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In this paper, an infection model with delay and general incidence function is formulated and analyzed. -eoretical results reveal
that positive equilibriummay lose its stability, and Hopf bifurcation occurs when choosing delay as the bifurcation parameter.-e
direction of Hopf bifurcation and the stability of the periodic solutions are also discussed. Furthermore, to illustrate the numerous
changes in the local stability and instability of the positive equilibrium, we conduct numerical simulations by using four different
types of functional incidence, i.e., bilinear incidence, saturation incidence, Beddington–DeAngelis response, and Hattaf–Yousfi
response. Rich dynamics of the model, such as Hopf bifurcations and chaotic solutions, are presented numerically.

1. Introduction

Mathematical modeling has been proven to be valuable in
exploring mechanisms and dynamical behaviors of the viral
infection process. -e analysis of these models can provide
insights into developing effective control strategies for in-
fections and evaluating antiviral therapies. Based on the
basic virus infection model introduced by Nowak et al. [1],
various models have been formulated by many authors to
describe the dynamics of virus population qualitatively and
quantitatively, and lots of interesting phenomena have been
discussed, such as the global stability of the equilibria, bi-
furcations, periodic oscillations, limit cycles, and the effects
of time delays.

For models of virus infections, it is observed that the
time delays introduced into them can predict the viral in-
fection process better when compared to models without
delays, such as the time between viral entry into a target cell
and the production of subsequent viral particles, the time
necessary for the newly produced virus to become mature
and then infectious particles, and that needed to activate the
immune response, all of which cannot be ignored when
describing the interaction of them [2, 3]. In the field of virus
dynamics, many models with discrete or distributed delays
have been studied, showing that rich dynamics including

stability switches, Hopf bifurcation, and chaotic oscillations
can be generated by the mechanisms of time delays. Spe-
cifically, stability switches can occur due to a delayed im-
mune response and exponentially decayed delay-dependent
parameters [4–9], which leads to the switches in the stability
of equilibria because of the change in the value of parameters
related with these delays.

It is known that the function forms of the incidence rate
of the infection have a crucial role in the modeling of the
virus dynamics, which are important in determining qual-
itative behavior of the proposed models and in giving a
reasonable description of the dynamics. Huang et al. [10]
and Zhang and Xu [11] formulated a virus dynamical model
with Beddington–DeAngelis (BD) infection rate βxυ/
(1 + a1x + a2υ), where x represents the concentration of
uninfected cells and υ represents that of virus, with a1, a2 ≥ 0
being constants. -is function is similar to the well-known
Holling type II functional response, and the term a2υ in the
denominator reflects the mutual interference between vi-
ruses. In [12], Zhou and Cui used a Crowley–Martin (CM)
function response of the form βxυ/(1 + a1x+ a2υ + a1a2xυ),
with a1, a2, a3 ≥ 0, which are constants. It can be seen that in
BD and CM functional responses, when a1 > 0, a2 � 0, these
two functions are simplified to the Holling type II functional
response. And when a1 � 0, a2 > 0, they express a saturation
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response. Moreover, when a1 � 0, a2 � 0, they are the mass
action process (or Holling type I functional response). Other
more general incidence rates have also been proposed.
McCluskey and Yang used function f(x, υ) as incidence rate
under some biologically motivated assumptions to study the
global stability of a virus model [13]. Hattaf et al. in [14, 15]
used an incidence rate f(x, y, υ) that covers a variety of
incidence functions such as BD response when a3 � 0 and
CM response when a3 � a1a2 if f(x, y, υ) � βx/(1+

a1x + a2υ + a3xυ), which will be called Hattaf–Yousfi re-
sponse in the following, with y being infected cells.

In this paper, we will study the influence of general
incidence function and time delay on the dynamical be-
haviors of an infection model. Motivated by the works of
[7, 13], we will focus on the dynamics of a delayedmodel that
incorporates the immune response in antiviral defense, time
delay in activating the immune response for the virus, and
two general incidence functions for the transmission of
virus-to-cell and cell-to-cell, respectively. -e main aim of
this paper is to study stability switches of the positive
equilibrium, which are generated by the mechanism of time
delay, implying the existence of changes in local stability and
the instability of this equilibrium. By using the characteristic
equation with delay-dependent parameters, normal theory,
and center manifold theorem, we can indicate the existence
of pure imaginary roots and then Hopf bifurcation. Fur-
thermore, to verify the theoretical results, numerical sim-
ulations are performed for four different forms of incidence
functions, including bilinear incidence, saturation incidence,
Beddington–DeAngelis response, and Hattaf–Yousfi func-
tional response, respectively.

-e organization of the paper is as follows. In the next
section, we introduce the virus dynamic model. -e
boundedness and nonnegativity of solutions of the model as
well as the existence and uniqueness of equilibria are dis-
cussed in Section 3. In Section 4, both the stabilities of two
equilibria and the conditions for the existence of Hopf bi-
furcation are studied. Furthermore, numerical simulations
are presented in Section 5. A brief summary is given in
Section 6, and the properties of the Hopf bifurcation so-
lutions have been provided in Appendix.

2. Model Formulation

To account for the possible effect of the latent period in viral
infection, we introduce a constant time delay τ to represent
the time needed to activate the immune response. In this
model, two transmissions of virus-to-cell and cell-to-cell
have been both taken into consideration, and we hope to
employ the function of incidence rate given by more general
form. Consequently, the recruitment of infected cells is given
by two functions, i.e., f1(u, v)v and f2(u, w)w, which were
used in [16–18], here u, w, and v denote the concentrations
of uninfected cells, infected cells, and free virus particles. z is
used to denote the concentration of CTL cells. Assume that
the uninfected cells are produced at a constant rate s. d1, d2,
d3, and d4 represent the death rates of uninfected cells,
infected cells, free virus, and CTL cells. p denotes the killing

rate of infected cells by CTL cells. k and c are the production
rates of free viral particles and the effector cells, respectively.
-en, we construct the following model:

du

dt
� s−f1(u, v)v(t) −f2(u, w)w(t)− d1u(t),

dw

dt
� f1(u, v)v(t) + f2(u, w)w(t)−d2w(t)−pw(t)z(t),

dv

dt
� kw(t) −d3v(t),

dz

dt
� cw(t− τ)− d4z(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
with initial conditions

u(θ) � φ1(θ),

w(θ) � φ2(θ),

v(θ) � φ3(θ),

z(θ) � φ4(θ),

θ ∈ [−τ, 0],

(2)

where φ � (φ1,φ2,φ3,φ4) ∈ C([−τ, 0], R4
+) is the Banach

space of continuous functions mapping the interval [−τ, 0]

into R4
+, with φi(θ) ≥ 0 (θ ∈ [−τ, 0], i � 1, 2, 3, 4), and all

constant parameters are positive.
Function fi : R2

+⟶ R+ (i � 1, 2) is continuously dif-
ferentiable and is assumed to satisfy the following
conditions:

f1(0, v) � f2(0, w) � 0, for all v≥ 0 andw≥ 0, (3)

zf1

zu
> 0,

zf2

zu
> 0, and

zf1

zv
≤ 0,

zf2

zw
≤ 0, for all u≥ 0,

v≥ 0 andw≥ 0,

(4)

z f1v( 􏼁

zv
� f1 +

zf1

zv
, v≥ 0,

z f2w( 􏼁

zw
� f2 +

zf2

zw
, w≥ 0.

(5)

-ese fundamental assumptions are biologically moti-
vated, and it is easy to check that class of functions f1 (and
f2) satisfying these hypotheses include incidence functions
such as f1 � βu (mass incidence), βu/(1 + av) (saturation
incidence), βu/(1 + a1u + a2v) (Beddington–DeAngelis re-
sponse), and βu/(1 + a1u + a2v + a3uv) (Hattaf–Yousfi
response).

3. Preliminaries and Equilibria

We denote the state space of (1) by X � C([−τ, 0],R4
+),

equipped with the sup-norm φ � sup−τ≤θ≤0|φ(θ)|. For any
φ ∈ X, the existence and uniqueness of the solution
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Y(t, φ) � (u(t, φ), w(t,φ), v(t,φ), z(t,φ)), (6)

of model (1) with initial condition (2) follow from the
standard theory of functional differential equations [19].
Furthermore, X is positively invariant for (1). In the fol-
lowing, we discuss the boundedness [20] and nonnegativity
of solutions of model (1) as well as the existence of equilibria.

Theorem 1. (e solutions Y(t, φ) of model (1) with initial
condition (2) are nonnegative and ultimately uniformly
bounded for all t≥ 0.

Proof. For u(t), if there exists t0 such that u(t)> 0 for
t ∈ [0, t0) and u(t0) � 0, then it is obvious that u′(t0) � s> 0,
which implies that for sufficiently small ε> 0, u(t)< 0 for
t ∈ (t0 − ε, t0), contradicting with u(t)> 0 for all t ∈ [0, t0).
-us, it is valid that u(t)> 0 for all t≥ 0. In order to show
w(t)> 0, v(t)> 0, and z(t)> 0 for all t≥ 0, assume that there
exists t1 > 0 such that min w(t1), v(t1), z(t1)􏼈 􏼉 � 0 for the first
time. Firstly, if w(t1) � 0, then from the second equation of
(1); we have

dw t1( 􏼁

dt
� f1 u t1( 􏼁, v t1( 􏼁( 􏼁, v t1( 􏼁> 0, (7)

and then there exists ε1 small enough such that
(dw(t)/dt) > 0 for t ∈ (t1 − ε1, t1], which contradicts with
the facts thatw(t)> 0 for t ∈ (t1 − ε1, t1] andw(t1) � 0.-us
w(t)> 0 for all t≥ 0. For v(t) and z(t), since

v(t) � v(0)e
−d3t

+ 􏽚
t

0
kw(θ)e

−d3(t−θ)
dθ,

z(t) � z(0)e
−d4t

+ 􏽚
t

0
cw(θ − τ)e

−d4(t−θ)
dθ,

(8)

it is obvious that v(t1) � 0 or z(t1) � 0 contradicts with the
above expression about v(t) and z(t) at t � t1.-erefore, the
solution Y(t,φ) with initial condition (2) is nonnegative for
all t> 0.

To prove the boundedness of the solutions, letting
N � u + w, we have

dN

dt
� s−d1u− d2w−pwz≤ s− dN , (9)

where d � min d1, d2􏼈 􏼉, then lim supt⟶∞N≤ (s/d), imply-
ing that u(t) and w(t) are ultimately bounded. For v(t), it
follows from the third equation of (1) that

dv

dt
≤

ks

d
−d3v, (10)

which leads to lim supt⟶∞v≤ (ks/dd3). Similarly, we have
lim supt⟶∞z≤ (cs/dd4). -erefore, the solutions of system
(1) are ultimately uniformly bounded.

System (1) always has an infection-free equilibrium
E0 � (u0, 0, 0, 0), where u0 � s/d1. In the following, we
analyze the existence and uniqueness of the positive equi-
librium E∗ � (u∗, w∗, v∗, z∗).

For convenience, we denote

f
0
1 � f1 u0, 0( 􏼁,

f
0
2 � f2 u0, 0( 􏼁,

f
∗
1 � f1 u

∗
, v
∗

( 􏼁,

f
∗
2 � f2 u

∗
, w
∗

( 􏼁.

(11)

Define the basic reproductive number as

R0 �
kf0

1
d2d3

+
f0
2

d2
≔R

1
0 + R

2
0. (12)

From biological viewpoint, R0 can be divided into two
parts, with R1

0 measuring the average number of secondary
infected generation caused by an existing free virus and R2

0
being that caused by an infected cell, which give the basic
reproduction number corresponding to virus-to-cell and
cell-to-cell infections, respectively.

It is easy to obtain v∗ � (k/d3)w
∗ and z∗ � (c/d4)w

∗. By
the first and second equations in (1), we have

s− d1u
∗ − d2w

∗ −pw
∗
z
∗

� 0, (13)

which gives u∗ � (1/d1)[s−w∗(d2 + (pc/d4)w
∗)]. In order

to get the infected steady state, it is necessary that
s−w∗(d2 + (pc/d4)w

∗)≥ 0, and then, we must have
0<w≤w, with w � (−d2d4 + d4

��
Δ

√
)/2pc and Δ � d2

2+

(4spc/d4).
From the equation of w, it follows that

f
∗
1v
∗

+ f
∗
2w
∗ − d2 +

pc

d4
w
∗

􏼠 􏼡w
∗

� 0. (14)

Denote the left side of (11) as G(w∗), and then the
positive equilibrium of model (1) are given by G(w∗) � 0 for
w∗ ∈ (0, w]. Noting that G(0) � 0 and

G(w) � − d2 +
pc

d4
w􏼠 􏼡, w< 0, (15)

for u � 0 when w � w, and it is sufficient to show that
G′(0)> 0 if there is a positive equilibrium. In fact, when
R0 > 1, we have

G′(0) � f1
s

d1
, 0􏼠 􏼡

k

d3
+ f2

s

d1
, 0􏼠 􏼡−d2 � d2 R0 − 1( 􏼁> 0,

(16)

and then G(w∗) is positive for sufficiently small w∗;
therefore, there exists an infected steady state E∗.

Now we examine the derivative of G(w∗) at E∗. Noting
that f∗1v∗ + f∗2w∗ � d2w

∗ + pw∗z∗, and then

f∗1v∗ + f∗2w∗

w∗
�

k f∗1v∗ + f∗2w∗( 􏼁

d3v
∗ � d2 +

pc

d4
w
∗
, (17)

and thus, we have
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G′ w
∗

( 􏼁 � f
∗
1

k

d3
+

zf∗1
zu
−d2 −

2pc

d4
w
∗

􏼠 􏼡
k

d3
w
∗

+
zf∗1
zv

k

d3

k

d3
w
∗

+ f
∗
2 +

zf∗2
zu
−d2 −

2pc

d4
w
∗

􏼠 􏼡w
∗

+
zf∗2
zw

w
∗ − d2 +

2pc

d4
w
∗

􏼠 􏼡

� f
∗
1

k

d3
+ f
∗
2 − d2 +

pc

d4
w
∗

􏼠 􏼡 + T−

� f
∗
1

k

d3
+ f
∗
2 −f
∗
1

k

d3
−f
∗
2

kw∗

d3v
∗ + T−

� T−,

(18)
where

T− �
zf∗1
zu
−d2 −

2pc

d4
w
∗

􏼠 􏼡
k

d3
w
∗

+
zf∗1
zv

k

d3

k

d3
w
∗

+
zf∗2
zu
−d2 −

2pc

d4
w
∗

􏼠 􏼡w
∗

+
zf∗2
zw

w
∗ −

pc

d4
w
∗
,

(19)

denoting the sum of negative terms, and thus function G is
strictly decreasing at each of its zeros. Suppose there exists
more than one infected steady state, then there must exist an
equilibrium E

∗
� (u∗, w∗, v∗, z∗) such that G(w∗)≥ 0,

which contradicts with the above fact. -erefore, there is
only one positive equilibrium E∗ when the basic re-
productive numberR0 > 1, and it is easy to verify that there
exists no infection equilibrium when R0 < 1. -en the
following result is obtained.

Theorem 2. For system (1), when R0 < 1, there exists only
the infection-free equilibrium E0 � ((s/d1), 0, 0, 0). IfR0 > 1,
there is a unique infection equilibrium E∗ � (u∗, w∗, v∗, z∗)

as well as E0.

When R0 > 1, by using the persistence theory in [21], it
can be shown that system (1) is uniformly persistent.

4. Stability and Hopf Bifurcation

In this section, we will study the stability of the two equilibria
and the conditions for the existence of Hopf bifurcation.

4.1. Stability of E0. Firstly, we linearize model (1) at the
steady states to discuss its local stability. -e Jacobian matrix
leads to the following characteristic equation:

λ + d1 +
zf1

zu
v +

zf2

zu
w f2 +

zf2

zw
w f1 +

zf1

zv
v 0

−
zf1

zu
v +

zf2

zu
w􏼠 􏼡 λ + d2 + pz−f2 −

zf2

zw
w − f1 +

zf1

zv
v􏼠 􏼡 pw

0 −k λ + d3 0

0 −ce−λτ 0 λ + d4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0, (20)

and thus, the linearization of system (1) at E0 can be
expressed by

λ + d1( 􏼁 λ + d4( 􏼁 λ2 + d2 + d3 −f
0
2􏼐 􏼑λ + d2d3 1−R0( 􏼁􏼐 􏼑 � 0.

(21)

It is clear that (21) has two negative real roots λ1 � −d1
and λ2 � −d4.-e stability of E0 is determined completely by
using the following equation:

λ2 + d2 + d3 −f
0
2􏼐 􏼑λ + d2d3 1−R0( 􏼁 � 0. (22)

For the case R0 < 1, the roots of (22) have only negative
real parts. -en the infection-free equilibrium E0 is locally
asymptotically stable. Otherwise, when R0 > 1, equation
(22) has at least one root with positive real part, which
implies that E0 is unstable.

Theorem 3. IfR0 < 1, then the infection-free equilibrium E0
of model (1) is globally asymptotically stable, and it is unstable
when R0 > 1.

Proof. For a continuous and bounded function f(t), we
define

f
∞

� lim sup
t⟶∞

f(t),

f∞ � lim inf
t⟶∞

f(t).
(23)

-en for any solution of (1), we have
0≤ u∞ ≤ u

∞ <∞,

0≤w∞ ≤w
∞ <∞,

0≤ v∞ ≤ v
∞ <∞,

0≤ z∞ ≤ z
∞ <∞.

(24)
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By using the fluctuation lemma in [22], we know that
there is a sequence tn􏼈 􏼉 with tn⟶∞ such that

w tn( 􏼁⟶ w
∞

,

andw′ tn( 􏼁⟶ 0,

n⟶∞.

(25)

Substituting the sequence tn􏼈 􏼉 into the first equation of
(1) and taking the limit gives

lim
n⟶∞

u′ tn( 􏼁≤ s−d1 lim
n⟶∞

u tn( 􏼁, (26)

and then we have u∞ ≤ (λ/d1) � u0. A similar argument to
the second and third equations of model (1) yields

d2w
∞ ≤f1 u

∞
, v
∞

( 􏼁v
∞

+ f2 u
∞

, w
∞

( 􏼁w
∞

, (27)

and

v
∞

�
k

d3
w
∞

. (28)

By the assumption of (4), combining equality (28) into
(27) gives

d2w
∞ ≤f1 u

0
, 0􏼐 􏼑

k

d3
w
∞

+ f2 u
0
, 0􏼐 􏼑w
∞

, (29)

which leads to d2w
∞ ≤ d2R0w

∞. Noticing that w∞ is
nonnegative since it is the supremum of the function w(t),
then there are possible cases of w∞ > 0 or w∞ � 0. If w∞ > 0,
then we haveR0 ≥ 1, which gives a contradiction.-erefore,
w∞ � 0 is valid. From (28), we have v∞ � 0. When con-
sidering the fourth equation about z(t) in model (1), we
obtain z∞ � 0. As for u(t), we can find that limt⟶∞u(t) �

s/d1 by applying the limit theory to the first equation in
system (1), and thus, the proof is completed.

4.2. Stability of E∗. For convenience, we introduce the fol-
lowing notations:

zf∗1
zu

v
∗

+
zf∗2
zu

w
∗

� Q0,

zf∗1
zv

v
∗

+ f
∗
1 � Q1,

zf∗2
zw

w
∗

+ f
∗
2 � Q2.

(30)

From the assumption (5), it follows that
Qi ≥ 0 (i � 0, 1, 2).

In the following calculation, we will use the following
equilibrium equations:

s−f∗1v∗ −f∗2w∗ − d1u
∗ � 0,

f∗1v∗ + f∗2w∗ � d2w
∗ + pw∗z∗,

kw∗ � d3v
∗,

cw∗ � d4z
∗.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(31)

-en, we have

d2 + pz
∗ −Q2 � d2 + pz

∗ −f
∗
2 −

zf∗2
zw

w
∗

�
f∗1v∗ + f∗2w∗

w∗
−f
∗
2 −

zf∗2
zw

w
∗

� f
∗
1

k

d3
−

zf∗2
zw

, w
∗ > 0,

−kf
∗
1 � −k

d2w
∗ + pw∗z∗ −f∗2w∗

v∗

� −k d2
d3

k
+ pz
∗d3

k
−f
∗
2
d3

k
􏼠 􏼡

� −d2d3 − d3pz
∗

+ d3f
∗
2 ,

d3f
∗
2 −d3Q2 � −d3

zf∗2
zw

, w
∗ > 0.

(32)

Linearized model (1) at the infection equilibrium E∗ and
the characteristic equation can be expressed as

λ4 + A3λ
3

+ A2λ
2

+ A1λ + A0 + B2λ
2

+ B1λ + B0􏼐 􏼑e
−λτ

� 0,

(33)

where Ai � Ai(τ) (i � 0, 1, 2, 3) and Bj � Bj(τ)(j � 0, 1, 2)

with

A3 � d1 + d3 + d4 + Q0 + d2 + pz
∗ −Q2,

A2 � d1 + Q0( 􏼁 d3 + d4 + d2 + pz
∗ −Q2( 􏼁

+ d3d4 + d4 d2 + pz
∗ −Q2( 􏼁 + Q0Q2

− kv
∗zf∗1

zv
− d3w

∗zf∗2
zw

,

A1 � d3d4 d1 + Q0( 􏼁 + Q0Q2 d3 + d4( 􏼁

+ d4 d1 + Q0( 􏼁 d2 + pz
∗ −Q2( 􏼁

+ d1 + d4 + Q0( 􏼁 −kv
∗zf∗1

zv
− d3w

∗zf∗2
zw

􏼠 􏼡,

A0 � d4 d1 + Q0( 􏼁 −kv
∗zf∗1

zv
−d3w

∗zf∗2
zw

􏼠 􏼡

+ d3d4Q0Q2 + kQ1,

andB2 � pw
∗
c,

B1 � pw
∗
c d1 + d3 + Q0( 􏼁,

B0 � pw
∗
cd3 d1 + Q0( 􏼁.

(34)

It can be seen that Ai(i � 0, 1, 2, 3) and Bj(j � 0, 1, 2) are
all positive. When the delay τ � 0, Ai(i � 0, 1, 2, 3) and
Bj(j � 0, 1, 2) are independent with τ and the characteristic
equation (33) can be reduced to
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λ4 + A3λ
3

+ A2 + B2( 􏼁λ2 + A1 + B1( 􏼁λ + A0 + B0 � 0.

(35)

By using the Routh–Hurwitz criterion, we know that all
solutions of (35) have negative real parts if and only if the
following conditions are satisfied:

H1 � A3 A2 + B2( 􏼁− A1 + B1( 􏼁> 0,

H2 � A3 A2 + B2( 􏼁 A1 + B1( 􏼁−A
2
3 A0 + B0( 􏼁− A1 + B1( 􏼁

2 > 0.

(36)

Let f � f1v + f2w, f∗ � f∗1v∗ + f∗2w∗, fu � f(u, w∗,

v∗) and assume

1−
f

fu

􏼠 􏼡
f

fu

−
v

v∗
􏼠 􏼡≥ 0, for all u, w, v> 0. (37)

Theorem 4. If (37) holds and τ � 0, then the infection
equilibrium E∗ is globally asymptotically stable whenR0 > 1.

Proof. Construct a Lyapunov functional as

L(t) � u− u
∗ − 􏽚

u

u∗

f∗

fs

ds + w−w
∗ ln

w

w∗

+
d2 + pz∗( 􏼁

k
v− v
∗ ln

v

v∗
􏼒 􏼓 +

pz∗

c
z− z
∗ ln

z

z∗
􏼒 􏼓,

(38)

and then calculating the time derivation of L(t) along system
(1) leads to

dL(t)

dt
� d1u

∗ 1−
f∗

fu

􏼠 􏼡 1−
u

u∗
􏼒 􏼓 + f

∗ f

fu

−
v

v∗
􏼠 􏼡

+ pz
∗ −w

z∗

z
−w

z

z∗
􏼠 􏼡 + 2pwz

∗
+ 3f
∗

−f
∗wv∗

w∗v
−f
∗f
∗

fu

−f
∗fw∗

f∗w

� d1u
∗ 1−

f∗

fu

􏼠 􏼡 1−
u

u∗
􏼒 􏼓−pwz

∗ z∗

z
+

z

z∗
− 2􏼠 􏼡

+ f
∗

g
f

fu

􏼠 􏼡−g
v

v∗
􏼒 􏼓􏼠 􏼡

−f
∗

g
wv∗

w∗v
􏼠 􏼡 + g

f∗

fu

􏼠 􏼡 + g
w∗f

wf∗
􏼠 􏼡􏼠 􏼡,

(39)

with g(x) � x− 1− lnx. By using (4), (37), and the property
of function g(x), we have (1− (f∗/fu))(1− (u/u∗))≤ 0 and
g(f/fu)≤g(v/v∗), which implies that (dL(t)/dt)≤ 0 and it
can verified that E∗{ } is the largest compact invariant set
where (dL(t)/dt) � 0. -erefore, E∗ is globally asymptoti-
cally stable by using LaSalle’s invariance principle.

However, if the delay τ ≠ 0, it may destabilize the infected
steady state and lead to Hopf bifurcation, which will be
discussed in the following subsection.

4.3. Hopf Bifurcation. It is shown that all roots of (33) locate
in the left side of the imaginary axis if τ � 0 and (36) is
satisfied, which leads to local stability of the infected
equilibrium E∗. When τ increases from 0 to variant positive
delays, it is possible that the roots of (35) pass through the
imaginary axis and enter the right side in the complex plane.
-erefore, the stability switch may occur, and it is necessary
to study the transcendental equation (33) when λ � iω,
which is a critical value under small perturbation. In the
following analysis, we will study the occurrence of any
possible stability switching in this case.

Substituting λ � iω into (33) and separating the real and
imaginary parts give

−ω4 + A2ω2 −A0 � B0 −B2ω2( 􏼁cosωτ + B1ω sinωτ,

−A3ω3 + A1ω � B0 −B2ω2( 􏼁sinωτ −B1ω cosωτ.

⎧⎨

⎩

(40)
Squaring and adding the two equalities lead to

F(ω) � ω8
+ M3ω

6
+ M2ω

4
+ M1ω

2
+ M0 � 0, (41)

where
M3 � A

2
3 − 2A2,

M2 � A
2
2 + 2A0 − 2A1A3 −B

2
2,

M1 � A
2
1 − 2A2A0 + 2B2B0 −B

2
1,

M0 � A
2
0 −B

2
0.

(42)

Note that equation F(ω) � 0 has at least one positive
root when M0 < 0, i.e., A0 <B0. And let z � ω2, then the
characteristic equation (33) has a purely imaginary root iω
which is equivalent to F(z) � 0 has a positive real root z.
Take the transformation y � z + (M3/4); then for F′(z) � 0,
it is equivalent to y3 + m1y + m0 � 0 with m1 �

(M2/2)− (3M2
3/16), m0 � (M3

3/32)− (M3M2/8) + (M1/4),
and it has roots of yi, correspondingly, zi � yi − (M3/4)

(i � 1, 2, 3); thus we have the following result about the roots
of F(z) � 0 [23].

Lemma 1. Denoting Δ � (m0/2)2 + (m1/3)3, for the roots of
F(z) � 0,

(i) If M0 < 0, then there exists at least one positive root
(ii) If M0 ≥ 0 and Δ≥ 0, then there are positive roots if

and only if z1 > 0 and F(z1)≤ 0
(iii) If M0 ≥ 0 and Δ< 0, then there are positive roots if

and only if there exists at least a positive
z∗ ∈ z1, z2, z3􏼈 􏼉 such that F(z∗)≤ 0

Now assume that F(z) � 0 has four roots
z∗i (i � 1, 2, 3, 4) with z∗i > 0; then by the relation of z � ω2,
we have the fact of ωi �

��
z∗i

􏽰
. From the equalities in (40), we

can express cos ωτ and sin ωτ as
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cosωτ �
ω4 −A2ω2 + A0( 􏼁 B2ω2 −B0( 􏼁 + B1ω A3ω3 −A1ω( 􏼁

B2
1ω2 + B0 −B2ω2( 􏼁

2 ≜Fc,

sinωτ �
B1ω −ω4 + A2ω2 −A0( 􏼁 + B0 −B2ω2( 􏼁 −A3ω3 + A1ω( 􏼁

B2
1ω2 + B0 −B2ω2( 􏼁

2 ≜Fs.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(43)

Then for j � 0, 1, 2, 3, . . ., we can obtain the following
expression of delay τ:

τi
j �

arccos Fc( 􏼁 + 2πj

ωi

, Fs ≥ 0,

2π − arccos Fc( 􏼁 + 2πj

ωi

, Fs < 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(44)

Lemma 2. For the roots of characteristic equation (35),
suppose conditions in (36) hold, then there are two
possibilities:

(i) Equation (35) has only roots with negative real parts
for τ ∈ [0,min

i,j
τi

j􏽮 􏽯) if any one of the following con-
ditions (c1) ∼ (c3) holds

(ii) Equation (35) has only roots with negative real parts for
τ ≥ 0 if the conditions (c1) ∼ (c3) are not satisfied, with

(c1) M0 < 0
(c2) M0 ≥ 0, Δ≥ 0, z1 > 0 and F(z1)< 0
(c3) M0 ≥ 0, Δ< 0, there is a positive z∗ ∈ z1, z2, z3􏼈 􏼉

such that F(z∗)≤ 0

From this lemma, we can see that the infection equilib-
rium is asymptotically stable for all τ ≥ 0 if the conditions
(c1) ∼ (c3) are not satisfied. Otherwise, if one of these three
conditions is satisfied, then the infection equilibrium is as-
ymptotically stable for τ ∈ [0,min

i,j
τi

j􏽮 􏽯), and a Hopf bi-
furcation can occur at this equilibrium when τ � τ∗ with τ∗
being the critical value of τi

j.

Theorem 5. Suppose (36) holds, when τ∗ � τi
j(corre-

spondingly ω∗ � ωi for some i � 1, 2, 3, 4), then the charac-
teristic equation (35) admits a pair of simple conjugate pure
imaginary roots λ � iω∗ and λ � −iω∗, which crosses the
imaginary axis from left to right (from right to left) if
δ < 0(> 0), where

δ � sign
dRe λ

dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�τ∗
􏼨 􏼩 � sign F′ ω∗2􏼐 􏼑􏽮 􏽯. (45)

Proof. Differentiating the characteristic equation (33) with
respect to delay τ and arranging it can give the expression of
(dλ/dτ)−1 as

dλ
dτ

􏼠 􏼡

−1

�
4λ3 + 3A3λ

2 + 2A2λ + A1

−λ λ4 + A3λ
3 + A2λ

2 + A1λ + A0􏼐 􏼑

+
2B2λ + B1

λ B2λ
2 + B1λ + B0􏼐 􏼑

−
τ
λ
.

(46)

Meanwhile, noticing the fact

sign
dRe λ

dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�τ∗
􏼨 􏼩 � sign Re

dλ
dτ

􏼠 􏼡

−1􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�τ∗

⎧⎨

⎩

⎫⎬

⎭, (47)

and then some computation leads to

sign
dRe λ

dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�τ∗
􏼨 􏼩 � sign

⎧⎨

⎩Re
4λ3 + 3A3λ

2 + 2A2λ + A1

−λ λ4 + A3λ
3 + A2λ

2 + A1λ + A0􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭
τ�τ∗

+ Re
2B2λ + B1

λ B2λ
2 + B1λ + B0􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭
τ�τ∗

⎫⎬

⎭

� sign
4ω∗6 + 3M3ω∗4 + 2M2ω∗2 + M1

B2ω∗2 −B0( 􏼁
2

+ B2
1ω∗2

⎧⎨

⎩

⎫⎬

⎭

� sign
F′ ω∗2( 􏼁

B2ω∗2 −B0( 􏼁
2

+ B2
1ω∗2

⎧⎨

⎩

⎫⎬

⎭

� sign F′ ω∗2􏼐 􏼑􏽮 􏽯,

(48)

which gives the desired result.
When model (1) undergoes stability switch at E∗ for

τ � τ∗, the conditions and theorem for the direction and
stability of Hopf bifurcation can be discussed and proven by
the normal theory and center manifold theorem in [24],
which are presented in Appendix.

5. Numerical Simulation

In model (1), the incidence rates for transmission of virus-
to-cell and cell-to-cell are taken as the general form. By
choosing four specific types of functions, i.e., bilinear in-
cidence, saturation incidence, Beddington–DeAngelis re-
sponse, and Hattaf–Yousfi response, we conduct numerical
simulations to investigate the complex dynamics that model
(1) can have, when taking time delay τ as the bifurcation
parameter. -e values of parameters, d3 � 2.4, d4 � 1.618,
p � 0.812, and k � 200, remain the same in the following
different cases.

Case 1. Consider the functions of f1(u, v) � β1u and
f2(u, w) � β2u, then the incidence rates have the bi-
linear forms of β1uv and β2uw. We take the other
parameters as c � 0.05, d1 � 0.01, d2 � 0.4,
β1 � 0.00025, and β2 � 0.00065. Figure 1 presents the
different results for varying producing rate of un-
infected cells, plotted with s � 2 (Figure 1(a)) and s �

10 (Figure 1(b)), which shows the effect of parameter s
on dynamical behavior of the model in this case. In this
figure, we can see that there exists periodic solutions
bifurcated from the infection equilibrium.-emaximal
and minimal values of v(t) are denoted by the two
curves, and the line implies the local stability of E∗. It is
clearly shown that the value of v(t) increases with that
of s. Figure 2 shows that the infection equilibrium E∗ is
asymptotically stable when τ � 15 and a periodic

Computational and Mathematical Methods in Medicine 7
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Figure 1: Bifurcation diagrams for model (1) with bilinear incidence rate. (a) s � 2. (b) s � 10. Other parameters are the same.
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Figure 2: Solutions of the model for τ � 15 (a, b) and τ � 20 (c, d), corresponding to Figure 1(b).
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solution exists when τ � 20, which corresponds to the
bifurcation diagram in Figure 1(b).
Case 2. -e type of saturation incidence is used in this
case, i.e., f1(u, v) � β1u/(1 + av) and
f2(u, w) � β2u/(1 + bw); then the dynamical behaviors
of the model are simulated in Figures 3 and 4, with the

parameters taken as c � 1, d1 � 0.01, and d2 � 0.03. In
Figures 3(a), we set s � 10, β1 � 0.002, β2 � 0.003,
a � 1, and b � 1, and in Figure 3(b), we set s � 20,
β1 � 0.02, β2 � 0.03, a � 0.1, and b � 0.4. By the set of
parameters, Figure 3(a) shows that the time delay does
cause a bifurcation at τ � 4.7403. -e line is given by
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Figure 3: Bifurcation diagrams for model (1) with saturation incidence rate. (a) s � 10, β1 � 0.002, β2 � 0.003, a � 1, and b � 1. (b) s � 20,
β1 � 0.02, β2 � 0.03, a � 0.1, and b � 0.4. Other parameters are the same.
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Figure 4: Solutions of the model for τ � 35 (a, b) and τ � 45 (c, d), corresponding to Figure 3(b).
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v∗ � 198.0481, and the infected steady state E∗ is locally
asymptotically stable when τ < 4.7403. More compli-
cated dynamics for model (1) are caused by the delay
perturbation in Figure 3(b). A period-three solution
occurs for τ � 35 and τ � 45, which are displayed
clearly by time series of v(t) for the time interval
[5000, 5500] and their corresponding phase portraits of
v(t) and u(t) plotted in Figure 4, respectively.
Case 3. Beddington–DeAngelis response is used in
this case; here, f1(u, v) � β1u/(1 + a1u + a2v) and
f2(u, w) � β2u/(1 + a1u + a2w). By this type of

incidence function, chaotic motions also occur when
increasing τ from 0 to 50 with s � 20, c � 1, d1 � 0.1,
d2 � 0.3, β1 � 0.02, and β2 � 0.03. When altering pa-
rameter values of a1 and a2, it can lead to the different
bifurcation diagrams, which can be seen in Figures 5
and 6. We take a1 � 0.08, a2 � 0.5 and a1 � 0.01,
a2 � 0.2, respectively, and then the simulation results in
Figure 5 show the effect of these two parameters on the
system. From Figure 5, we can see that model (1) with
these parameter values can experience complicated
dynamics. Furthermore, for τ � 10, 22, and 45 in
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Figure 5: Bifurcation diagrams for model (1) with Beddington–DeAngelis response. (a) a1 � 0.08 and a2 � 0.5. (b) a1 � 0.01 and a2 � 0.2.
Other parameters are the same.
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Figure 6: Solutions of the model for τ � 10 (a), τ � 22 (b), and τ � 45 (c, d), corresponding to Figure 5(b).
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Figure 5(b), the solution of the model is presented by its
orbit, plot of time series, and phase portrait corre-
spondingly in Figure 6. For τ � 10, there exists a Hopf
bifurcation, and when it increases to τ � 22, chaotic
motion occurs, shown in Figures 6(a) and 6(b).-e plot
of time series of v(t) and phase portrait of v(t) and u(t)

are given to illustrate the dynamical behaviors when
τ � 45 in Figures 6(c) and 6(d), showing that there
exists a period-five solution.
Case 4. When Hattaf–Yousfi response is used in this
case, the functions take the form of f1(u, v) � β1u/(1 +

a1u + a2v + a3uv) andf2(u, w) � β2u/(1 + a1u + a2w+

a3uw), respectively. If the parameter values are chosen
as s � 15, c � 1, d1 � 0.01, d2 � 0.03, β1 � 0.5, β2 � 0.3,
a1 � 1, a2 � 1, and a3 � 1, only Hopf bifurcation exists
and no chaotic motions occur when τ ∈ [0, 50],
shown in Figure 7(a). For a different set of values, let
s � 20, c � 1, d1 � 0.1, d2 � 0.3, β1 � 0.02, β2 � 0.03,
a1 � 0.01, a2 � 0.3, and a3 � 0.001, then the resulting
bifurcation diagram in Figure 7(b) shows that system (1)
can have solution of period three. Figure 8 gives the time

series of v(t) and phase portrait of v(t) and u(t) for
τ � 49 to illustrate the solution of system (1), which
corresponds to Figure 7(b).

6. Discussion

To model the mechanisms of infectious diseases mathe-
matically and explore dynamical behaviors of infection
processes, some types of functional incidence have been used
in [10, 12–15], which play an important role in determining
qualitative behaviors of the proposed models and in giving
reasonable descriptions of the dynamics. General incidence
rate has been introduced into many epidemic models with
an aim to include different situations as much as possible. In
our model, we incorporate the effect of time delay needed to
activate the immune response for the virus and two general
incidence functions for the transmission of virus-to-cell and
cell-to-cell. -e basic reproductive number, which works as
a crucial threshold and determines the dynamics of the
model, has been defined as the sum of two parts related with
infections of virus-to-cell and cell-to-cell, respectively.
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Figure 7: Bifurcation diagrams for model (1) with Hattaf–Yousfi response. (a) s � 15, c � 1, d1 � 0.01, d2 � 0.03, β1 � 0.5, β2 � 0.3, a1 � 1,
a2 � 1, and a3 � 1. (b) s � 20, c � 1, d1 � 0.1, d2 � 0.3, β1 � 0.02, β2 � 0.03, a1 � 0.01, a2 � 0.3, and a3 � 0.001.
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Figure 8: Solutions of the model for τ � 49, corresponding to Figure 7(b).
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In this paper, we are concerned with the stabilities of
two equilibria and the existence of Hopf bifurcation
through which the positive equilibrium loses its stability
and periodic solutions occur. In the analysis, the time delay
is chosen as the bifurcation parameter, which can de-
stabilize the positive equilibrium when it increases. By
using the characteristic equation with delay-dependent
parameters, normal theory, and center manifold theorem,
the existence of pure imaginary roots is verified and then
the system experiences Hopf bifurcation. To illustrate the
dynamical behavior of stability switches, simulations are
conducted to show the process numerically when taking
general incidence function as four specific types of bilinear
incidence, saturation incidence, Beddington–DeAngelis
response, and Hattaf–Yousfi response. In each case, the
dynamical behavior is simulated when increasing τ from 0
to 50, and two sets of parameters are taken to compare the
bifurcation results. Furthermore, for some fixed values of τ,
we also present the plot of time series, phase portrait, or
solution orbit to show the complicated dynamics.-e effect
of delay perturbation and different forms of incidence can
be seen in the figures.

It should be noted that when other factors are taken into
consideration for more realistic mechanism, such as the
delays describing the intracellular latency for virus-to-cell
infection and cell-to-cell infection, or varying producing rate
of the uninfected cells instead of constant, the model can be
extended reasonably and the dynamical analysis will become
more challenging than the present one, which we may
discuss in future work.

Appendix

Theorem 6. For system (1),

(i) The direction of Hopf bifurcation is determined by
the sign of μ2, i.e., it is a supercritical bifurcation
when μ2 > 0 and a subcritical bifurcation when
μ2 < 0.

(ii) The stability of the bifurcated periodic solution is
determined by β2, i.e., the periodic solution is stable
when β2 < 0 and unstable when β2 > 0.

(iii) The periodic of bifurcated periodic solutions is de-
termined by T2, i.e., the period increases when T2 > 0
and decreases when T2 < 0, with

c1(0) �
i

2ωτ∗
g20g11 − 2 g11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 −

g02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

3
⎛⎝ ⎞⎠ +

g21

2
,

μ2 � −
Re c1(0)􏼈 􏼉

Re λ′ τ∗( )􏼈 􏼉
,

β2 � 2Re c1(0)􏼈 􏼉,

T2 �
Im c1(0) + μ2Imλ′ τ∗( )􏼈 􏼉

ωτ∗
.

(A.1)

Proof. In order to rewrite model (1) as a functional dif-
ferential equation in C � C([−1, 0],R4), we take the fol-
lowing transformations for variables and time scale:

x1(t) � u(τt)− u
∗
,

x2(t) � w(τt)−w
∗
,

x3(t) � v(τt)− v
∗
,

x4(t) � z(τt)− z
∗
,

τ � τ∗ + μ.

(A.2)

-en model (1) becomes the following form:
dx

dt
� Lμ xt( 􏼁 + f μ, xt( 􏼁, (A.3)

where x(t) � (x1(t), x2(t), x3(t), x4(t))T ∈ R4, Lμ :

C⟶ R4, f : R × C⟶ R4,

Lμ(ϕ) � τ∗ + μ( 􏼁B1ϕ(0) + τ∗ + μ( 􏼁B2ϕ(−1), (A.4)

with

B1 �

− d1 + Q0( 􏼁 −Q2 −Q1 0

Q0 − d2 + pz∗ −Q2( 􏼁 Q1 −pw∗

0 k −d3 0

0 0 0 −d4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B2 �

0 0 0 0

0 0 0 0

0 0 0 0

0 c 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A.5)

and

f(μ, ϕ) � τ∗ + μ( 􏼁

−h(ϕ(0))

h(ϕ(0))−pϕ2(0)ϕ4(0)

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.6)

where ϕ(θ) � (ϕ1(θ), ϕ2(θ), ϕ3(θ), ϕ4(θ))T ∈ C and

h(ϕ) �
1
2

z2f1

zu2 v
∗

+
z2f2

zu2 w
∗

􏼠 􏼡ϕ21 +
1
2

z2f2

zw2 w
∗

+ 2
zf2

zw
􏼠 􏼡ϕ22

+
1
2

z2f1

zv2
v
∗

+ 2
zf1

zv
􏼠 􏼡ϕ23 +

zf2

zu
+

z2f2

zu zw
w
∗

􏼠 􏼡ϕ1ϕ2

+
zf1

zu
+

z2f1

zu zv
v
∗

􏼠 􏼡ϕ1ϕ3.

(A.7)

By Riesz representation theorem, there exists a matrix
components η(θ, μ) in θ ∈ [−1, 0], which is a bounded
variation function such that Lμϕ � 􏽒

0
−1 dη(θ, μ)ϕ(θ) for

ϕ ∈ C. As for (A.3), η(θ, μ) has the expression of

η(θ, μ) � τ∗ + μ( 􏼁B1δ(θ) − τ∗ + μ( 􏼁B2δ(θ + 1), (A.8)

12 Computational and Mathematical Methods in Medicine



where δ denotes the Dirac delta function. For
ϕ ∈ C1([−1, 0],R4), we define

A(μ)ϕ �

dϕ(θ)

dθ
, θ ∈ [−1, 0),

􏽚
0

−1
dη(μ, s)ϕ(s), θ � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(A.9)

and

R(μ)ϕ �
0, θ ∈ [−1, 0),

f(μ, ϕ), θ � 0.
􏼨 (A.10)

-en, model (1) is equivalent to

xt
′ � A(μ)xt + R(μ)xt, xt � x(t + θ), θ ∈ [−1, 0].

(A.11)

Furthermore, for ψ ∈ C1([0, 1], (R4)∗), define

A
∗ψ(s) �

−
dψ(s)

ds
, s ∈ (0, 1],

􏽚
0

−1
dηT(s, 0)ψ(−s), s � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(A.12)

and a bilinear inner product

〈ψ, ϕ〉 � ψ(0)ϕ(0)− 􏽚
0

−1
􏽚
θ

ξ�0
ψ(ξ − θ)dη(θ)ϕ(ξ)dξ,

(A.13)

where η(θ) � η(θ, 0). A(0) and A∗ are adjoint operators
with eigenvalues ± iωτ∗, and then we discuss the eigen-
vector of A(0) and A∗ corresponding to these two eigen-
values, respectively. First, for A(0), if q(θ) � (1,

q1, q2, q3)
Teiθωτ∗ is the eigenvector corresponding to iωτ∗,

then it leads to A(0)q(θ) � iωτ∗q(θ), i.e.,

τ∗

iω + d1 + Q0( 􏼁 Q2 Q1 0

−Q0 iω + d2 + pz∗ −Q2( 􏼁 −Q1 pw∗

0 −k iω + d3 0

0 −ce−iωτ
∗ 0 iω + d4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

q1

q2

q3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.14)

Denoting the above equation as τ∗A4×4q(θ) � 0 and
aij (i, j � 1, 2, 3, 4) being the element of A4×4 in ith row and
jth column, then we have

q1 �
−a11

a12 − a13a32/a33( 􏼁
,

q2 �
−a32q1

a33
,

q3 �
−a42q1

a44
.

(A.15)

Similarly, for A∗, if q∗(s) � D(1, q∗1 , q∗2 , q∗3 )eisωτ∗ is the
eigenvector of A∗ corresponding to −iωτ∗, we can obtain

q
∗
1 �
−b11
b12

,

q
∗
2 �
−b32 q∗1 − 1( 􏼁

b33
,

q
∗
3 �
−b42q∗1

b44
,

(A.16)

where bij (i, j � 1, 2, 3, 4) is the element of matrix B in ith
row and jth column and

B �

−iω + d1 + Q0( 􏼁 −Q0 0 0

Q2 −iω + d2 + pz∗ −Q2( 􏼁 −k −ceiωτ∗

Q1 −Q1 −iω + d3 0

0 pw∗ 0 −iω + d4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.17)

Since 〈q∗(s), q(θ)〉 � 1, we can choose

D �
1

1 + q1q
∗
1 + q2q

∗
2 + q3q

∗
3 + τ∗cq1q

∗
3 e−iωτ

∗ . (A.18)

In the following, by using the notations in [24], we
compute the center manifold C0 when μ � 0. Correspond-
ingly, assuming xt(θ) � (x1t(θ), x2t(θ), x3t(θ), x4t(θ)) be
the solution of (A.6), and define z(t) and W(t, θ) as

z(t) �〈q∗, xt〉,

W(t, θ) � xt(θ)− 2Re z(t)q(θ)􏼈 􏼉.
(A.19)

-en on the center manifold C0, we have

W(t, θ) � W(z, z, θ) � W20
z2

2
+ W11(θ)zz

+ W02(θ)
z2

2
+ · · · ,

(A.20)

and

xt(θ) � W(t, θ) + 2Re z(t)q(θ)􏼈 􏼉

� 1, q1, q2, q3( 􏼁
T
e

iωτ∗θ
z + 1, q1, q2, q3( 􏼁

T
e
−iωτ∗θ

z

+ W20
z2

2
+ W11(θ)zz + W02(θ)

z2

2
+ · · · ,

(A.21)
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with z and z being local coordinates for C0 in the direction
q∗ and q∗. -us,

x1t(0) � z + z + W
(1)
20

z2

2
+ W

(1)
11 (θ)zz + W

(1)
02 (θ)

z2

2

+ O |(z, z)|
3

􏼐 􏼑,

x2t(0) � q1z + q1z + W
(2)
20

z2

2
+ W

(2)
11 (θ)zz

+ W
(2)
02 (θ)

z2

2
+ O |(z, z)|

3
􏼐 􏼑,

x3t(0) � q2z + q2z + W
(3)
20

z2

2
+ W

(3)
11 (θ)zz

+ W
(3)
02 (θ)

z2

2
+ O |(z, z)|

3
􏼐 􏼑,

x4t(0) � q3z + q3z + W
(4)
20

z2

2
+ W

(4)
11 (θ)zz + W

(4)
02 (θ)

z2

2

+ O |(z, z)|
3

􏼐 􏼑.

(A.22)

When considering real solution xt ∈ C0 of (A.6), we can
obtain

z′(t) � iωτ∗z + 􏼜q
∗
(θ), f(0, W(z, z, θ) + 2Re zq(θ)􏼈 􏼉􏼓􏼝

� iωτ∗z + q
∗
(0)f(0, W(z, z, 0) + 2Re zq(0)􏼈 􏼉􏼓

≕ iωτ∗z + q
∗
(0)f0(z, z).

(A.23)

Let

g(z, z) � q
∗
(0)f0(z, z) � g20

z2

2
+ g11zz

+ g02
z2

2
+ g21

z2z

2
+ · · · .

(A.24)

On the other side, note that
g(z, z) � q∗(0)f0(z, z) � q∗(0)f0(0, xt). -en by using the
expression of f(μ, ϕ) in (A.4), we have

g(z, z) � τ∗D q
∗
1 − 1( 􏼁h− q

∗
1px2t(0)x4t(0)􏼂 􏼃. (A.25)

Substituting the expressions of h(xt) and
xt(0) � (x1t(0), x2t(0), x3t(0), x4t(0)) into (A.12) and
comparing the coefficients of z2, zz, z2, and z2z lead to

g20 � τ∗D􏼈 q
∗
1 − 1( 􏼁 Uu + q

2
1Uw + q

2
2Uv + 2q1Uuw + 2q2Uuv􏼐 􏼑

− 2q
∗
1pq1q3􏼉,

g11 � τ∗D􏼚 q
∗
1 − 1􏼁( 􏼁( Uu + q1q1Uw + q2q2Uv + 2Re q1􏼈 􏼉Uuw

+ 2Re q2􏼈 􏼉Uuv − 2q
∗
1pRe q1q3􏼈 􏼉􏼛,

g02 � τ∗D􏼚 q
∗
1 − 1( 􏼁 Uu + q

2
1Uw + q

2
2Uv + 2q1Uuw + 2q2Uuv􏼐 􏼑

− 2q
∗
1pq1q3􏼛,

g21 � τ∗D􏼚 q
∗
1 − 1( 􏼁( 􏼁􏼔Uu W

(1)
20 (0) + 2W

(1)
11 (0)􏼐 􏼑

+ Uw q1W
(2)
20 (0) + 2q1W

(2)
11 (0)􏼐 􏼑

+ Uv q2W
(3)
20 (0) + 2q2W

(3)
11 (0)􏼐 􏼑

+ Uuw 2W
(2)
11 (0) + q1W

(1)
20 (0) + W

(2)
20 (0) + 2q1W

(1)
11 (0)􏼐 􏼑

+ Uuv 2W
(3)
11 (0) + q2W

(1)
20 (0) + W

(3)
20 (0) + 2q2W

(1)
11 (0)􏼐 􏼑

− q
∗
1p 2q1W

(4)
11 (0) + q3W

(2)
20 (0) + q1W

(4)
20 (0) + 2q3W

(2)
11 (0)􏼐 􏼑􏼕􏼛,

(A.26)

where

Uu �
z2f1

zu2 v
∗

+
z2f2

zu2 w
∗
,

Uw �
z2f2

zw2 w
∗

+ 2
zf2

zw
,

Uv �
z2f1

zv2
v
∗

+ 2
zf1

zv
,

Uuw �
zf2

zu
+

z2f2

zu zw
w
∗
,

Uuv �
zf1

zu
+

z2f1

zu zv
v
∗
.

(A.27)

Next, in order to determine the value of g21, we compute
W20 and W11 briefly. According to the results in [24], we
have

W20(θ) �
ig20

ωτ∗
q(0)e

iωτ∗θ
+

ig02

3ωτ∗
q(0)e
−iωτ∗θ

+ E1e
2iωτ∗θ

,

W11(θ) �
−ig11

ωτ∗
q(0)e

iωτ∗θ
+

ig11

ωτ∗
q(0)e
−iωτ∗θ

+ E2,

(A.28)

where Ei � (E
(1)
i , E

(2)
i , E

(3)
i , E

(4)
i ) (i � 1, 2) ∈ R4 is a constant

vector. Furthermore, it can be deduced that Ei satisfies
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ME1 � 2C,

􏽥ME1 � 2􏽥C,
(A.29)

where

M � 2iωI−B1 − e
−2iωτ∗

B2,

􏽥M � −B1 −B2,

C � −U, U−pq1q3, 0, 0( 􏼁
T
,

􏽥C � −􏽥U, 􏽥U−pRe q1q3􏼈 􏼉, 0, 0( 􏼁
T
,

(A.30)

with

U �
1
2

Uu +
1
2
q
2
1Uw +

1
2
q
2
2Uv + q1Uuw + q2Uuv,

􏽥U �
1
2

Uu +
1
2
q1q1Uw +

1
2
q2q2Uv + Re q1􏼈 􏼉Uuw + Re q2􏼈 􏼉Uuv.

(A.31)

By using Cramer’s rule, we have

E
(i)
1 �

2det Mi( 􏼁

det(M)
,

E
(i)
2 �

2det 􏽥Mi( 􏼁

det( 􏽥M)
,

(A.32)

where Mi(
􏽥Mi) is the matrix that the ith column in M( 􏽥M) is

substituted by C(􏽥C). -us W20(θ), W11(θ), and then g21 can
be determined. Furthermore, the values of c1(0), μ2, β2, and
T2 can be computed by using (A.1).
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