together with the positive maximum 
Lyapunov exponent, this shows that both the polarity and velocity fields are spatially and temporally irregular 
revealing characteristics of spatiotemporal chaos.

In summary, for large activities the contractile active fluid in the flow-tumbling regime exhibits spatiotem-
poral chaos characterized by irregular spatiotemporal patterns. Like the oscillatory dynamics, the linear per-
turbation analysis (see Critical activity α c for spontaneous flow transition in Sec. Methods) does not predict 
spatiotemporal chaos, and is an effect of nonlinearities in the model equations.

Comparison and summary of dynamics for flow-tumbling and flow-aligning regimes.  
Figure 5(A) shows the maximum Lyapunov exponent λ and summarizes the dynamical behavior of the contrac-
tile active polar fluid model in the flow-tumbling regime as a function of α α/ c. We observe that λ is less than 0 
for α α≤ ( / )0 12c  indicating that the polarity and velocity fields reach a steady state. The steady state polarity 
and velocity is spatially homogeneous for α α≤ ( / )0 2c  and the flow field is therefore 0 at steady state. For 

α α( / ) 2c , the active fluid undergoes a spontaneous flow transition. For  α α( / )2 12c , the steady state 
polarity field has non-zero gradients in y-direction and is translationally invariant along the x-direction. As a 
consequence the velocity along the x-direction is non-zero (see Sec. Spontaneous flow). For  α α( / )12 90c , 
λ is 0 and the spatiotemporal dynamics of the active polar fluid is oscillatory. The oscillatory dynamics is charac-
terized by traveling waves accompanied by traveling vortices in the flow field (see Sec. Traveling waves and trave-
ling vortices). For α α( / ) 90c , λ is greater than 0 indicating that the dynamics is temporally chaotic. In addition, 
spatiotemporal correlations disappear over a short time interval and the dynamics is therefore an instance of 
spatiotemporal chaos (see Sec. Spatiotemporal chaos). Thus, the contractile active polar fluid in the flow-tumbling 
regime undergoes 3 transitions: spontaneous flow transition, transition to oscillatory dynamics, and a transition 
to spatiotemporal chaos.

In contrast, in the flow-aligning regime, the contractile active polar fluid does not exhibit spatiotemporal 
chaos as α α( / )c  is varied over two orders of magnitude (from .0 7 to 240). Over this range of activity the contrac-
tile active polar fluid in the flow-aligning regime only shows two transitions, namely the spontaneous flow tran-
sition and transition to oscillatory dynamics. Figure 5(B) shows the maximum Lyapunov exponent λ and 
summarizes the dynamical behavior of the contractile active polar fluid model in the flow-aligning regime as a 
function of α α/ c. The Lyapunov exponent λ is less than 0 when α α≤ /0 80c . The steady state polarity and 
velocity fields are spatially homogeneous with no flow when α α≤ /0 2c . For  α α/2 80c , the dynamics 
reaches a steady state with non-zero flow in the x-direction. For α α/ 80c , λ is 0 and the fluid exhibits oscilla-
tory dynamics where the oscillations are characterized by traveling waves and traveling vortices in the flow field. 
Thus, the contractile active polar fluid in the flow-aligning regime undergoes 2 transitions: spontaneous flow 
transition and transition to oscillatory dynamics. This observation does not exclude spatiotemporal chaos at even 
larger activities. Nevertheless, we can conclude that range of activities showing non-chaotic dynamics in the 
flow-aligning regime is at least 3 times larger compared to the range of activities in the flow-tumbling regime.

Next, we investigate the effect of friction at the boundaries on the activity required for the transition from a 
steady-state flow to traveling waves for both the flow tumbling and flow aligning regimes. We also study the activ-
ity required for transition from traveling waves to spatiotemporal chaos for the flow tumbling regime. For sim-
plicity, we choose the friction coefficients at both boundaries to be equal, that is µ µ µ= =t b. A friction 
coefficient μ =  0 corresponds a stress-free boundary while the limit of very large μ corresponds to a no slip 
boundary. Figure 5(C,D) show the activity thresholds for transition in the flow-tumbling and flow-aligning cases 
respectively, as μ is increased within a range from 10−4 to 104. We observe that for the flow tumbling case 
(Fig. 5(C)), the activities required for the transition from spontaneous flow to traveling waves is independent of μ 
within the numerical uncertainty of the threshold. For the flow aligning regime (Fig. 5(D)), this threshold, how-
ever, increases before saturating at large μ. The activities required for the transition from traveling waves to spati-
otemporal chaos that is observed only in the flow tumbling regime also increase before saturating at large μ 
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(Fig. 5(C)). Nevertheless, we find that the required activities for all of the observed transitions increase only by at 
most 50% as μ is increased over 8 orders of magnitude.

Discussion
We have studied the dynamics of active polar fluids at low Reynolds numbers as a function of a 
spatially-homogeneous activity measuring the strength of the active stress in the system. We consider a 
two-dimensional contractile, active polar fluid sandwiched between two surfaces. The surfaces impose frictional 
forces at the interface modeling the effect of membrane on one side and the cytosol on the other side of an acto-
myosin cortex in biological cells. The spatiotemporal dynamics of such an active fluid is described by a nonlin-
ear continuum hydrodynamic description1–3. We numerically solve the hydrodynamic equations using a hybrid 
particle-mesh method24 when the fluid is subjected to activities over two orders of magnitude.

Figure 4.  Spatiotemporal chaos. Spatiotemporal evolution of polarity and velocity fields for (α/αc) =  100.  
(A) Snapshot of polarity and velocity fields at times t =  381 and t =  385. The polarity field is indicated by 
cylindrical rods. Along with the polarity field, the distortion or Franck free-energy density of the polarity field 
(Eq. 5) is color coded. In the velocity plot, the arrows denote local velocity normalized by the maximum 
magnitude of velocity across the computational domain. The direction of the arrows therefore indicate the local 
flow direction, and the length of the arrows indicates the relative magnitude of velocity. The one-dimensional 
curves are the instantaneous streamlines of the velocity field. The local speed of flow is color coded. See Sec. 
Model for model details, and Sec. Parameters in Sec. methods for the parameters used to simulate the model. 
The horizontal direction towards the right is the positive x-direction and the vertical direction towards the top is 
the positive y-direction. (B) The color field represents the spatiotemporal correlation function δ δ δC x y t( , , ) (See 
Sec. Spatiotemporal Correlation in Sec. Methods for the definition) for δ =t 0, 2 and 4.
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The active polar fluid not only shows transition to spontaneous flow as predicted by linear perturbation anal-
ysis, but also transitions to oscillatory spatiotemporal patterns, and even spatiotemporal chaos as the activity is 
increased. In the flow-aligning regime, where the polarity field tends to align with local shear, the model exhibits 
spontaneous flow transitions and transitions to oscillatory spatiotemporal patterns. The oscillatory spatiotem-
poral dynamics is accompanied by traveling waves and traveling vortices in the flow field. In the flow-tumbling 
regime, where the polarity field tends to tumble in local shear flow, the model also exhibits a transition to spatio-
temporal chaos as the activity is increased, resulting in irregular spatiotemporal dynamics. The chaotic regime is 
characterized by the maximum Lyapunov exponent of the spatiotemporal dynamics which we determine numer-
ically. The transitions are mediated by nonlinearities in the hydrodynamic description. This is the first time such 
transitions have been shown in active polar fluids subjected to spatially homogeneous activity. The results there-
fore suggest that the level of activity alone can tune the operating point of an actomyosin layer characterized by 
qualitatively different spatiotemporal dynamics.

These results suggest possible mechanisms for some observed biological phenomena and experimentally test-
able predictions. For example, oscillations and traveling waves in actomyosin cortex have been observed in amni-
oserosa cells during dorsal closure in Drosophila embryos13 and in periodically protruding cells34. Even though 
the presented model may be too simple for a direct comparison to these experiments, our results show that a 
homogeneous level of activity alone is sufficient for generating such behavior. In addition, our model predicts 
onset of irregular spatiotemporal dynamics as the activity is increased.

In our study, we have used several simplifications. The model is two-dimensional with the third dimension 
considered transitionally invariant. The finite magnitude of small perturbations to the initial condition limit the 
precision of numerically determining the transition thresholds. Further, we consider the case where the activity 
of the system is spatially homogeneous and are not regulated by other components in the system. Such regu-
latory mechanisms might either increase or decrease the activity needed for spatiotemporal chaos in in vivo 
actomyosin layers. We have also not considered the effect of actin filament turnover, actin polymerization and 

Figure 5.  Maximum Lyapunov exponent and summary of spatiotemporal dynamics with increasing 
activity. (A) Maximum Lyapunov exponent λ as a function of activity α α( / )c  in the flow-tumbling regime. The 
colored regions with different labels (HSS, SF, TW, SC) characterize the spatiotemporal dynamics with 
increasing α α( / )c . HSS: Homogeneous steady state with no flow. SF: Inhomogeneous steady state with non-zero 
flow. TW: Traveling wave pattern with traveling vortices. SC: Spatiotemporal chaos. (B) Same as (A) in the flow-
aligning regime. Errorbars denote three times the standard deviation of the average Lyapunov exponent 
computed over 30,000 time windows. (C) As the activity α α( / )c  is increased, the plot shows the activity region 
within which transitions from steady-state with non-zero flow (SF) to traveling waves (TW), and from the TW 
to spatiotemporal chaos (SC) are observed in the flow tumbling case. (D) shows the activity region within which 
transitions from SF to TW are observed in the flow aligning case. In (C,D), the activity thresholds are plotted as 
a function of friction coefficients µ( t, µ )b  at the boundaries, assuming µ µ µ= =t b.
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multicomponent nature of in vivo actomyosin layers. Intrinsic fluctuations in actomyosin layers that might be 
play an important role in mediating its dynamics have also not been considered35–37. Additionally, due to the 
constant magnitude constraint of the polarity field and the polarity boundary conditions, our model does not 
show topological defects in the polarity field. The effect of defects on the spatiotemporal dynamics of our model 
active fluid remains to be investigated. This investigation requires removing the constant magnitude constraint of 
the polarity field. Future work will focus on relaxing some of these simplifications to gain more insight into active 
polar fluids for modeling the actomyosin cortex.

We envision that a systematic investigation of such model actomyosin layers together with in vitro and in vivo 
experiments will help improve our understanding on the role of activity in actomyosin cortex mediating crucial 
morphogenetic phenomena in developing organisms.

Methods
Hydrodynamic equations of active polar fluids.  Denoting the polarity and velocity at position r  at time 
t by ( , )rp ti  and υ ( , )r ti  respectively (i ∈ {x, y}), the hydrodynamic description of incompressible active polar 
fluids in two-dimensions assuming negligible inertial forces is made up of a constitutive relation, the Onsager 
relation for the polarity field, force balance condition and the incompressibility constraint1–3,16,20,24.

The constitutive relation of active polar fluid reads

η σ α δ ν δ= −


 −



 − ( + − ),

( )
( )u p p p p p h p h p h2 1

2 2 1ij ij i j k k ij i j j i k k ij
s

where σ( )s  is the symmetric part of the deviatoric stress tensor with components σ( )ij
s , h is the molecular field vec-

tor with components hi, δij are the components of the Kronecker-delta tensor such that δij =  1 if =i j and 0 other-
wise, and υ υ υ δ= ∂ + ∂ − ∂u (1/2)( ) (1/2)ij i j j i k k ij are the components of the symmetric, traceless part of the 
velocity-gradient tensor. In Eq. 1, the parameter η is the viscosity of the fluid, ν is the coefficient coupling mechan-
ical stress to polarity field, and α is the activity measuring the active stresses induced by consumption of energy. 
If α <  0, the active stress is extensile, and if α >  0 the active stresses are contractile.

The equation of motion for the polarity field is given by the Onsager relation:

γ
ν ω= − + ,

( )

p
t

h u p p
D
D 2

i i
ij j ij j

where υ= ∂ ∂ + ∂t t(D/D ) ( / ) k k is the material (Lagrangian) derivative and ω υ υ= ∂ − ∂(1/2)( )ij j i i j  are the 
components of the vorticity tensor (the anti-symmetric part of the velocity-gradient tensor). In Eq. 2, the param-
eter γ is the orientational friction, and the same coefficient ν in Eq. 1 acts a coefficient between the rate of change 
of polarity and strain-rate uij. The coefficient ν in Eq. 2 describes alignment or tumbling of the polarity field by 
local shear flow2,17. If ν < 1, the polarity field tumbles in the local shear flow whereas for ν ≥ 1 the polarity 
field tends to align with the local shear flow.

The force balance condition and the incompressibility constraint are given by

σ υ∂ − ∂ Π = , ∂ = , ( )0 and 0 3j ij i j j

respectively. Here, Π is the pressure and σij is one of the four components of the deviatoric stress tensor σ. The 
deviatoric stress σ is a sum of a symmetric stress σ( )s  (Eq. 1), an antisymmetric stress σ( )a :

σ = ( − ),( ) p h p h1
2ij i j j i

a

and the Ericksen stress σ( )e  which is an equilibrium stress generalizing the hydrostatic pressure to anisotropic 
fluids38,39.

The components σ( )ij
e  of the Ericksen stress tensor and the components hi of the molecular field vector h are 

defined as a function of a distortion free-energy density f:

σ = −
∂

∂(∂ )
∂ ,( ) f

p
pij

j k
i k

e

= −
∂
∂
+ ∂





∂

∂(∂ )






.

( )
h f

p
f
p 4

i
i

k
k i

The distortion or the Franck free-energy density defines the increase in the energy density due to distortions 
in the polar nematic liquid crystals from its uniformly aligned configuration and is defined as

= (∂ )(∂ ) +
−

( ∂ ) − . ( )f K p p K K p
h

p p
2 2 2 5i j i j ij j i k k

s b s 2
0

where  ij are the components of the permutation (Levi-Civita) tensor. The free-energy density f  is parametrised 
by K s, the splay elastic constant and K b, the bend elastic constant. We neglect the twist elastic constant since it is 
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irrelevant in two dimensions. The free-energy density also includes a contribution from a component h 0 of the 
molecular field assuming that fluctuations in polarity orientation dominate the fluctuations in polarity ampli-
tudes. This assumption implies that the amplitude p pk k is a constant and can be assumed to be 1 without loss of 
generality2. Using Eqs 4, 5 and ensuring =p p 1k k ,

= + , ( )h h p h p 6x x y y

where h  is the parallel component of the molecular field that includes contribution from h 0 in Eq. 5. The trans-
verse component of h, ⊥h , creates a torque that tends to align the polarization field. It is given by

= − . ( )⊥h p h p h 7x y y x

Using Eqs 6 and 7,

= − , = + .⊥ ⊥h h p h p h h p h pandx x y y y x

Substituting these expression for hx and hy in Eq. 2 and setting ( / ) =p p tD D 0k k  to ensure that p pk k stays 
constant, we find that

γ ν ν ν= + + .h u p u p u p p[ 2 ]xx x
2

yy y
2

xy x y

Equations 1, 2 and 3, along with boundary conditions and initial polarity field fully describe the hydrodynam-
ics of incompressible active polar fluids. We numerically solve these equations using a recently developed hybrid 
particle-mesh method for incompressible active polar fluids. For details on the computational method, refer to 
Ramaswamy et al. (2015)24.

Critical activity αc for spontaneous flow transition.  We consider an active polar fluid that is transla-
tionally invariant along the x-direction and has a thickness Ly in the y-direction. The surface of the fluid at =y 0 
and =y Ly is impenetrable (υ ( , , ) =x t0 0y  and υ ( , , ) =x L t 0y y ), and has a friction boundary condition so 
that σ µ υ( , , ) = ( , , )x t x t0 0xy b x  and σ µ υ( , , ) = − ( , , )x L t x L txy y t x y  where µb and µt are the friction 
coefficients. The polarity at y =  0 and =y Ly is parallel to the x-axis so that ( , , ) =p x t0 1x , ( , , ) =p x t0 0y  
and ( , , ) =p x L t 1x y , ( , , ) =p x L t 0y y , so that the polarization angle θ = 0 along =y 0 and =y Ly. In 
addition, we assume that the elastic constants = =K K Ks b .

The incompressibility constraint, along with translational invariance in the x-direction and impenetrable sur-
faces at y =  0 and =y Ly render υ ( , , ) =x y t 0y . The translational invariance along the x-axis and the force 
balance condition render σxy constant along the y-axis. Evaluating the hydrodynamic equations at steady-state, 
the polarization angle θ ( θ=p cosx  and θ=p siny ) and the only non-zero velocity gradient υ( / )yd dx  are given 
by

θ α θ σ

η γ ν νγ θ
υ γ ν θ α θ σ

η γ ν νγ θ
=

− +

+ ( + ) +
, =

( + ) − + 


+ ( + ) +
.

( )y K y K
d
d

sin 2 2

[4 1 2 cos2 ]
and 1

2
d
d

1 cos 2 sin 2 2

[4 1 2 cos 2 ] 8
xy xy2

2 2
x

2

A trivial solution to these equations (satisfying the boundary conditions) at steady state is θ = 0 ( =p 1x  and 
=p 0y ) and υ = 0x . Expanding Eq. 8 around a small perturbation ε to the steady state configuration of polar-

ity, and using the polarity and friction boundary conditions at =y 0 and =y Ly, we find that ε is finite and 
non-zero for activities α α/ > 1c  where the critical activity αc is within an interval given by

π η γ ν
γ ν

α
π η γ ν

γ ν
+ ( + )
( + )

< <
+ ( + )
( + )

.
( )

K
L

K
L

[4 1 ]
2 1

4 [4 1 ]
2 1 9

2 2

y
2 c

2 2

y
2

For activities α α( / ) > 1c , the polarity θ is finite leading to a spontaneous flow transition since υ > 0x  due 
to gradients in polarity along the y-direction2,18,22,24. This transition is similar to the classical Fréedericksz transi-
tion of nematic liquid crystals in which the transition is brought about by an external magnetic field and not by 
internal active stresses2,18,38.

Model parameters.  We define the parameters in our model scaled by units for length l, time τ and stress σ. 
The time unit τ γ= /l K2  where the elastic constants = =K K Ks b  in Eq. 5. The unit for stress σ = /K l2. The 
unit for length l is chosen to be 1. In these units, we choose viscosity η = 1. The dimensionless coupling coeffi-
cient ν is chosen in order to reflect properties of contractile11,14 and spontaneously flowing7–9 active systems like 
actomyosin gels. In our hydrodynamic description (Sec. Hydrodynamic equations of active polar fluids), contrac-
tile active stress in Eq. 1 requires that activity α contributes to positive stress in the direction of polarity2,18. 
Positive active stress parallel to polar direction is ensured when α > 0. In addition, for contractile active fluids 
to exhibit spontaneous flow for α α( / ) > 1c , the critical activity αc (Eq. 9) needs to be positive. Positive  
critical activity is ensured if ν > − 1 in Eq. 9. Therefore, contractile active polar fluids capable of exhibiting 
spontaneous flow can be realized in a flow-tumbling regime where ν− < <1 1 or in a flow-aligning regime 
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where ν ≥ 12,17,18,22. For the flow-tumbling regime, we choose ν = − /2 5 and for the flow-aligning regime, we 
choose ν = /6 5.

Friction at the boundaries.  We impose a friction boundary condition along =y 0 and =y Ly such that the 
shear stress σ µ υ( , = ) = ( , = )x y x y0 0xy b x  and σ µ υ( , = ) = − ( , = )x y L x y Lxy y t x y . We set µ = 1t . 
Assuming that the friction coefficients are different at the two surfaces in general, we set µ µ µ( / ) =t b ratio. 
Without loss of generality, we assume that the friction coefficient µt at =y Ly is greater than or equal to the 
friction coefficient µb at =y 0. Therefore, µ ≥ 1ratio . For all simulations presented in the paper, we set 
µ = 4ratio . We, however, verified that the results are qualitatively unaltered as µratio is varied between 1 to 10.

Settings for numerical simulation.  For the numerical simulation using the hybrid particle-mesh 
method24, we use = =L L 10x y , and discretize the computational domain into 65 mesh nodes in each direc-
tion. The time integration is performed using a time-step length of 0.0004 using fourth-order Runge-Kutta time 
integration scheme24.

The initial condition for the polarity field p is a trivial spatially homogeneous steady state of the model active 
polar viscous layer except for a small perturbation to the polarity field at the centre of the computational domain. 
The trivial steady state of the hydrodynamic model under the boundary conditions used for the model active 
polar viscous layer is θ = 0 ( =p 1x  and =p 0y ) over the entire spatial domain. This trivial steady state is 
perturbed by 1% at the centre by setting θ( = / , = / ) = .x L y L2 2 0 01x y  ( = ( . )p cos 0 01x

 and 
= ( . ))p sin 0 01y . The resulting polarity field is used as the initial condition in all the simulation presented in the 

paper.

Spatiotemporal correlation.  We define the spatiotemporal correlation function δ δ δ( , , ),C x y tx y  of the 
polarity field θ as:

∫

∫

∫
δ δ δ

θ θ δ δ δ

θ

θ θ θ

( , , ) =
( , , ) ( + , + , + )

( , , )
,

( , , ) = ( , , ) − ( , , ) .

,

 





C x y t
x y t x x y y t t t

x y t t

x y t x y t
T

x y t t

d

d

where 1 d

x y

T

T

T

0

0
2

0

The spatiotemporal correlation function δ δ δ( , , ),C x y tx y  is centred at an arbitrary point ( , )x y  in the compu-
tational domain, and T  is the time window over which the correlation is computed. The range of δ δ δ( , , ),C x y tx y  
is between − 1 and 1. A value of − 1 indicates perfect negative correlation, a value of 1 indicates perfect positive 
correlation and a value of 0 indicates perfect decorrelation. In Sec. Results, we report the spatiotemporal correla-
tion function δ δ δ( , , )C x y t  with respect to the centre of the computational domain at ( / , / )L L2 2x y . That is, 
δ δ δ δ δ δ( , , ) = ( , , )/ , /C x y t C x y tL L2 2x y

.

Maximum Lyapunov exponent.  The maximum Lyapunov exponent of the spatiotemporal dynamics of 
the active polar fluid model is computed using Benettin’s standard method32,40. The Lyapunov exponent is com-
puted over a time interval of 0.02 consisting of 50 numerical time-integration steps. The computation of the 
Lyapunov exponent is performed as a function of time until the Lyapunov exponents from the final ,30 000 time 
intervals are samples from a stationary distribution.
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