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Abstract: Pancreatic cancer (PANC) is a dangerous type of cancer that is a major cause of mortality
worldwide and exhibits a remarkably poor prognosis. To date, discovering anti-PANC agents remains
a very complex and expensive process. Computational approaches can accelerate the search for
anti-PANC agents. We report for the first time two models that combined perturbation theory with
machine learning via a multilayer perceptron network (PTML-MLP) to perform the virtual design and
prediction of molecules that can simultaneously inhibit multiple PANC cell lines and PANC-related
proteins, such as caspase-1, tumor necrosis factor-alpha (TNF-alpha), and the insulin-like growth
factor 1 receptor (IGF1R). Both PTML-MLP models exhibited accuracies higher than 78%. Using the
interpretation from one of the PTML-MLP models as a guideline, we extracted different molecular
fragments desirable for the inhibition of the PANC cell lines and the aforementioned PANC-related
proteins and then assembled some of those fragments to form three new molecules. The two PTML-
MLP models predicted the designed molecules as potentially versatile anti-PANC agents through
inhibition of the three PANC-related proteins and multiple PANC cell lines. Conclusions: This work
opens new horizons for the application of the PTML modeling methodology to anticancer research.

Keywords: caspase-1; cell line; fragment; IGF1R; MLP; multi-target; pancreatic cancer; TNF-alpha;
virtual design

1. Introduction

Pancreatic cancer (PANC) is currently recognized as the seventh most significant cause
of cancer-related deaths worldwide. In addition to being associated with a very poor prog-
nosis, PANC presents five highly alarming aspects. First, the mortality rate of PANC almost
equals its incidence rate, since PANC accounted for 458,918 new cases and 432,242 deaths
in 2018 [1]. This is consistent with the overall 5-year survival rate of approximately 6%,
which makes PANC the most lethal cancer of all [2]. Second, the global burden involving
this intractable neoplasm has more than doubled over the past 25 years [3]. Third, PANC is
characterized by the emergence of drug resistance [4]; this makes PANC difficult to treat.
Four, from a genetic point of view, PANC is very complex because PANC predisposition
genes are not well understood, although several genes suggested to be involved in PANC
development and progression have been studied [5]. Last, the current chemotherapeutic
drugs used to treat PANC are limited in terms of effectiveness because they are mainly
available as adjuvants and act through specific mechanisms of action. All these aspects
indicate the urgent need for new and more effective anti-PANC chemotherapeutics able to
act as multi-target drugs, simultaneously inhibiting several PANC-related proteins.

To date, some of the biomolecular targets studied in PANC research are proteins such
as caspase-1, tumor necrosis factor-alpha (TNF-alpha), and insulin-like growth factor-1
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receptor (IGF1R), which are promising biomolecular targets against PANC. In the case
of caspase-1 and TNF-alpha, they are key proteins in inflammatory processes, with the
former initiating inflammatory responses through the release of diverse proinflammatory
cytokines [6–8] and pyroptosis (a form of programmed lytic cell-death) [9,10] and the
latter being a proinflammatory cytokine capable to triggering other inflammation-related
proteins (caspase-1 included) [11]. Notice that inflammation has long been accepted as
a key component of carcinogenesis because, during inflammation, inflammasomes are
potent contributors to cancer progression [12]. In the context of PANC, it has been demon-
strated that the inhibition or deletion of components of the NLRP3 inflammasome, such
as caspase-1, decreases tumor growth and metastasis in PANC by reprogramming innate
and adaptive immunity in the tumor microenvironment [13]. It has also been proven that
the inhibition of caspase-1 induced cell death in PANC cells [14]. Additionally, in the case
of TNF-alpha, its inhibition led to the diminution of desmoplasia and inflammation to
overcome chemoresistance in PANC [15]. In the case of IGF1R, high expression levels of
this protein are associated with high tumor grade and poor survival [16], while targeting
it inhibited PANC growth and metastasis [17]. In clinical trials, the combination of the
well-known anticancer drug gemcitabine with an IGF1R inhibitor (Ganitumab) resulted in
a numerical improvement compared to gemcitabine plus placebo [18].

The experimental evidence explained above suggests that the simultaneous inhibition
of caspase-1, TNF-alpha, and IGF1R by a multi-target agent could constitute a promising
alternative against future PANC treatment. In this sense, finding such multi-target agents
can be accelerated utilizing the methodology known as perturbation theory and machine
learning (PTML), which allows the integration of different kinds of chemical and biological
data [19–23] and has been successfully applied to different drug discovery areas, such as
oncology [24–26], neuroscience [27–30], immunology and immunotoxicity [31,32], infec-
tious diseases [33–38], and drug delivery [39]. Considering all the ideas mentioned until
now, in this work we establish the theoretical foundations for the rational discovery of
multi-target chemicals against caspase-1, TNF-alpha, and IGF1R. Particularly, we report, for
the first time, two PTML models based on multi-layer perceptron networks (PTML-MLP)
to perform virtual design and prediction of molecules that can simultaneously inhibit not
only the aforementioned proteins but also multiple PANC cell lines.

2. Materials and Methods
2.1. Bioactivity Data and Molecular Descriptors

All the steps necessary for the creation of a PTML-MLP model have been described
in detail very recently [37,40]. Therefore, we will focus on the specific aspects of the two
PTML-MLP models reported here. Chemical and biological data based on protein inhibition
were retrieved from the ChEMBL database [41], while growth inhibition data on PANC
cell lines were extracted from the public repository known as Genomics of Drug Sensitivity
in Cancer (GDSC) v7.0 [42]. Our dataset contained 3833 different chemicals, each of them
experimentally tested by considering at least 1 out of 2 measures of inhibitory activity
(ma), defined as IC50 (nM)p (the concentration required for 50% inhibition of a protein)
and IC50 (nM)c (the concentration required for a chemical to inhibit cell viability by 50%).
Simultaneously, in these experimental assays, each chemical was tested against at least 1 out
of 34 biomolecular or cellular targets (tg) while involving at least 1 out of 5 types of assay
information (ei). Notice that each combination of the elements ma, tg, and ei, defined a
unique experimental condition, cj (denoted as cj(ma, tg, and ei)), under which a chemical
was assayed. Most of the chemicals were tested in one cj. Therefore, after removing entries
containing duplicates (only keeping the ones with the lowest inhibition values among the
duplicates), as well as those lacking SMILES, activity values, or measurement units, our
dataset remained with 9705 statistical cases.

We selected certain cutoff values (Table 1) of inhibitory activity to annotate each
case/chemical of our dataset as active (IAi(cj) = 1) or inactive (IAi(cj) = –1), with IAi(cj)
being a dichotomous variable that indicated the activity of the ith case/chemical under a
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defined cj. These cutoff values were rigorous enough (lower than the 10 µM used in high-
throughput screening campaigns) [43] and prevented an unnecessary imbalance between
the numbers of cases/chemicals annotated as active and those considered inactive.

For the case of the first PTML-MLP model (Model 1), we used the SMILES codes
of the 9705 cases/chemicals (already stored in a txt file) and calculated the topological
descriptors known as spectral moments of the bond adjacency matrix (SM(PP)k) [44–46],
atom-based connectivity indices X(s)o [47,48], atom-based valence connectivity indices
Xv(s)o [48,49], and bond connectivity indices e(s)o [50]. In this sense, for the topological
descriptor SM(PP)k, the term “k” is the kth power of the bond adjacency matrix and
“PP” is an atomic physicochemical property, such as hydrophobicity (Hyd), polar surface
area (Psa), molar refractivity (Mol), Gasteiger–Marsili charges (Gas), and atomic weight
(Ato). In X(s)o, Xv(s)o, and e(s)o, the term “s” represents the type of subgraph/fragments,
such as paths (P), clusters (C), path-clusters (PC), and chains (Ch), while the term “o”
is the order of the topological descriptor and indicates the number of bonds (without
counting bond multiplicity) of each subgraph/fragment. All these topological descriptors
were calculated by the software MODESLAB v1.5 [51,52]. Moreover, size-independent
topological descriptors (NTI) were calculated according to the following formalism:

NTI =
TI
nB

(1)

In Equation (1), TI represents any of the topological descriptors mentioned above and
nB is the numbers of bonds (without counting bond multiplicity) of the molecule.

For the case of the second PTML-MLP model (Model 2), the txt file containing the
SMILES codes of the 9705 cases/chemicals was manually converted to *.smi, which was
then transformed to *.sdf (no standardization options were applied) using the software
Open Babel v2.4.0 [53]. Then, by using the software QuBiLs-MAS v1.0 (with the *.sdf
file as the input) [54,55], we calculated the descriptors named atom-based local stochastic
quadratic indices ASqm(x)T [54,56], where “m” was the mth power of the atom adjacency
matrix and “x” was a physicochemical atomic property, such as Hyd, electronegativity (E),
atomic weight (Aw), polarizability (Pol), Psa, and Kupchik’s vertex degree (Ku). The term
“T” referred to the type of atom (aliphatic carbon, aromatic carbon, halogen, carbon in
a methyl group, or heteroatoms, such as N, O, S, P, and Se) from which each ASqm(x)T
was calculated.

Table 1. Experimental conditions reported in this work.

ma a Cutoff b tg c ei d

IC50 (nM)p

≤1100 nM
Caspase-1 B (assay format)

Caspase-1 B (single protein format)

Caspase-1 B (cell-based format)

≤1635 nM

TNF-alpha B (single protein format)

TNF-alpha F (assay format)

TNF-alpha B (assay format)

TNF-alpha B (cell-based format)

TNF-alpha F (cell-based format)

≤50 nM

IGF1R B (single protein format)

IGF1R B (cell-based format)

IGF1R B (assay format)

IGF1R F (cell-based format)

IGF1R F (assay format)
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Table 1. Cont.

ma a Cutoff b tg c ei d

IC50 (nM)c ≤6449.735 nM

PSN1 F (cell-based format)

PANC-03-27 F (cell-based format)

HPAC F (cell-based format)

MZ1-PC F (cell-based format)

KP-4 F (cell-based format)

KP-2 F (cell-based format)

PA-TU-8988T F (cell-based format)

Capan-2 F (cell-based format)

MIA-PaCa-2 F (cell-based format)

CFPAC-1 F (cell-based format)

PANC-10-05 F (cell-based format)

BxPC-3 F (cell-based format)

SUIT-2 F (cell-based format)

KP-1N F (cell-based format)

HuP-T4 F (cell-based format)

SW1990 F (cell-based format)

PL18 F (cell-based format)

QGP-1 F (cell-based format)

HuP-T3 F (cell-based format)

SU8686 F (cell-based format)

PL4 F (cell-based format)

PA-TU-8902 F (cell-based format)

PANC-02-03 F (cell-based format)

DAN-G F (cell-based format)

CAPAN-1 F (cell-based format)

PANC-08-13 F (cell-based format)

HPAF-II F (cell-based format)

KP-3 F (cell-based format)

YAPC F (cell-based format)

AsPC-1 F (cell-based format)

PANC-04-03 F (cell-based format)
a Measure of biological activity; IC50 (nM)p is the concentration required for 50% inhibition of a protein, while
IC50 (nM)c is the concentration required for a chemical to inhibit cell viability by 50%. b Value of activity from
which a molecule was labeled and considered as active (IAi(cj) = 1). c Refers to the targets (either a protein or a
PANC cell line). d Information related to the diverse experimental assays. Here, each annotation is a combination
of the columns “assay type” (first letter) and “BioAssay Ontology” (phrase between parentheses), which are
reported in any ChEMBL file containing bioactivity data. Each assay involving a PANC cell line was annotated as
“F (cell-based format)”.

To consider both the structure of any case/chemical and the experimental condition,
cj, under which that case/chemical was tested, we applied a two-step approach, known
as Box–Jenkins, which is the key aspect accounting for the great success of the PTML
models [24–37,57–62]:

avg[GTI]cj =
1

n(cj)
×

n(cj)

∑
i=1

GTIi (2)
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In Equation (2), GTI refers to any of the molecular descriptors discussed above, i.e.,
SM(PP)k, X(s)o, Xv(s)o, e(s)o, NTI, and ASqm(x)T. The meanings of the terms avg(GTI)cj
and n(cj) have already been explained in detail in a recent work [63]. This means that
Equation (2) was applied to each element of the experimental conditions cj (that is, ma, tg,
and ei) separately. Then, the second step of the Box–Jenkins approach was applied:

D[GTI]cj =
(

GTI − avg[GTI]cj
std(GTI)

)
·
√

ps(cj) (3)

In Equation (3), D(GTI)cj is a descriptor that measures how much a chemical struc-
turally and physicochemically deviates from a group of chemicals assayed by considering
the same element of the experimental condition cj. On the other hand, std(GTI) is the
standard deviation calculated from the GTI values; only chemicals in the training set were
considered for the calculation of std(GTI). Last, ps(cj) represents the a priori probability of
finding a case/chemical annotated as active by considering a defined element of cj. Thus,
ps(cj) was calculated as follows:

ps(cj) =
n(cj)

NT(cj)
(4)

In Equation (4), n(cj) has been defined in Equation (2) and represents the number of
cases/chemicals assayed by considering the same element of the experimental condition
cj [63], which were annotated as active (in the training set). Similarly, NT(cj), considering
the same condition cj, represents the total number of cases/chemicals in the training set.
We would like to emphasize that, as in the case of Equation (2), Equations (3) and (4) were
applied to each element of the experimental condition cj (ma, tg, and ei) separately.

2.2. PTML Modeling, Applicability Domain, Descriptor Interpretation, Fragments, and
Virtual Design

The creation and application of the two PTML-MLP models developed in this work
involved steps such as splitting the dataset in the training and test series, selecting the most
suitable D(GTI)cj descriptors using the software IMMAN v1.0 [64], analysis of the corre-
lations among the D(GTI)cj descriptors via the Pearson correlation coefficient (PCC) [65],
generation of the models using the program STATISTICA v13.5.0.17 [66], analysis of the
applicability domain of each PTML-MLP model, interpretation of the D(GTI)cj descriptors,
selection of suitable molecular fragments, and virtual design. All these steps have been
described comprehensively in seminal works [37,63,67–69]. In any case, when selecting the
best D(GTI)cj descriptors to subsequently build the PTML-MLP models, the mutual infor-
mation differential Shannon’s entropy (MI-DSE) [70] and the Jeffreys information [71,72]
were applied as criteria for descriptor selection; such criteria permitted the selection of at
least one D(GTI)cj descriptor per each element of the experimental condition cj, which was a
mandatory condition to develop the PTML-MLP models. When estimating the correlations
via PCC, the interval −0.7 < PCC < 0.7 was used as a criterion of a lack of redundancy among
the D(GTI)cj descriptors. We analyzed the global performance of the PTML-MLP models
by relying on measures such as sensitivity (Sn(%)), specificity (Sp(%)), accuracy (Ac(%)),
and the Matthews’ correlation coefficient (MCC) [73]. However, when choosing the most
appropriate measure we determined the values of the local counterparts of (Sn(%)) and
(Sp(%)), i.e., the local sensitivities (Sn(%))ma, (Sn(%))tg, and (Sn(%))ei, as well as the local
specificities (Sp(%))ma, (Sp(%))tg, and (Sp(%))ei. Notice that these six local statistical indices
depended on specific elements of the experimental condition cj (ma, tg, and ei) and we chose
the PTML-MLP models displaying the highest values of the aforementioned local metrics.
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3. Results and Discussion
3.1. PTML-MLP Models

We found that Model 1 had the notation MLP 15-45-2, which means that this model
was based on a multilayer perceptron network with 15 nodes in the input layer (number of
D(GTI)cj descriptors present in the model), 45 neurons in the hidden layer, and two values
of the categorical variable of inhibitory activity IAi(cj) were predicted in the output layer,
i.e., active (IAi(cj) = 1) and inactive (IAi(cj) = –1). The same deduction can be made for
Model 2 whose notation was MLP 14-45-2. A summary of the D(GTI)cj descriptors present in
each PTML-MLP model appears in Table 2, while information regarding the chemical and
biological data used to build such models appears in Supplementary Materials S1 and S2,
respectively.

Table 2. Molecular descriptors of the type D(GTI)cj present in the PTML-MLP models.

Model a Symbology b Code c Concept

Model 1

D(NSM(Hyd)3)ma DT01 Deviation of the normalized spectral moment of order 3 based on
hydrophobicity-weighted bonds.

D(NXv(P)4)ma DT02 Deviation of the normalized Kier–Hall (valence) connectivity index
involving only path-based subgraphs of order 4.

D(Ne(P)1)ma DT03 Deviation of the normalized edge (bond) connectivity index involving
only path-based subgraphs of order 1.

D(Ne(P)2)ma DT04 Deviation of the normalized edge (bond) connectivity index involving
only path-based subgraphs of order 2.

D(Ne(Ch)6)ma DT05 Deviation of the normalized edge (bond) connectivity index involving
only chain-based subgraphs of order 6.

D(SM(Hyd)7)tg DT06 Deviation of the spectral moment of order 7 based on
hydrophobicity-weighted bonds.

D(e(Ch)5)tg DT07 Deviation of the edge (bond) connectivity index involving only
chain-based subgraphs of order 5.

D(NSM(Psa)1)tg DT08 Deviation of the normalized spectral moment of order 1 based on bonds
weighted by the polar surface area.

D(NSM(Gas)3)tg DT09 Deviation of the normalized spectral moment of order 3 based on bonds
weighted by the Gasteiger–Marsili charges.

D(NXv(P)1)tg DT10 Deviation of the normalized Kier-Hall (valence) connectivity index
involving only path-based subgraphs of order 1.

D(Xv(Ch)6)ei DT11 Deviation of the Kier-Hall (valence) connectivity index involving only
chain-based subgraphs of order 6.

D(NSM(Hyd)1)ei DT12 Deviation of the normalized spectral moment of order 1 based on
hydrophobicity-weighted bonds.

D(NSM(Mol)1)ei DT13 Deviation of the normalized spectral moment of order 1 based on bonds
weighted by the molar refractivity.

D(Ne(P)5)ei DT14 Deviation of the normalized edge (bond) connectivity index involving
only path-based subgraphs of order 5.

D(Ne(PC)6)ei DT15 Deviation of the normalized edge (bond) connectivity index involving
only path-cluster subgraphs of order 6.
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Table 2. Cont.

Model a Symbology b Code c Concept

Model 2

D(ASq4(Hyd)G)ma DQ01
Deviation of the stochastic atom-based local quadratic index weighted by
the hydrophobicity of the halogens and their neighbor atoms located at

the topological distance of 4.

D(ASq3(Hyd)Y)ma DQ02
Deviation of the stochastic atom-based local quadratic index weighted by

the hydrophobicity of the heteroatoms (N, O, S, P, and Se) and their
neighbor atoms located at the topological distance of 3.

D(ASq4(Hyd)Y)ma DQ03
Deviation of the stochastic atom-based local quadratic index weighted by

the hydrophobicity of the heteroatoms (N, O, S, P, and Se) and their
neighbor atoms located at the topological distance of 4.

D(ASq2(E)Y)ma DQ04
Deviation of the stochastic atom-based local quadratic index weighted by

the electronegativity of the heteroatoms (N, O, S, P, and Se) and their
neighbor atoms located at the topological distance of 2.

D(ASq1(Psa)Y)ma DQ05
Deviation of the stochastic atom-based local quadratic index weighted by

the polar surface area of the heteroatoms (N, O, S, P, and Se) and their
neighbor atoms located at the topological distance of 1.

D(ASq1(Aw)C)tg DQ06
Deviation of the stochastic atom-based local quadratic index weighted by

the atomic weight of the aliphatic carbons and their neighbor atoms
located at the topological distance of 1.

D(ASq0(Ku)G)tg DQ07 Deviation of the stochastic atom-based local quadratic index (order 0)
weighted by the Kupchik’s vertex degree of the halogens in a molecule.

D(ASq4(Psa)Y)tg DQ08
Deviation of the stochastic atom-based local quadratic index weighted by

the polar surface area of the heteroatoms (N, O, S, P, and Se) and their
neighbor atoms located at the topological distance of 4.

D(ASq1(Hyd)G)ei DQ09
Deviation of the stochastic atom-based local quadratic index weighted by
the hydrophobicity of the halogens and their neighbor atoms located at

the topological distance of 1.

D(ASq2(Hyd)G)ei DQ10
Deviation of the stochastic atom-based local quadratic index weighted by
the hydrophobicity of the halogens and their neighbor atoms located at

the topological distance of 2.

D(ASq2(Aw)G)ei DQ11
Deviation of the stochastic atom-based local quadratic index weighted by
the atomic weight of the halogens and their neighbor atoms located at

the topological distance of 2.

D(ASq1(Hyd)M)ei DQ12
Deviation of the stochastic atom-based local quadratic index weighted by

the hydrophobicity of the aliphatic carbons (only methyl groups) and
their neighbor atoms located at the topological distance of 1.

D(ASq1(Ku)M)ei DQ13
Deviation of the stochastic atom-based local quadratic index weighted by

the Kupchik’s vertex degree of the aliphatic carbons (only methyl
groups) and their neighbor atoms located at the topological distance of 1.

D(ASq0(Hyd)Y)ei DQ14
Deviation of the stochastic atom-based local quadratic index (order 0)
weighted by the hydrophobicity heteroatoms (N, O, S, P, and Se) in

a molecule.
a Model 1, first PTML-MLP model, which contains the first 15 D(GTI)cj descriptors shown in this table; Model 2,
second PTML-MLP model, which contains the remaining14 D(GTI)cj descriptors shown in this table. b Molecular
descriptors of the type D(GTI)cj with endings on “ma” consider both the molecular structure and the measure
of inhibitory activity. Those with the ending “tg” depend on the molecular structure and the biological target
(either a protein or a PANC cell line). Finally, D(GTI)cj descriptors with the ending “ei” characterize the molecular
structure and information on the diverse experimental assays. c Codes were used to abbreviate the representation
of the D(GTI)cj descriptors.

Here, Model 1 correctly classified 6312 out of the 7283 cases/chemicals in the training
set (internal quality), which means Ac(%) = 86.67%. In the test set (predictive power),
Model 1 satisfactorily classified 2006 out of 2422 cases/chemicals, with Ac(%) = 82.82%.
In the case of Model 2, similar results were achieved; this PTML-MLP model had Ac(%)
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values of 86.49% (6299 out of the 7283 cases/chemicals were correctly classified) and
81.75% (1980 out of 2422 cases/chemicals were correctly classified) for the training and
test sets, respectively. Moreover, Table 3 shows that the two PTML-MLP models have
high Sp(%) values, surpassing 80% in both the training and test set. In addition, for
comparison, in Table 3 we have reported the values of the different statistical indices for
the linear counterparts of our two PTML-MLP models. Such linear models were based on
the technique known as linear discriminant analysis (LDA), and they respectively used the
same variables (molecular descriptors of the type D(GTI)cj) from which our two PTML-MLP
models were constructed.

Table 3. Statistical indices demonstrating the performances of the two PTML-MLP models.

SYMBOLS a,b
Model 1 Model 2

Training Set Test Set Training Set Test Set

NActive 3010 1001 3010 1001

CCCActive 2495 (1293) 799 (447) 2486 (1084) 785 (352)

Sn(%) 82.89% (42.96%) 79.82% (44.66%) 82.59% (36.01%) 78.42% (35.16%)

NInactive 4273 1421 4273 1421

CCCInactive 3817 (3693) 1207 (1219) 3813 (3625) 1195 (1194)

Sp(%) 89.33% (86.43%) 84.94% (85.78%) 89.23% (84.84%) 84.10% (84.03%)

MCC 0.724 (0.331) 0.646 (0.338) 0.721 (0.241) 0.624 (0.222)
a NActive, Number of chemicals/cases annotated as active; NInactive, Number of chemicals/cases designated as
inactive; CCCActive, Number of chemicals/cases correctly classified/predicted as active; CCCInactive, Number
of chemicals/cases correctly classified/predicted as inactive; Sn(%), Sensitivity (percentage of chemicals/cases
correctly classified as active); Sp(%), Specificity (percentage of chemicals/cases properly classified as inactive);
MCC, Refers to the Matthews’ correlation coefficient. b Values between parentheses correspond to models derived
from the technique known as linear discriminant analysis (LDA).

From the analysis of the classification results in Table 3, it can be seen that each of our
two PTML-MLP models outperforms its corresponding LDA counterpart. This suggests
that the relationship between the measures of anti-PANC activity and the chemical structure
of the molecules in the present dataset is modeled better with the use of non-linear machine
learning algorithms, as in the case of our two PTML-MLP models.

Continuing with the results depicted in Table 3 for our PTML-MLP models, we can
observe that for the case statistical index Sn(%), the values were higher than 80% in the
training set while remaining above 75% in the test set. Moreover, in both PTML-MLP
models, there is a strong convergence between the observed and the predicted values of the
categorical variable of inhibitory activity IAi(cj) since the statistical metric MCC is closer
to 1 than to 0 (random classifier) or –1 (completely erroneous prediction). Altogether, the
results from Table 3 indicate that Model 1 classified/predicted the current data slightly
better than Model 2; however, Model 2, using one less D(GTI)cj descriptor than Model 1
achieved similar performance.

We went deeper and, thus, analyzed the local metrics derived from Sn(%) and Sp(%).
In this sense, Model 1 exhibited values in the interval 69.64–99.21% for (Sn(%))ma, (Sn(%))tg,
(Sn(%))ei, (Sp(%))ma, (Sp(%))tg, and (Sp(%))ei in the training set. The only exception
was (Sn(%))ei = 33.33% for the assay information labeled as “F (assay format)”. In the
test set, the behavior of Model 1 was very similar to the training set, as the aforemen-
tioned local metrics were in the range of 64.29–100%. In this test set, Model 1 maintained
the same exception as in the training set and added the PANC cell line MIA-PaCa-2
with (Sn(%))tg = 55.56% and the assay information labeled as “B (assay format)” with
(Sp(%))ei = 57.14%. In the case of Model 2, values were between 65.22% and 97.14% in the
training set; a relatively low performance was associated with the PANC cell line PSN1,
exhibiting (Sn(%))tg = 57.29% and the assay information annotated as “F (assay format)”
displaying (Sn(%))ei = 44.44%. In the test set, Model 2 achieved the interval 60.87–100%
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for the 6 local metrics mentioned above, with the exceptions being the labels of assay
information “B (assay format)” with (Sp(%))ei = 53.97% and assay information labeled as
“F (assay format)” with (Sn(%))ei = 38.46%. We would like to emphasize that most of the
values reported in this work for (Sn(%))ma, (Sn(%))tg, (Sn(%))ei, (Sp(%))ma, (Sp(%))tg, and
(Sp(%))ei were above 70%, which confirms the great capabilities of both PTML-MLP models
to classify/predict complex biological data focused on anti-PANC activity by considering
the 44 different experimental conditions, cj (as depicted in Table 1), employed in this study.
All the details regarding the classification results of Model 1 and Model 2 can be found in
Supplementary Materials S3 and S4, respectively.

Regarding the reliability of the predictions, we determined the AD of both PTML-
MLP models according to the descriptor space approach (Supplementary Material S5), and,
therefore, we calculated the total scores of the applicability domain (TSAD). For Model 1, only
the cases/chemicals with TSAD = 15 were considered to be within the AD, with the number
fifteen being equivalent to the number of D(GTI)cj descriptors present in Model 1. Only 2 of
the 9705 cases/chemicals were found to be outside the AD of Model 1 (TSAD < 15) and they
both belonged to the test set. For Model 2, the ideal value TSAD = 14 indicated the ability of
case/chemical to fall within the AD. In this model, only 8 of the 9705 cases/chemicals had
TSAD < 14, thus remaining outside of the AD of Model 2.

Last, we would like to highlight the limitations and strengths of our two PTML-MLP
models. A key limitation of our PTML-MLP models is their inability to correctly predict the
entire dataset employed in this work. This means that the D(GTI)cj descriptors used to build
the PTML-MLP models cannot characterize the whole complexity and molecular diversity
in the present dataset. Another limitation is the one associated with the machine learning
algorithm since none of the current algorithms are capable of encoding enough accurate
chemical information. At least one of these two aspects is generalized to all computational
models reported in the scientific literature. Consequently, in a virtual screening scenario,
our PTML-MLP models will perform accurate predictions to some extent.

In any case, the strengths of our PTML-MLP models outweigh the aforementioned
limitation. First, our PTML-MLP models are the first two models reported to date that
can predict anti-PANC activity by simultaneously considering different mechanisms of
action and multiple experimental conditions (involving dissimilar assay protocols) on
the inhibition of both PANC-related proteins and PANC cell lines. This highlights the
potentialities and wide applications of the PTML methodology in integrating chemical and
biological data in the context of oncology research [24–26,74–79]. Second, our two PTML-
MLP models are highly interpretable, physicochemically and structurally describing the
data in terms of suitable molecular fragments (see Section 3.2), which can be useful to both
computational and experimental chemists when selecting 2D pharmacophores. Third, by
interpreting our PTML-MLP models, it is possible to design new anti-PANC molecules (see
Section 3.3). Last, in contrast to most computational models, whose complex algorithms
involve remarkable consumption of time and financial resources, our PTML-MLP models
are cost-efficient; it only took two hours to create each of them when working on a portable
computer (12 GB RAM).

3.2. Physicochemical and Structural Meanings of the Molecular Descriptors

Here, we are providing the physicochemical and structural interpretations of the
D(GTI)cj descriptors in the PTML-MLP models. To support such interpretations, we
employed certain graphics that illustrated the significance of each D(GTI)cj descriptor in the
form of sensitivity values (SV) while extracting information on the propensities (increment
or diminution) in the value of each D(GTI)cj descriptor [37,63,80]. Such propensities indicate
how to vary the values of the D(GTI)cj descriptors to enhance the desired activity, which,
in our case, is the improvement of the inhibitory activity against both the PANC-related
proteins and the PANC cell lines.
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3.2.1. First PTML-MLP Model (Model 1)

The propensities of the D(GTI)cj descriptors in Model 1 are reported in Table 4, while
the relative importance of each of them (measured by SV) is depicted in Figure 1.

In Model 1, we have six D(GTI)cj descriptors derived from the so-called spectral mo-
ments of the bond adjacency matrix, which denote how much the physicochemical properties
are distributed/concentrated throughout the chemical structure of a molecule [44–46,81–83].
These D(GTI)cj descriptors are DTI01, DTI06, DTI08, DTI09, DTI12, and DTI13 and among
the most significant descriptors in Model 1, they rank third, ninth, fourteenth, seventh,
eleventh, and eighth, respectively.

Table 4. Molecular descriptors of the type D(GTI)cj present in the first PTML-MLP model (Model 1)
and their relative propensities.

Codes a Descriptors
CLASS-BASED MEANS b

Propensity c

Active Inactive

DTI01 D(NSM(Hyd)3)ma −2.3485 × 10−2 1.0631 × 10−1 Decrease

DTI02 D(NXv(P)4)ma 6.6912 × 10−3 5.5922 × 10−3 Increase

DTI03 D(Ne(P)1)ma −3.2309 × 10−4 8.6125 × 10−2 Decrease

DTI04 D(Ne(P)2)ma −4.7514 × 10−2 1.4992 × 10−1 Decrease

DTI05 D(Ne(Ch)6)ma −4.1335 × 10−2 1.7654 × 10−1 Decrease

DTI06 D(SM(Hyd)7)tg 3.1706 × 10−2 −2.5668 × 10−1 Increase

DTI07 D(e(Ch)5)tg 5.2858 × 10−3 −4.9427 × 10−2 Increase

DTI08 D(NSM(Psa)1)tg 2.2379 × 10−2 −1.9481 × 10−2 Increase

DTI09 D(NSM(Gas)3)tg 2.8122 × 10−2 −1.3897 × 10−1 Increase

DTI10 D(NXv(P)1)tg −1.2919 × 10−2 1.1367 × 10−1 Decrease

DTI11 D(Xv(Ch)6)ei −4.9125 × 10−3 −7.1198 × 10−2 Increase

DTI12 D(NSM(Hyd)1)ei −5.5366 × 10−2 2.3959 × 10−1 Decrease

DTI13 D(NSM(Mol)1)ei −4.2905 × 10−2 2.2042 × 10−1 Decrease

DTI14 D(Ne(P)5)ei −1.2401 × 10−2 −5.6792 × 10−2 Increase

DTI15 D(Ne(PC)6)ei 3.4465 × 10−2 −2.3273 × 10−1 Increase
a Symbols of the different molecular descriptors of the type D(GTI)cj in Model 1 as represented in Table 2. b Average
values of each D(GTI)cj descriptor by considering the active and inactive categories. c Relative tendency of a
molecular descriptor to vary (increase or decrease) its value, resulting in a simultaneous enhancement of the
inhibitory activity against PANC-related proteins (caspase-1, TNF-alpha, and IGF1R) and the PANC cell lines.



Biomedicines 2022, 10, 491 11 of 21

Figure 1. The different D(GTI)cj descriptors and their relative significances in Model 1.

Three of these D(GTI)cj descriptors are derived from the spectral moments and are
focused on hydrophobicity, according to the Ghose–Crippen approach [84]. Thus, DTI01
characterizes the decrease of the hydrophobicity in regions containing three-membered
rings and fragments where one atom is attached to three other non-hydrogen atoms. There-
fore, the presence of urea, carbamate, and carboxamide groups, as well as portions with
secondary alcohols and amines, methylene moieties, and aziridine and oxirane rings favor
a decrease in the value of DTI01. The same fragments mentioned in the case of DTI01, will
also desirably decrease the value of DTI12; however, the latter of these D(GTI)cj descriptors
will impact a molecule more globally. Another hydrophobicity-based descriptor is DTI06,
which involves the increment of the hydrophobicity in regions in fragments containing
seven bonds or less. The presence of three-membered rings and groups/moieties where an
atom is bonded to four other non-hydrogen atoms (e.g., quaternary carbons, sulfonamides,
and phosphorus-based functional groups, such as phosphine oxides, phosphonates, and
phosphates) will increase the value of DTI06. At the same time, DTI08 describes the increase
of the polar surface area, which can be achieved by increasing the number the functional
groups (mainly based on nitrogen and oxygen atoms) capable of forming hydrogen bonds.
On the other hand, DTI09 implies the augmentation of electronegative atoms in three-
membered rings and groups where one atom is attached to two other non-hydrogen atoms.
The functional groups described by DTI01 also favor DTI09, but the latter characterizes the
structure in terms of the distribution of partial charges, also including the increase of halo-
gens (particularly fluor). The last D(GTI)cj descriptor derived from the spectral moments is
DTI13, which gives information regarding the diminution of the global polarizability in
the molecules, thus favoring the presence of nitrogen, oxygen, and fluorine atoms, while
diminishing the presence of aromatic rings or alkene moieties, as well as the functional
groups attached to them.

In Model 1, we also have D(GTI)cj descriptors derived from atom-based connectivity
indices, and, therefore, these D(GTI)cj descriptors measure the contribution of different
fragments to the molecular accessibility [85,86], i.e., the ability of certain regions of a given
molecule to interact with the surrounding chemical environment (e.g., with molecules
such as water, amino acids in the cavity of a protein, and different components of the
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membrane PANC cell line). The D(GTI)cj descriptors are DTI02, DTI10, and DTI11, and,
among the most influential, they ranked sixth, tenth, and thirteenth, respectively. Thus,
in Model 1, DTI02 describes the increment of the molecular accessibility, mainly in linear
(non-ramified) fragments containing at least one atom different from carbon, hydrogen,
and boron. In contrast with DTI02, DTI10 measures the decrease of the average accessibility
area of a molecule, which can be achieved by limiting the number of sulfur and halogen
atoms (except fluor). In the case of DTI11, this descriptor indicates that augmenting the
accessibility (and, therefore, the number) of six-membered rings will play a favorable role
in enhancing the inhibitory activity against both the PANC-related proteins and the PANC
cell lines.

Last, we have D(GTI)cj descriptors which encompass information content similar
to that of the edge (bond) connectivity indices and, therefore, behave as measures of
contribution to the molecular/molar volume [50,87,88]. Such D(GTI)cj descriptors under
analysis are DTI03, DTI04, DTI05, DTI07, DTI14, and DTI15, and they have been considered
as the fourth, fifth, twelfth, fifteenth, first, and second most significant descriptors in
Model 1, respectively. Thus, DTI03 is a direct measure of the global volume of a molecule,
expressing the decrease of this physicochemical property. This has important implications
because diminishing the molecular volume means that a molecule will be able to better fit
in the binding pocket of the PANC-related proteins while also allowing the molecule to be
small enough to permeate the cellular membranes [89]. Decreasing the number of atoms
in a molecule will favorably decrease the value of DTI03. A similar effect is expected to
take place by diminishing the value of DTI04. The only difference is that DTI04 focuses
on fragments formed by two bonds (without counting bond multiplicity). In the case of
DTI05, this expresses the decrease of the volume in regions containing six-membered rings.
We should highlight that this descriptor constrains DTI11, which was explained before. In
the end, at least two six-membered rings can be part of the structure of a molecule, but
these rings should have at least two substitutions while the presence of nitrogen atoms
in these rings is a favorable factor. The descriptor DTI07 characterizes the increase of the
molecular volume due to the presence of five-membered rings. The two most important
D(GTI)cj descriptors (DTI14 and DTI15) indicate the increase of the average volume by
decreasing the number of atoms in a molecule while increasing the number of regions
without branching in that molecule. Particularly, DTI14 measures this effect in five-bond
linear fragments while DTI15 focuses on six-bond fragments where the presence of a
six-membered ring is also important.

3.2.2. Second PTML-MLP Model (Model 2)

As in the case of Model 1, data regarding each D(GTI)cj descriptor propensity and
significance in Model 2 can be found in Table 5 and Figure 2, respectively. The D(GTI)cj
descriptors used in Model 2 were derived from the atom-based local stochastic quadratic
indices [54,56,90], which means that they characterize the distribution of different physic-
ochemical properties of diverse fragments containing specific types of atoms [37,90]. In
Model 2, seven of the fourteen D(GTI)cj descriptors are based on hydrophobicity, which
indicates the paramount importance of this physicochemical property. These D(GTI)cj
descriptors are DQI01, DQI02, DQI03, DQI09, DQI10, DQI12, and DQI14 and we would like
to highlight that, these D(GTI)cj descriptors consider the multiplication of the hydrophobic
contribution of a specific type of atom and the hydrophobic contribution of other non-
hydrogen atoms situated at the given topological distance (number of bonds between any
two atoms without counting bond multiplicity). Hence, instead of referring to an atomic
hydrophobicity, we will use the term “joint hydrophobic contribution”.
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Table 5. Class-based means and relative propensities of the D(GTI)cj descriptors present in the second
PTML-MLP model (Model 2).

Codes a Descriptors
CLASS-BASED MEANS b

Propensity c

Active Inactive

DQI01 D(ASq4(Hyd)G)ma −5.4750 × 10−3 −4.6447 × 10−3 Decrease

DQI02 D(ASq3(Hyd)Y)ma 2.6348 × 10−2 −1.8596 × 10−1 Increase

DQI03 D(ASq4(Hyd)Y)ma 3.5673 × 10−2 −1.3724 × 10−1 Increase

DQI04 D(ASq2(E)Y)ma 5.0259 × 10−2 −2.2849 × 10−1 Increase

DQI05 D(ASq1(Psa)Y)ma 3.8557 × 10−3 6.3789 × 10−2 Decrease

DQI06 D(ASq1(Aw)C)tg 5.9744 × 10−2 −3.4756 × 10−1 Increase

DQI07 D(ASq0(Ku)G)tg 3.9557 × 10−3 1.1249 × 10−1 Decrease

DQI08 D(ASq4(Psa)Y)tg 3.1247 × 10−2 −1.2646 × 10−1 Increase

DQI09 D(ASq1(Hyd)G)ei −1.1160 × 10−2 4.0920 × 10−2 Decrease

DQI10 D(ASq2(Hyd)G)ei 5.8725 × 10−4 3.3683 × 10−2 Decrease

DQI11 D(ASq2(Aw)G)ei 9.2750 × 10−3 1.9038 × 10−2 Decrease

DQI12 D(ASq1(Hyd)M)ei 2.6208 × 10−2 −1.7829 × 10−1 Increase

DQI13 D(ASq1(Ku)M)ei 2.8400 × 10−2 −3.0151 × 10−1 Increase

DQI14 D(ASq0(Hyd)Y)ei 1.3478 × 10−2 −2.1995 × 10−2 Increase
a Symbols of the different D(GTI)cj descriptors in the second PTML-MLP model according to Figure 2. b Average
values of each D(GTI)cj descriptor by considering the active and inactive categories. c Relative tendency of
each D(GTI)cj descriptor to vary (increase or decrease) its value, resulting in a simultaneous enhancement of the
inhibitory activity against PANC-related proteins (caspase-1, TNF-alpha, and IGF1R) and the PANC cell lines.

Figure 2. Relative importance of the different D(GTI)cj descriptors in Model 2.

In terms of significance in Model 2, the D(GTI)cj descriptors DQI01, DQI02, DQI03,
DQI09, DQI10, DQI12, and DQI14 rank first, eighth, fourth, eleventh, twelfth, thirteenth,
and second, respectively. By inspecting the descriptors DQI01, DQI09, and DQI10, we
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can see that they express the decrease of the joint hydrophobic contribution of any two
atoms (with at least one of them being a halogen) separated by a topological distance of
four, one, and two, respectively. Considering that all the halogens have a positive value of
hydrophobic contribution [91], the atoms surrounding them must have a negative value of
the hydrophobic contribution. Such atoms can be mainly primary and secondary carbons.
Therefore, fragments such as 4-halocyclohexyl and 4-halobutyl will greatly and favorably
diminish the values of DQI01, DQI09, and DQI10, thus enhancing the inhibitory activity
against the PANC-related proteins and the PANC cell lines. At the same time, DQI02,
DQI03, and DQI14 characterize an increase in the joint hydrophobic contribution of any
two atoms, with one of them being a heteroatom (particularly N, O, S, or P). However, while
DQI02 and DQI03 consider fragments where the heteroatom is at the topological distance of
three and four (respectively) or less from any other non-hydrogen atom, DQI14 exclusively
depends on the presence and number of heteroatoms. In any case, fragments containing
the ethylenediamine or glycine moieties will desirably increase the value of DQI02, while
fragments such as 1,3,5-triazin-2-amine, pyrimidin-2-amine, and heteroaliphatic rings
(containing a nitrogen atom or being attached to it), as well as urea and carbamate, will do
the same for DQI03; all these fragments will increase the value of DQI14. On the other hand,
the descriptor DQI12 indicates the increase of the joint hydrophobic contribution between
a carbon atom from a methyl group and its adjacent atoms (the topological distance equal
to one). This means that to increase the value of DQI12, a carbon atom from a methyl group
must be attached to a secondary (non-substituted) carbon or aminic nitrogen (resulting in a
secondary amine).

In Model 2, we also have three D(GTI)cj descriptors containing electronic information.
One of them is DQI04 (the ninth most influential), which characterizes the augmentation of
the electronegativity of any two atoms (with one of them being a heteroatom) placed at
the topological distance of two. Therefore, all the fragments mentioned for the descriptors
DQI02 and DQI03 explained above cause a beneficial increase in the value of DQI04. In the
case of DQI05 (the fifth most important), this describes the diminution of the polar surface
area in any two adjacent heteroatoms. Because DQI05 directly depends on the presence of
electron-rich heteroatoms, such as nitrogen and oxygen, to decrease the value of DQI05,
two electron-rich heteroatoms should not be bonded. Moreover, in terms of electronic
information, DQI08 expresses the increase of the polar surface area of any two heteroatoms
placed at the topological distance of four or less. Therefore, all the fragments mentioned
for the descriptor DQI03 (except for the heteroaliphatic rings) and in a lower degree, for
DQI02, will increase the value of DQI08. Other groups containing sulfur (sulfonamides)
and phosphorus (phosphates) will also increase the value of DQI08. This descriptor is the
least significant in Model 2.

Steric factors play an essential role in enhancing the inhibitory activity of a chemical
against the PANC-related proteins and the PANC cell lines. The D(GTI)cj descriptors
accounting for the steric information are DQI06, DQI07, DQI11, and DQI13, and, regarding
their influence in Model 2, they ranked third, seventh, tenth, and sixth, respectively. The
descriptor DQI06 indicates the augmentation of the molecular size, mainly by increasing
the number of aliphatic carbons but also by increasing the number of atoms (different from
carbon) bonded to the aliphatic carbons. On the other hand, DQI07 means that the number
of halogens must be decreased; if a halogen is present, iodine, bromine, and chlorine will be
preferred over fluorine. In the case of DQI11, this characterizes the decrease of the atomic
weight of any two atoms (with one of them being a halogen) placed at the topological
distance of two. This means that to decrease the value of DQI11, the number of halogens
should be reduced, and their chemical environments must be almost exclusively constituted
by carbon atoms; halogens should be attached to aliphatic or aromatic rings or in the form
of 2-haloethyl moieties. For DQI11, fluorine is strongly preferred over the other halogens.
Last, we have DQI13, and its value can be increased by bonding carbons from methyl
groups to low-polarizability atoms, such as nitrogen and oxygen. Therefore, the presence
of methoxy and methylamino groups favor the increment of DQI13.
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3.3. Designing Multi-Protein and Multi-Cell Inhibitors as Anti-PANC Agents

The guidelines applied to the design of new molecules from PTML models have been
reported before [25,26,28,67,80,92]. Here, we used Model 2 as a tool to design new molecules
from the fragments present in Figure 3.

Figure 3. Generic molecular fragments directly extracted from the physicochemical and structural
interpretation of the descriptors in Model 2. The descriptors are associated with different fragments.
The symbols mean A = amino, hydroxyl, alkylamino, or alkoxy; G = halogen; Q = amino, hydroxyl,
alkylamino, alkoxy, or a non-substituted secondary carbon; X = O, -NH-, or a secondary carbon;
Z = N or aromatic carbon.

There were two reasons for which we preferred Model 2 over Model 1. From one
side, as mentioned in Section 3.1, Model 2, with one less descriptor, achieved a statistical
performance comparable to that of Model 1. On the other hand, from a physicochemical
point of view, Model 2 offers a simpler (but more detailed) explanation than Model 1. The
joint interpretation of the D(GTI)cj descriptors in Model 2 suggests the presence of three
well-defined regions that seem to be essential when designing a molecule. First, there
should be a hydrophilic region containing several heteroatoms that can interact through
hydrogen bonds. The second region, situated in the center of the molecule, may also contain
heteroatoms but these should be more dispersed, with any two heteroatoms separated at a
distance of three bonds. In this region, aliphatic atoms may serve as “bridges” between any
two heteroatoms. The third region is expected to be hydrophobic, particularly containing
a 4-halophenyl or 4-halocyclohexyl moiety, which means that the halogen will be in the
periphery of the molecule.

By combining the aforementioned joint interpretation with the inspection of the frag-
ments in Figure 3, we designed three structurally related molecules, which are depicted in
Figure 4.
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Figure 4. New molecules designed from suitable molecular fragments by using the physicochemical
and structural interpretations as guidelines.

The three designed molecules were predicted by Model 1 and Model 2 to be anti-
PANC agents through the inhibition of the PANC-related proteins and PANC cell lines.
However, there were differences in the predicted probabilities. For instance, for all the
44 experimental conditions cj reported in this work, MPMCI-001 and MPMCI-003 were
predicted by both PTML-MLP models with probability values close to 100%. However, in
the case of MPMCI-002, this happened only with Model 2. That does not mean that Model 1
poorly predicted MPMCI-002. Notice that Model 1 predicted MPMCI-002 to be an anti-PANC
agent in 42 of the 44 experimental conditions, but the predicted probability values were
lower when compared to those obtained for MPMCI-001 and MPMCI-003. This means that,
in the structure of MPMCI-002, the methyl group from the methylamino moiety located
between the two nitrogen atoms of the pyrimidine ring should be removed. The difference
in the predicted probabilities also demonstrates the sensibility of the D(GTI)cj descriptors in
Model 1, allowing this model to be used as a filter of Model 2 to ensure the correct design of
new molecules. In any case, the fact that the three designed molecules were predicted by
both PTML-MLP models as multi-protein and multi-cell inhibitors, theoretically confirms
the aforementioned molecules to be anti-PANC agents. Moreover, the three molecules were
within the applicability domain of these models. All the results of the predictions (including
the assessment of the applicability domain) performed by Model 1 and Model 2 for the design
molecules can be found in Supplementary Materials S6 and S7, respectively.

We searched for our designed molecules in different databases, such as ChEMBL [41,93],
ZINC [94], and eMolecules [95], to check their novelty. In this sense, we used the similarity
cutoff of 80%. No molecules similar to those designed by us were found. We would like
to add that we also calculated several global physicochemical properties for the designed
molecules (Table 6), which allowed us to have an idea regarding their drug-likeness.
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Table 6. Physicochemical properties estimated for the designed molecules.

ID a nHDon nHAcc MW (Da) MlogP AlogP MR (cm3/mol) nAT RBN PSA (Å)

MPMCI-001 4 8 311.41 1.429 0.675 83.009 44 6 104.37

MPMCI-002 4 9 354.49 2.259 1.578 99.009 52 8 102.41

MPMCI-003 2 9 340.46 2.151 1.515 92.717 49 8 92.27
a The physicochemical properties described in this table are as follows: number of hydrogen bond donors (nHDon),
number of hydrogen bond acceptors (nHAcc), molecular weight (MW), logarithm of the octanol/water partition
coefficient according to the Moriguchi approach (MlogP), logarithm of the octanol/water partition coefficient
according to the Ghose–Crippen approach (AlogP), molar refractivity according to the Ghose–Crippen approach
(MR), total number of atoms (nAT), number of rotatable bonds (RBN), and polar surface area (PSA).

In doing so, the calculated physicochemical properties allowed the use of three ap-
proaches known as the Lipinski rule of five [96], Ghose filter [97], and Veber’s guidelines [98].
We compared the values of each physicochemical property for each of the designed molecules
with the cutoff values/intervals established by each of the aforementioned filters. Our de-
signed molecules complied with all these criteria.

4. Conclusions

In the context of therapeutic solutions for oncology research, finding anti-PANC chem-
icals is one of the greatest challenges. The multi-factorial nature of PANC is a clear indicator
that both experimental and computational approaches must be focused on searching for
multi-target agents to more efficiently limit or eradicate PANC growth through multi-
ple mechanisms of action. Our computational methodology, relying on two PTML-MLP
models, has established the theoretical basis to enable the fragment-based design of new
molecular entities that can act as multi-protein and multi-cell inhibitors against PANC. This
work consolidates the usefulness of PTML modeling as a strategy that can yield potentially
new anticancer therapeutics exhibiting adequate drug-like properties.
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D(GTI)cj descriptors, classification results, and local metrics for Model 2, Supplementary Material S5:
Applicability domain of the two PTML-MLP models by considering the cases/chemicals belonging to
both the training and test sets, Supplementary Material S6: Topological indices, D(GTI)cj descriptors,
classification results, and applicability domain of the designed molecules according to Model 1,
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Author Contributions: Conceptualization, A.S.-P.; methodology, A.S.-P.; software, A.S.-P. and V.V.K.;
validation, A.S.-P.; formal analysis, A.S.-P.; investigation, A.S.-P. and V.V.K.; resources, A.S.-P. and
V.V.K.; data curation, V.V.K.; calculations, A.S.-P. and V.V.K.; writing—original draft preparation,
A.S.-P. and V.V.K.; writing—review and editing, A.S.-P.; visualization, A.S.-P. and V.V.K.; supervision,
A.S.-P.; project administration, A.S.-P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the chemical and biological (raw) data were retrieved from the
public repository known as ChEMBL (https://www.ebi.ac.uk/chembl/, accessed on 4 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/biomedicines10020491/s1
https://www.mdpi.com/article/10.3390/biomedicines10020491/s1
https://www.ebi.ac.uk/chembl/


Biomedicines 2022, 10, 491 18 of 21

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
2. Chang, J.S.; Chen, L.T.; Shan, Y.S.; Chu, P.Y.; Tsai, C.R.; Tsai, H.J. The incidence and survival of pancreatic cancer by histology,

including rare subtypes: A nation-wide cancer registry-based study from Taiwan. Cancer Med. 2018, 7, 5775–5788. [CrossRef]
3. Klein, A.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol.

Hepatol. 2021, 18, 493–502. [CrossRef]
4. Cintas, C.; Douche, T.; Therville, N.; Arcucci, S.; Ramos-Delgado, F.; Basset, C.; Thibault, B.; Guillermet-Guibert, J. Signal-Targeted

Therapies and Resistance Mechanisms in Pancreatic Cancer: Future Developments Reside in Proteomics. Cancers 2018, 10, 174.
[CrossRef] [PubMed]

5. Hu, C.; LaDuca, H.; Shimelis, H.; Polley, E.C.; Lilyquist, J.; Hart, S.N.; Na, J.; Thomas, A.; Lee, K.Y.; Davis, B.T.; et al. Multigene
Hereditary Cancer Panels Reveal High-Risk Pancreatic Cancer Susceptibility Genes. JCO Precis. Oncol. 2018, 2, 1–28. [CrossRef]

6. Dinarello, C.A. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am. J. Clin. Nutr. 2006, 83,
S447–S455. [CrossRef] [PubMed]

7. Raupach, B.; Peuschel, S.K.; Monack, D.M.; Zychlinsky, A. Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and
IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 2006, 74,
4922–4926. [CrossRef]

8. Yang, Z.; Cao, J.; Yu, C.; Yang, Q.; Zhang, Y.; Han, L. Caspase-1 mediated interleukin-18 activation in neutrophils promotes the
activity of rheumatoid arthritis in a NLRP3 inflammasome independent manner. Jt. Bone Spine 2016, 83, 282–289. [CrossRef]
[PubMed]

9. Du, T.; Gao, J.; Li, P.; Wang, Y.; Qi, Q.; Liu, X.; Li, J.; Wang, C.; Du, L. Pyroptosis, metabolism, and tumor immune microenvironment.
Clin. Transl. Med. 2021, 11, e492. [CrossRef]

10. Xia, S.; Zhang, Z.; Magupalli, V.G.; Pablo, J.L.; Dong, Y.; Vora, S.M.; Wang, L.; Fu, T.M.; Jacobson, M.P.; Greka, A.; et al. Gasdermin
D pore structure reveals preferential release of mature interleukin-1. Nature 2021, 593, 607–611. [CrossRef]

11. Furuoka, M.; Ozaki, K.; Sadatomi, D.; Mamiya, S.; Yonezawa, T.; Tanimura, S.; Takeda, K. TNF-alpha Induces Caspase-1 Activation
Independently of Simultaneously Induced NLRP3 in 3T3-L1 Cells. J. Cell. Physiol. 2016, 231, 2761–2767. [CrossRef] [PubMed]

12. Xu, S.; Li, X.; Liu, Y.; Xia, Y.; Chang, R.; Zhang, C. Inflammasome inhibitors: Promising therapeutic approaches against cancer.
J. Hematol. Oncol. 2019, 12, 64. [CrossRef]

13. Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Pandian, G.; Savadkar, S.; Lee, K.B.; Torres-Hernandez, A.; Aykut, B.; Diskin, B.; et al.
NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J. Exp. Med. 2017, 214,
1711–1724. [CrossRef] [PubMed]

14. Schlosser, S.; Gansauge, F.; Ramadani, M.; Beger, H.G.; Gansauge, S. Inhibition of caspase-1 induces cell death in pancreatic
carcinoma cells and potentially modulates expression levels of bcl-2 family proteins. FEBS Lett. 2001, 491, 104–108. [CrossRef]

15. Zhao, X.; Fan, W.; Xu, Z.; Chen, H.; He, Y.; Yang, G.; Yang, G.; Hu, H.; Tang, S.; Wang, P.; et al. Inhibiting tumor necrosis
factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma.
Oncotarget 2016, 7, 81110–81122. [CrossRef]

16. Polireddy, K.; Chen, Q. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment. J. Cancer 2016, 7,
1497–1514. [CrossRef]

17. Subramani, R.; Lopez-Valdez, R.; Arumugam, A.; Nandy, S.; Boopalan, T.; Lakshmanaswamy, R. Targeting insulin-like growth
factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE 2014, 9, e97016. [CrossRef] [PubMed]

18. Lai, E.; Puzzoni, M.; Ziranu, P.; Pretta, A.; Impera, V.; Mariani, S.; Liscia, N.; Soro, P.; Musio, F.; Persano, M.; et al. New therapeutic
targets in pancreatic cancer. Cancer Treat. Rev. 2019, 81, 101926. [CrossRef]

19. Ortega-Tenezaca, B.; Quevedo-Tumailli, V.; Bediaga, H.; Collados, J.; Arrasate, S.; Madariaga, G.; Munteanu, C.R.; Cordeiro,
M.; Gonzalez-Diaz, H. PTML Multi-Label Algorithms: Models, Software, and Applications. Curr. Top. Med. Chem. 2020, 20,
2326–2337. [CrossRef]

20. Speck-Planche, A.; Cordeiro, M.N.D.S. Multitasking models for quantitative structure-biological effect relationships: Current
status and future perspectives to speed up drug discovery. Expert Opin. Drug Discov. 2015, 10, 245–256. [CrossRef]

21. Kleandrova, V.V.; Speck-Planche, A. The urgent need for pan-antiviral agents: From multitarget discovery to multiscale design.
Future Med. Chem. 2021, 13, 5–8. [CrossRef] [PubMed]

22. Halder, A.K.; Delgado, A.H.S.; Cordeiro, M. First multi-target QSAR model for predicting the cytotoxicity of acrylic acid-based
dental monomers. Dent. Mater. 2022, 38, 333–346. [CrossRef]

23. Halder, A.K.; Cordeiro, M. Multi-Target in Silico Prediction of Inhibitors for Mitogen-Activated Protein Kinase-Interacting Kinases.
Biomolecules 2021, 11, 1670. [CrossRef] [PubMed]

24. Bediaga, H.; Arrasate, S.; Gonzalez-Diaz, H. PTML Combinatorial Model of ChEMBL Compounds Assays for Multiple Types of
Cancer. ACS Comb. Sci. 2018, 20, 621–632. [CrossRef] [PubMed]

25. Kleandrova, V.V.; Scotti, M.T.; Scotti, L.; Speck-Planche, A. Multi-Target Drug Discovery Via PTML Modeling: Applications to the
Design of Virtual Dual Inhibitors of CDK4 and HER2. Curr. Top. Med. Chem. 2021, 21, 661–675. [CrossRef] [PubMed]

26. Speck-Planche, A. Multicellular Target QSAR Model for Simultaneous Prediction and Design of Anti-Pancreatic Cancer Agents.
ACS Omega 2019, 4, 3122–3132. [CrossRef]

http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.1002/cam4.1795
http://doi.org/10.1038/s41575-021-00457-x
http://doi.org/10.3390/cancers10060174
http://www.ncbi.nlm.nih.gov/pubmed/29865155
http://doi.org/10.1200/PO.17.00291
http://doi.org/10.1093/ajcn/83.2.447S
http://www.ncbi.nlm.nih.gov/pubmed/16470011
http://doi.org/10.1128/IAI.00417-06
http://doi.org/10.1016/j.jbspin.2015.07.006
http://www.ncbi.nlm.nih.gov/pubmed/26775759
http://doi.org/10.1002/ctm2.492
http://doi.org/10.1038/s41586-021-03478-3
http://doi.org/10.1002/jcp.25385
http://www.ncbi.nlm.nih.gov/pubmed/26989816
http://doi.org/10.1186/s13045-019-0755-0
http://doi.org/10.1084/jem.20161707
http://www.ncbi.nlm.nih.gov/pubmed/28442553
http://doi.org/10.1016/S0014-5793(01)02144-5
http://doi.org/10.18632/oncotarget.13212
http://doi.org/10.7150/jca.14922
http://doi.org/10.1371/journal.pone.0097016
http://www.ncbi.nlm.nih.gov/pubmed/24809702
http://doi.org/10.1016/j.ctrv.2019.101926
http://doi.org/10.2174/1568026620666200916122616
http://doi.org/10.1517/17460441.2015.1006195
http://doi.org/10.4155/fmc-2020-0134
http://www.ncbi.nlm.nih.gov/pubmed/33225723
http://doi.org/10.1016/j.dental.2021.12.014
http://doi.org/10.3390/biom11111670
http://www.ncbi.nlm.nih.gov/pubmed/34827668
http://doi.org/10.1021/acscombsci.8b00090
http://www.ncbi.nlm.nih.gov/pubmed/30240186
http://doi.org/10.2174/1568026621666210119112845
http://www.ncbi.nlm.nih.gov/pubmed/33463472
http://doi.org/10.1021/acsomega.8b03693


Biomedicines 2022, 10, 491 19 of 21

27. Diez-Alarcia, R.; Yanez-Perez, V.; Muneta-Arrate, I.; Arrasate, S.; Lete, E.; Meana, J.J.; Gonzalez-Diaz, H. Big Data Challenges
Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [(35)S] GTPgammaS Binding Assays.
ACS Chem. Neurosci. 2019, 10, 4476–4491. [CrossRef]

28. Kleandrova, V.V.; Speck-Planche, A. PTML Modeling for Alzheimer’s Disease: Design and Prediction of Virtual Multi-Target
Inhibitors of GSK3B, HDAC1, and HDAC6. Curr. Top. Med. Chem. 2020, 20, 1657–1672. [CrossRef]

29. Ferreira da Costa, J.; Silva, D.; Caamano, O.; Brea, J.M.; Loza, M.I.; Munteanu, C.R.; Pazos, A.; Garcia-Mera, X.; Gonzalez-Diaz, H.
Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New
l-Prolyl-l-leucyl-glycinamide Peptidomimetics. ACS Chem. Neurosci. 2018, 9, 2572–2587. [CrossRef]

30. Abeijon, P.; Garcia-Mera, X.; Caamano, O.; Yanez, M.; Lopez-Castro, E.; Romero-Duran, F.J.; Gonzalez-Diaz, H. Multi-Target
Mining of Alzheimer Disease Proteome with Hansch’s QSBR-Perturbation Theory and Experimental-Theoretic Study of New
Thiophene Isosters of Rasagiline. Curr. Drug Targets 2017, 18, 511–521. [CrossRef]

31. Martinez-Arzate, S.G.; Tenorio-Borroto, E.; Barbabosa Pliego, A.; Diaz-Albiter, H.M.; Vazquez-Chagoyan, J.C.; Gonzalez-Diaz,
H. PTML Model for Proteome Mining of B-Cell Epitopes and Theoretical-Experimental Study of Bm86 Protein Sequences from
Colima, Mexico. J. Proteome Res. 2017, 16, 4093–4103. [CrossRef]

32. Tenorio-Borroto, E.; Penuelas-Rivas, C.G.; Vasquez-Chagoyan, J.C.; Castanedo, N.; Prado-Prado, F.J.; Garcia-Mera, X.; Gonzalez-
Diaz, H. Model for high-throughput screening of drug immunotoxicity—Study of the anti-microbial G1 over peritoneal
macrophages using flow cytometry. Eur. J. Med. Chem. 2014, 72, 206–220. [CrossRef] [PubMed]

33. Vasquez-Dominguez, E.; Armijos-Jaramillo, V.D.; Tejera, E.; Gonzalez-Diaz, H. Multioutput Perturbation-Theory Machine
Learning (PTML) Model of ChEMBL Data for Antiretroviral Compounds. Mol. Pharm. 2019, 16, 4200–4212. [CrossRef] [PubMed]

34. Nocedo-Mena, D.; Cornelio, C.; Camacho-Corona, M.D.R.; Garza-Gonzalez, E.; Waksman de Torres, N.; Arrasate, S.; Sotomayor,
N.; Lete, E.; Gonzalez-Diaz, H. Modeling Antibacterial Activity with Machine Learning and Fusion of Chemical Structure
Information with Microorganism Metabolic Networks. J. Chem. Inf. Model. 2019, 59, 1109–1120. [CrossRef] [PubMed]

35. Speck-Planche, A.; Kleandrova, V.V.; Ruso, J.M.; Cordeiro, M.N.D.S. First multitarget chemo-bioinformatic model to enable the
discovery of antibacterial peptides against multiple Gram-positive pathogens. J. Chem. Inf. Model. 2016, 56, 588–598. [CrossRef]

36. Speck-Planche, A.; Cordeiro, M.N.D.S. Chemoinformatics for medicinal chemistry: In silico model to enable the discovery of
potent and safer anti-cocci agents. Future Med. Chem. 2014, 6, 2013–2028. [CrossRef]

37. Kleandrova, V.V.; Scotti, M.T.; Speck-Planche, A. Computational Drug Repurposing for Antituberculosis Therapy: Discovery of
Multi-Strain Inhibitors. Antibiotics 2021, 10, 1005. [CrossRef]

38. Herrera-Ibata, D.M.; Pazos, A.; Orbegozo-Medina, R.A.; Romero-Duran, F.J.; Gonzalez-Diaz, H. Mapping chemical structure-
activity information of HAART-drug cocktails over complex networks of AIDS epidemiology and socioeconomic data of U.S.
counties. Biosystems 2015, 132, 20–34. [CrossRef]

39. Santana, R.; Zuluaga, R.; Ganan, P.; Arrasate, S.; Onieva, E.; Gonzalez-Diaz, H. Predicting coated-nanoparticle drug release
systems with perturbation-theory machine learning (PTML) models. Nanoscale 2020, 12, 13471–13483. [CrossRef]

40. Speck-Planche, A.; Kleandrova, V.V. Chapter 16 Demystifying Artificial Neural Networks as Generators of New Chemical
Knowledge: Antimalarial Drug Discovery as a Case Study. In Machine Learning in Chemistry: The Impact of Artificial Intelligence;
The Royal Society of Chemistry: London, UK, 2020; pp. 398–423.

41. Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Felix, E.; Magarinos, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka,
M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [CrossRef]

42. Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al.
Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res.
2013, 41, D955–D961. [CrossRef]

43. Attene-Ramos, M.S.; Austin, C.P.; Xia, M. High Throughput Screening. In Encyclopedia of Toxicology (Third Edition); Wexler, P., Ed.;
Academic Press Elsevier: Cambridge, MA, USA, 2014; pp. 916–917.

44. Estrada, E. Spectral moments of the edge adjacency matrix in molecular graphs. 1. Definition and applications for the prediction
of physical properties of alkanes. J. Chem. Inf. Comput. Sci. 1996, 36, 844–849. [CrossRef]

45. Estrada, E. Spectral moments of the edge adjacency matrix in molecular graphs. 2. Molecules containing heteroatoms and QSAR
applications. J. Chem. Inf. Comput. Sci. 1997, 37, 320–328. [CrossRef]

46. Estrada, E. Spectral moments of the edge adjacency matrix in molecular graphs. 3. Molecules containing cycles. J. Chem. Inf.
Comput. Sci. 1998, 38, 23–27. [CrossRef]
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