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Abstract: The enteric nervous system (ENS) is a part of the autonomic nervous system that in-
trinsically innervates the gastrointestinal (GI) tract. Whereas enteric neurons have been deeply
studied, the enteric glial cells (EGCs) have received less attention. However, these are immune-
competent cells that contribute to the maintenance of the GI tract homeostasis through supporting
epithelial integrity, providing neuroprotection, and influencing the GI motor function and sen-
sation. The endogenous cannabinoid system (ECS) includes endogenous classical cannabinoids
(anandamide, 2-arachidonoylglycerol), cannabinoid-like ligands (oleoylethanolamide (OEA) and
palmitoylethanolamide (PEA)), enzymes involved in their metabolism (FAAH, MAGL, COX-2) and
classical (CB1 and CB2) and non-classical (TRPV1, GPR55, PPAR) receptors. The ECS participates in
many processes crucial for the proper functioning of the GI tract, in which the EGCs are involved.
Thus, the modulation of the EGCs through the ECS might be beneficial to treat some dysfunctions
of the GI tract. This review explores the role of EGCs and ECS on the GI tract functions and dys-
functions, and the current knowledge about how EGCs may be modulated by the ECS components,
as possible new targets for cannabinoids and cannabinoid-like molecules, particularly those with
potential nutraceutical use.

Keywords: cannabidiol; endocannabinoid system; enteric glial cells; enteric nervous system; gastrointestinal
system; nutraceuticals; palmitoylethanolamide

1. Introduction

The digestive system is the primary site of energy and nutrient absorption and plays
a key role in metabolic homeostasis, i.e., “the capacity of organisms to maintain stable
conditions on its composition and properties by compensating changes in their internal
environment through the regulated exchange of matter and energy”. [1]. Within the gut
wall lies the largest endocrine and immune system of the body, as well as the enteric
nervous system (ENS) [2]. The gastrointestinal (GI) tract is connected with the central
nervous system (CNS), through the extrinsic innervation of the autonomic nervous system
(ANS) and stress hormones. Thus, the existence of an important brain-gut axis has been
recognized [3].

Whereas the neurons in the ENS have been widely studied throughout time, the enteric
glial cells (EGCs) have received less attention [4–6]. Numerous GI conditions have been
found to be associated with alterations in the numbers and functions of these cells [4,7–9].
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The term nutraceutical was first defined in 1989. This term is a combination of
the words “nutrition” and “pharmaceutical” and refers to “food components or active
ingredients present in food that have positive effects for well-being and health, including
the prevention and treatment of diseases” [10]. The endogenous cannabinoid system (ECS)
is a well-recognized modulator of the GI tract [11–16]. The components of the ECS are found
in many cell types within the GI tract, including the ENS. Not surprisingly, exogenously
administered cannabinoids have profound effects that may be beneficial for the treatment of
some GI conditions [14,17–19], and adverse GI effects of their use have also been recognized
(i.e., cannabinoid hyperemesis [20,21] and small bowel intussusception, [22]). However, the
relationship between the components of the ECS and EGCs and the mechanism by which
nutraceuticals may act through them have not been well established yet.

In this review, we first describe the ENS and its functions, with a particular focus on
EGC physiopathology. Thereafter, we review the important role of the ECS in the GI tract
and ENS. Finally, we explore the interaction between the ECS and EGCs and the effects of
natural cannabinoids and cannabinoid-like molecules with potential nutraceutical use in
GI disorders.

Although further studies are needed to define the connections between the ECS and
EGCs as a possible target to treat or reduce alterations associated with GI disorders, the use
of cannabinoids may be beneficial in prevalent pathologies such as inflammatory bowel
disease (IBD) and, maybe, other types of GI pathologies displaying ENS inflammation. The
information included in this paper could serve as a starting point for future research.

2. The Enteric Nervous System

The ENS constitutes a complex network of neurons and accompanying glial cells
that control the major functions of the GI tract [23]. In detail, the ENS is composed
of intrinsic sensory neurons (intrinsic primary afferent neurons, IPANs), excitatory and
inhibitory interneurons, and motor neurons. The complexity of the ENS contributes to
the independency of its action: sensory neurons receive external inputs, then interneurons
integrate the signals, and together with motor neurons generate outputs. Moreover, ENS
may receive and process the signals from the CNS [24].

Within the ENS, neuronal and glial cells are organized in myenteric and submucosal
plexuses. The first one is located between the two layers of smooth muscle (circular and
longitudinal muscle layer) and is involved in the coordination of GI motility, while neurons
of the submucosal plexus (located between the mucosa and the muscle layers) participate
in secretion and absorption of water and electrolytes [2].

2.1. Enteric Neurons

IPANs possess mechano- or chemosensory activity, and besides the straight signal
reception, they are able to receive and process the message of the intensity, duration, and
pattern of stimuli. These neurons usually form a circumferential internetwork encircling the
intestine. Within the group of IPANs, several classes may be listed, for example, according
to their localization (myenteric/submucosal plexus) or the direction of signal transduction.
Therefore, IPANs can receive, integrate and reinforce signals both locally and across the
network (alike interneurons) [25,26].

Interneurons, like IPANs, may be divided into ascending or descending. Furthermore,
within the population of interneurons there are several classes that may be distinguished
neurochemically and the proportion of interneurons in these classes may differ between
the parts of the GI tract, that may reflect the regional diversity in the motor patterns in the
intestines [4,27,28].

The last group of neurons in the ENS are motor neurons, which are divided into two
subgroups: inhibitory and excitatory. They participate in the control of intestinal motility as
they contribute to the contractions and relaxations of the circular and longitudinal smooth
muscles in a mechanism dependent on acetylcholine (ACh) (excitatory neurons), or nitric
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oxide (NO), vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating
polypeptide (PACAP) (inhibitory neurons) [2].

2.2. Enteric Glial Cells

Glial cells located in the GI tract are also known as enteric glial cells (EGCs). At first,
they were simply considered as structural support for the ENS. It is now well recognized
that they participate in several processes crucial for the GI tract [29,30].

Hanani et al. [31] classified EGCs into 4 subgroups based on their morphology. Type
I EGCs, named “protoplasmic”, are star-shaped cells with short, irregularly branched
processes, resembling protoplasmic astrocytes in the CNS. Type II (fibrous) EGCs are elon-
gated glia with interganglionic fiber tracts. Type III (mucosal) EGCs possess long-branched
processes. Finally, type IV (intermuscular) EGCs are the elongated glia accompanying the
nerve fibers and encircling the smooth muscles.

EGCs may also be subgrouped according to the molecular or functional differences due
to the heterogeneities in receptors and channels expressed on their surface. In particular,
several proteins are often used to identify EGCs, i.e., calcium-binding protein S100 [9,32],
glial fibrillary acidic protein (GFAP) [9,33] and the transcription factors: SOX-8, SOX-9, SOX-
10 [34] (Figure 1). Interestingly, Hanani et al. [35] and others [36], showed that EGCs are
interconnected and electrically coupled by gap junctions and form an extensive functional
glial network [37].
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Figure 1. Appearance of enteric glial cells (EGCs). (A,B) are images obtained from the myenteric
plexus of the rat distal colon; immunoreactivity to GFAP (A) and Sox-10 (B) are characteristic of EGCs.
GFAP: glial fibrillary acidic protein. Images obtained by L.L.-G. (NeuGut-URJC).

EGCs play a role in intercellular communication, intestinal barrier formation and
support, as well as control of the GI motility, immune response, and visceral sensitivity
(Table 1).

Table 1. Functions of the enteric glial cells in the gastrointestinal tract.

Aspect Function Localization Mediators References

Epithelial barrier

Intestinal barrier
formation and

support
Enhancing epithelial

healing
Neuropods
formation

Mucosa

proEGF
TGF-β

S-
nitrosoglutathione

15d-PGJ2
NGF-β *

Artemin *

[38–45]

Intestinal motility Control of GI
motility #

Myenteric
plexus ATP [46–48]
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Table 1. Cont.

Aspect Function Localization Mediators References

Enteric
neurotransmission

Neuronal
communication ENS

ATP
NFG
GSH

[49]

Immune response Activation of EGCs ENS

MHC II class
IL-1β
IL-6

TGF-β
proEGF

GSH
PGE2

[50–70]

Visceral sensitivity Sensitizing/activating
nociceptors ENS

ATP
GABA
IL-1β

neurotrophins

[8,71,72]

* Mediators released by enteroendocrine cells; # EGC loss results in impaired GI motility. Abbreviations: 15d-PGJ2,
15-deoxy-∆12,14-prostaglandin J2; ATP, adenosine triphosphate; EGC, enteric glial cell; EGF, Epidermal growth
factor; ENS, enteric nervous system; GABA, gamma amino butyric acid; GI, gastrointestinal; GSH, glutathione; IL,
interleukin; MHC, major histocompatibility complex; NGF, nerve growth factor; PGE2, prostaglandin E2; proEGF,
proepidermal growth factor; TGF, Transforming growth factor.

2.2.1. EGCs and Intercellular Communication

EGCs are generally considered as non-excitable cells because they do not generate
action potentials [73]. However, they communicate through calcium (Ca2+) dependent
signaling (this is by far the ion that has been more clearly involved in EGCs signaling
activity) and therefore they are able to integrate information transmitted by other glial
cells, neurons, immune cells, and other cells [74]. The intercellular communication in EGCs
(gliotransmission [75]) occurs mainly through the propagation of Ca2+ waves via connexin
43 (Cx43) hemichannels, through which adenosine triphosphate (ATP) or other molecules
(even Ca2+) may be released to act on close glial, neural, or immune cells. Thus, Cx43
is necessary for intercellular communication between EGCs, and interfering with EGC
communication through these hemichannels profoundly alters GI function [76]. Besides
the above mechanism, EGCs may also communicate with adjacent cells through exocytosis.

In general, EGCs, similarly to astrocytes in the CNS, express receptors for neuro-
transmitters on their surface and are able to release neurotransmitters (gliotransmitters),
therefore they participate in neuronal communication in the ENS [77–80]. According to
in vitro studies, EGCs are susceptible to activation by intrinsic (from enteric neurons) or
extrinsic (from autonomic or primary afferent neurons) neural pathways. ATP is a major
neurotransmitter involved in extracellular signaling in the ENS and the regulation of GI
motility, secretion, or synaptic transmission [81]. It was demonstrated that EGCs respond
to ATP by increasing intracellular levels of Ca2+. Gulbransen et al. [82] characterized the
cross-talk between subgroups of neurons and EGCs in the guinea pig colon, where intrinsic
fibers did not stimulate the increase of glial Ca2+ levels, but the activation of EGCs was
significantly reduced after the ablation of extrinsic innervations. The same effect was
elicited by selective sympathetic denervation. These results indicate that EGCs discriminate
the activity of specific neural pathways (sympathetic). More recently, optogenetic stimula-
tion combined with calcium imaging allowed to demonstrate the spatial and functional
formation of neuro-glia units in the ENS, in which enteric neurons transmit signals to EGCs
through pannexin channels using paracrine purinergic pathways [83].

Besides receiving the signaling, EGCs may induce transmission, because they are able
to release neurotransmitters (i.e., glutamine, glutamate) [84]. Furthermore, through the
presence of gamma amino butyric acid (GABA) transporter, GAT2, in the EGCs, these
cells participate in GABA resynthesis [85,86]. Moreover, EGCs may be involved in nitr-
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ergic neurotransmission, as they demonstrate immuno-reactivity to L-arginine, the NO
precursor [87,88].

2.2.2. EGCs and the Intestinal Barrier

Mucosal EGCs are involved in intestinal epithelium differentiation, migration, adhe-
sion, and proliferation and they constitute a link between the epithelial cells and submucosa
neurons [38].

Interestingly, mucosal EGCs form a structure named ‘neuropod’, which is a cellular
process that contains hormones and connects with enteroendocrine cells, scattered through-
out the intestinal epithelium. These enteroendocrine cells participate in gut chemosensing
and, in response to changes in environmental conditions inside the gut, they release amines
and peptides acting locally or peripherally. Transmitters produced by enteroendocrine
cells influence the EGCs and on the opposite, enteroendocrine cells may be a target for
enteric glia. According to Bohórquez et al. [39], the formation of neuropods is regulated by
neurotrophic factors, such as nerve growth factor β (NGF-β) or artemin.

One of the important molecules involved in intestinal barrier support is glucagon-like
peptide 2 (GLP-2). Noteworthy, the presence of the receptor for GLP-2 was confirmed in the
EGCs. Although the involvement of EGCs in intestinal barrier integrity has not been proved
so far, EGCs appear to be an important factor that supports this barrier [42]. Moreover, be-
sides GLP-2, several molecules produced by EGCs have emerged to be involved in intestinal
barrier formation, i.e., proepidermal growth factor (proEGF), transforming growth factor
(TGF)-β, S-nitrosoglutathione or 15-deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) [41–45].

2.2.3. EGCs and GI Motility

A loss of EGCs causes a disruption of GI motility. In particular, Aubé et al. [46]
demonstrated that progressive loss of enteric glia in transgenic mice (mice expressing
haemagglutinin (HA), that received activated HA-specific CD8+ T cells) resulted in pro-
longed GI transit. Nasser et al. [47] observed a reduced GI peristalsis in vivo (prolonged
upper GI transit) and impaired motility in vitro (a decrease in basal tone and the amplitude
of the contractility in response to electrical field stimulation) in mice that received fluoroci-
trate (selective gliotoxin). Likewise, other researchers confirmed the involvement of Cx43 in
GI motility [75,76]. Interestingly, Rico et al. [48] suggested that human EGCs are involved
in the control of GI motility through the coordination of sensory and motor signaling.

As already mentioned, ATP is an important molecule involved in signaling transmis-
sion in the ENS. ATP interacts with three types of purinergic receptors (P1 receptors, P2X
receptors, and P2Y receptors) [81]. In the CNS, the presence of P2X7 receptors on the surface
of myelin sheaths allows to detect ATP released from axons [49]. P2X7 receptors were also
found on the intramuscular glia in the GI tract [79]. Noteworthy, Gulbransen et al. [89]
confirmed that purinergic signaling may constitute a link between neuronal and glial cells
in the ENS as EGCs isolated from the guinea pig colon respond to ATP in vitro.

2.2.4. EGCs and Immune System Cross-Talk

The EGCs participate in inflammation and are the first line of defense against pathogens [50].
Bush et al. [51] generated transgenic mice through the ablation of GFAP-positive glial cells from
the jejunum and ileum that resulted in fulminating and fatal jejuno-ileitis. The ablation of enteric
glia caused a severe inflammation leading to the degeneration of neurons in the ENS and evoked
hemorrhagic necrosis of the small intestine. Authors compared the micro- and macroscopic
alterations within the GI tract to the pathology in the course of IBD in rodent models and in
humans [51]. IBD is a chronic inflammation of the GI tract, with two major types, Crohn’s disease
(CD) and ulcerative colitis (UC).

In addition to their homeostatic role in supporting a healthy barrier (mentioned above),
EGCs, depending on the stimulation (e.g., inflammation or following injury), may be acti-
vated and switched into a reactive, pro-inflammatory phenotype (reactive EGCs) [52,53]
(Figure 2). Reactive EGCs display increased ability to proliferate (i.e., experimentally



Molecules 2022, 27, 6773 6 of 29

induced colitis promoted EGC mitosis in the myenteric plexus [54]), increased c-fos ex-
pression, and a change in the expression of EGC markers or surface receptors [55]. Thus,
following the incubation with interleukin-1β (IL-1β), there is an increase in the expression
of NGF receptor TrkA [56], endothelin-1 receptor B (ET-B) [57], toll-like receptor (TLR)
4 [58], and bradykinin receptor 1 (BR1) [59]. TrkA receptor is up-regulated in response
to lipopolysaccharide (LPS) stimulation [56]. Besides, the expression profile of major his-
tocompatibility complexes (MHC) changes from predominance of MHC class I (MHC I)
under physiological conditions to increased expression of MHC class II after exposure
to enteroinvasive Escherichia coli in culture [60]. Interestingly, an increased expression of
MHC II was found in CD patients compared with healthy controls [61,62]. In addition, the
expression of GFAP may be induced by tumor necrosis factor-α (TNF-α), IL-1β, LPS, or
LPS+interferon-γ (IFN-γ) [57,63,64]. In vivo, LPS-induced intestinal inflammation resulted
in an increased GFAP expression in the rat myenteric plexus [65]. The challenge with LPS
and IFN-γ increases the expression of S100-β [66]. Thus, EGCs recognize inflammatory
stimuli and, once activated, produce, and secrete S100-β, activating inducible NO synthase
(iNOS) and NO production. Using rectal and duodenal biopsies, this mechanism has been
confirmed in both UC and celiac disease patients [65,67]. Moreover, reactive EGCs can
release neurotrophins, growth factors, or cytokines and therefore EGCs recruit immune
cells (macrophages, neutrophils, mast cells) into the colonic mucosa [68–70].
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2.2.5. EGCs and Visceral Sensitivity

A recent review has suggested that enteric glia may be a new player in abdominal
pain occurrence [8]. Abdominal pain is a frequent symptom associated with both acute
and chronic GI disorders. For example, it occurs during IBD flares or also during remis-
sion phases. In the case of irritable bowel syndrome (IBS), a disease associated with a
disturbed brain-gut axis [3], visceral hypersensitivity is the main feature. This pathology
is characterized by abdominal pain combined with impaired motility (either accelerated
(diarrhea-predominant IBS, IBS-D), slowed down (constipation-predominant IBS, IBS-C),
or mixed bowel habits, IBS-M).

EGCs regulate the key properties mediating the development of visceral hypersensi-
tivity: neuronal sensitivity, firing patterns, and network activity in the periphery, brain, and
spinal cord. Immune activation and neuroplasticity (neuroinflammation) are essential in the
generation of chronic abdominal pain. Although the precise mechanisms need to be defined,
EGCs may contribute to sensitizing or activating nociceptors, through direct and indirect
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mechanisms. Additionally, EGCs may also regulate nociceptor sensitization/activation
through the removal of neuromodulators [8].

Direct sensitizing mechanisms would involve the release of neuromodulators (ATP,
GABA, IL-1β, neurotrophins), whereas indirect mechanisms would include antigen presen-
tation (through MHC I and II), leading to activation of T cells that will release cytokines,
and regulation of other immune cells like mast cells and macrophages, leading to the
release of histamine and some cytokines (i.e., TNF-α, IL-1 β) [8]. Along these lines, it
has been recently reported that pro-inflammatory signals induce glial Cx43-dependent
macrophage colony-stimulating factor (M-CSF) production through protein kinase C (PKC)
and TNF-α converting enzyme (TACE), further supporting the key role of EGC inter-
action with macrophages in the regulation of visceral hypersensitivity during chronic
inflammation [71].

Furthermore, in a recent report using a rat model of colitis induced by intracolonic 2,4-
dinitrobenzene-sulfonic acid (DNBS), Lucarini et al. [72] have demonstrated the essential
role of enteric glia in the development of visceral hypersensitivity associated with intestinal
inflammation. In this work, the gliotoxin fluorocitrate reduced intestinal damage and
visceral sensitivity. Remarkably, a single injection of fluorocitrate reduced the colitis-
induced overexpression of S100-β and transient receptor potential channel of subfamily
V member 1 (TRPV1, a key component in nociception) not only in the colonic ENS but
also in the dorsal root ganglia (DRG), satellite glia and astrocytes of the periaqueductal
gray (PAG). Since fluorocitrate is unable to cross the blood-brain barrier, the neuroplastic
effects in the PAG are unlikely due to direct inhibition of the central glia. Thus, EGCs have
a pro-inflammatory and pro-nociceptive role during colitis, which is suggested to occur
through the selective recruitment of mast cells and activated macrophages in the colonic
submucosa and the occurrence of neuroplastic changes within the enteric circuits and along
the pain signaling pathway, i.e., throughout the gut-brain axis [72].

2.2.6. EGCs and Altered GI Functions

Importantly, local, or systemic conditions affecting the GI tract function have been
described to be associated with changes in EGC numbers, expression profile, and function-
ality (Table 2), suggesting that EGCs may be an interesting target for treatment and/or
prevention of those pathologies [90].

Table 2. Conditions affecting the gastrointestinal tract function for which a role of enteric glial cells
has been described or suggested.

Condition Species Changes on EGCs References

PHYSIOLOGICAL

Aging Rat Loss of myenteric EGCs [91]

Diet modification Mice
Rat

HFD reduces EGC density in duodenal mucosa and
submucosal plexus

Food restriction is detrimental to EGCs (but not neurons)
[92,93]

GI DISEASES

IBD Human

Glial markers (GFAP and S100-β) and GDNF are
increased in inflamed areas of biopsies.

In co-cultures, EGCs from CD patients increased intestinal
permeability and epithelial proliferation

[55,94–96]

Celiac disease Human In EGCs from duodenal biopsies, increased S100-β and
NO production [67]

Chronic constipation Human Loss of ileal and colonic EGCs, in constipated patients,
particularly in infectious megacolon (Chagas disease) [97–99]
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Table 2. Cont.

Condition Species Changes on EGCs References

Postoperative ileus Mice
In cultured EGCs, activation of IL-1R promotes an

inflammatory response with increased IL-6 and MCP1
levels

[100]

IBS Human
Rat

Reduced immunoreactivity of S100-β in colonic biopsies
(Independently from the IBS subtype)

Exposure of EGCs to supernatants from mucosal human
biopsies: IBS-C→ reduced EGC→ proliferation; IBS-D
and IBS-M→ impaired ATP-induced Ca2+ response of

EGCs

[101,102]

PI-IBS associated with
C. difficile Rat Exposure to toxin B produced cytotoxic and pro-apoptotic

effects on cultured EGC

Visceral
hypersensitivity in IBS

Human
Mice
Rat

Increased expression of S-100, SP and TrkB (receptor for
BDNF)

in the colonic mucosa of IBS patients
Increased expression of GFAP, SP and TrkB and induced

VH in wild type but not BDNF+/−mice after
administration of fecal supernatants from IBS-D patients.
Butyrate enemas increased colocalization of GFAP and

NGF in
colonic EGCs, as well as NGF secretion.

[103–105]

Viral gastroenteritis Human
EGCs stimulated with supernatants from ECCs infected

with the human adenovirus 41 showed altered GFAP
expression.

[106]

SYSTEMIC DISEASES
AFFECTING GI TRACT

Endotoxemia
(systemic inflammation) Rat

LPS systemically administered produced a dose-, time-
and region-specific activation of EGCs (increased

expression of S100-β and GFAP)
[107]

Obesity Mice

In colonic whole-mount preparations, overexpression of
S100-β (but not GFAP) and gliosis, with release of

pro-inflammatory mediators.
In cultured EGCs mimicking HFD-associated low-grade
inflammation, increased SP and IL-1β production that
may be related to dysmotility associated with obesity.

[108]

Diabetes Mice
Rat

Hyperglycemia promotes EGCs apoptosis involving Pdk1
and PI3K/Akt pathways.

Lack of GDNF due to EGC loss, affects neuronal surviving,
and GDNF supplementation limits neuronal loss.

[109–111]

Parkinson’s disease Human

In colonic biopsies, increased expression of glial markers
GFAP, S100-β, Sox10, accompanied by elevation of

pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6) at
mRNA level.

In colonic biopsies, GFAP over-expression.

[112,113]

Prion’s disease Human
The spreading of pathological isoforms of cellular prion

protein
affects EGC in the GI tract.

[114–116]
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Table 2. Cont.

Condition Species Changes on EGCs References

HIV infection Rat
Mice

Intracolonic application of HIV1-tat protein produced
lidocaine-sensitive S100-β and GFAP overexpression in

submucosal plexus.
Calcium signals from EGCs passed through Cx43 to glial
cells of the spinal cord and the cerebral cortex, causing an

inflammatory reaction, and cognitive loss.
GI dysmotility and enhanced immune activation after

treatment with HIV-1Tat + LPS, related to EGC release of
IL-6, IL-1β and TNF-α and NF-κB activation; but not in

glia from TLR4 KO mice

[117,118]

SARS-CoV-2
infection Human

Enteric neurons and EGCs express ACE2 and TMRPSS2
and may be susceptible to invasion by the virus, this may
lead to compromised immune response, cytokine storm
facilitation, as well as alterations in intestinal motility.

[119]

DRUG-INDUCED
GI DISORDERS

Opioid-induced hyperalgesia
and “narcotic bowel

syndrome”
Mice

Upregulation of purinergic signaling in EGCs induced by
prolonged opioid use and proinflammatory cytokine

release, leading to gut barrier dysfunction and
constipation

[8,120]

Cancer chemotherapy:
oxaliplatin Mice

In ileal whole-mount preparations, GFAP decreased in
submucosal and myenteric plexus and S100-β increased in

the myenteric plexus and mucosa.
In distal colon, GFAP immunolabelling decreased

whereas S100-β increased.

[121,122]

Cancer chemotherapy: 5-FU Mice

Increased expression of S100-β protein in GFAP-positive
cells during mucositis

Pentamidine inhibits S100-β induced by 5-FU and this
inhibits gliosis.

[123]

Cancer chemotherapy:
irinotecan Mice

Increased co-expression of GFAP and S100-β in
irinotecan-treated tissues (duodenum, jejunum, ileum).

Indirect relationship of mast cells with EGCs: forced mast
cell degranulation, decreased the expression of GFAP and

S100-β

[124]

Cancer chemotherapy:
cisplatin Mice

Chronic treatment with cisplatin reduces expression of
S100-β, GFAP and SOX-10 in EGCs as well as that of

ChAT and nNOS in myenteric neurons.
[125]

Cancer chemotherapy: others Guinea pig

In cultured ECGs exposed to cytochalasin D (alters
microfilaments), and nocodazole (alters microtubules),

entry of calcium is reduced→ other antineoplastic drug
directed against elements of the cytoskeleton (taxanes,

vinca alkaloids) might impair entry of calcium, and
therefore alter EGC activity

[126]

Abbreviations: 5-FU, 5-fluorouracil; ACE2, angiotensin converting enzyme 2; ATP, adenosine triphosphate; BDNF,
brain derived neurotrophic factor; CD, Crohn’s disease; ChAT, choline acetyltransferase; CNS, central nervous
system; Cx43, connexin 43; ECC, enterochromaffin cell; EGC, enteric glial cell; ENS, enteric nervous system; GDNF,
glial cell-derived neurotrophic factor; GFAP, glial fibrillary acidic protein; GI, gastrointestinal; HFD, high-fat diet;
HIV, human immunodeficiency virus; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; IBS-C,
irritable bowel syndrome with constipation; IBS-D, irritable bowel syndrome with diarrhea; IBS-M, mixed or
alternating irritable bowel syndrome; ICC, interstitial cell of Cajal; IFN, interferon; IL-1R, interleukin 1 receptor;
IL, interleukin; KO, knock-out; LPS, lipopolysaccharide; MCP1, monocyte chemoattractant protein-1; mRNA,
messenger ribonucleic acid; NF-κB, nuclear factor kappa B; NGF, nerve growth factor; nNOS, neuronal nitric oxide
synthase; NO, nitric oxide; Pdk1, pyruvate dehydrogenase lipoamide kinase isozyme 1; PI-IBS, post-infectious
irritable bowel syndrome; PI3K/Akt, phosphatidylinositol 3-kinases/protein kinase B signaling pathway; SARS-
CoV-2, severe acute respiratory syndrome coronavirus 2; SP, substance P; TLR, toll-like receptor; TMRPSS2,
transmembrane protease serine 2; TNF, tumor necrosis factor; TrkB, tropomyosin receptor kinase B; UC, ulcerative
colitis; VH, visceral hypersensitivity.
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3. The Endocannabinoid System

The term cannabinoid comprises a group of at least 66 biologically active terpenophe-
nols which are found in cannabis (Cannabis sativa) and their synthetic analogs [127].
Cannabinoids are molecules that act on the endogenous cannabinoid system (ECS), also
known as the endocannabinoid system, and are usually divided into three main groups:
phytocannabinoids (cannabinoids found in plants), endocannabinoids (endogenous com-
pounds found in animals that modulate cannabinoid receptors); and synthetic cannabinoids
(synthetic compounds that may or may not be structurally related that also produce agonis-
tic effects in cannabinoid receptors) [128]. Figure 3 shows the molecular structure of the
two cannabinoid compounds that have been more deeply studied in relation to EGCs.
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The ECS is composed of cannabinoid receptors (CB1, CB2), their endogenous ligands
(endocannabinoids, ECBs), and the enzymes involved in the biosynthesis and degradation
of cannabinoids.

Cannabinoid receptors belong to the G-protein coupled receptors (GPCR) family. Their
activation results in the inhibition of adenyl cyclase activity and suppression of voltage
gated Ca2+ channels [129]. Noteworthy, CB receptors possess more than one endogenous
agonist: anandamide (N-arachidonoyl ethanolamine, AEA) and 2-arachidonoyl glycerol
(2-AG). ECBs are derivatives of the arachidonic acid, synthesized on demand from the
membrane phospholipids in the post-synaptic cells in response to increased levels of
intracellular Ca2+, released immediately after synthesis, and then diffuse throughout the
cellular membrane without being stored in vesicles. The action of ECBs is mediated through
CB1 or CB2 receptors. Noteworthy, ECBs exhibit different selectivity and affinity: AEA is a
partial agonist of CB1 with very weak activity at CB2 receptors, while 2-AG is characterized
as a potent agonist of both receptors. Besides these compounds, there are other ECBs that
remain less known: 2-arachidonyl glyceryl ether (2-AGE, a CB1 selective agonist) [130],
N-arachidonoyl dopamine (NADA, a CB1 agonist) [131], and O-arachidonoyl ethanolamine
(O-AEA or virodhamine, a partial CB1 agonist and full CB2 agonist) [132].

Interestingly, it was demonstrated that ECBs may interact with other receptors. For
example, AEA binds to TRPV1 [133,134]. The effects of TRPV1 activation depend on the
site of action: when AEA interacts with pre-synaptic TRPV1 it promotes glutamate release,
while the activation of post-synaptic TRPV1 by AEA leads to the reduction of glutamate
signaling, inhibition of 2-AG biosynthesis and the blockage of the retrograde action at
CB1 receptors. The multi-target action of ECBs may be related to the co-expression of CB
receptors and TRPV1 channels in neuronal and non-neuronal cells. It was assessed that
TRPV1 are co-localized with CB1 or CB2 receptors in the primary sensory neurons of the
DRG in rats [135–137], perivascular neurons [138], vagus nerve [139], and in the axons of
neurons in the CNS [140–142]. Moreover, CB receptors are co-expressed with TRPV1 in

http://biomodel.uah.es/en/DIY/JSME/draw.es.htm


Molecules 2022, 27, 6773 11 of 29

the endothelial cells of the brain microvessels (both CB1, CB2) [143], in the endothelial
cells from the rodent mesenteric arteries with cirrhosis (CB1) [144], dendritic cells [145],
muscle cells (in both rodents and humans), [146], osteoclasts [147], keratinocytes [148],
and melanocytes [149]. G protein-coupled receptor 55 (GPR55) is an orphan receptor
that constitutes another, non-classical target, for ECBs. Lysophosphatidylinositol (LPI)
was identified as the endogenous ligand for GPR55 [150]. However, AEA and O-AEA
can activate these receptors [151,152]. Finally, besides TRPV1 and GPR55, ECBs exhibit
binding affinity at peroxisome proliferator-activated receptors (PPAR): AEA, O-AEA, and
2-AGE bind PPARα, 2-AG binds to PPARβ/δ, while AEA, 2-AG and 2-AGE bind to PPARγ
in vitro [152].

After the activation of CB receptors, the remaining ECBs are degraded in the process of
hydrolysis or oxidization. The first enzyme discovered to be involved in ECBs degradation
was named fatty acid amide hydrolase (FAAH). Its most preferred substrate was found
to be AEA. A few years later, other enzymes were discovered, and their properties were
characterized: monoacylglycerol lipase (MAGL), α, β-hydrolase-6 (ABHD6), and α, β-
hydrolase-12 (ABHD12) [153–155]. The process of oxidation involves cyclooxygenase-2
(COX-2) and several lipooxygenases [155].

3.1. The Endocannabinoid System in the Gastrointestinal Tract

The ECS components are widely expressed in the GI tract. The presence of CB1 recep-
tors, the most predominant in the intestines, was confirmed in the enteric neurons [156],
myocytes [157], and epithelial cells [158]. It should be emphasized that intestinal CB1
receptors participate in epithelial regeneration [159] and therefore play a crucial role in the
maintenance of the intestinal barrier integrity [158]. Activation of CB1 receptors influences
GI motility as it evokes the relaxation of the longitudinal smooth muscles. This action is
a combination of the neurogenic effect and direct impact on myocytes [157]. Noteworthy,
mRNA expression of CB1 receptors in the mouse colon does not change significantly during
inflammatory conditions, i.e., induced by dextran sulfate sodium (DSS) and LPS [160].

CB2 receptors are present in the GI tract, but their expression is lower in comparison
to CB1 receptors [14,156]. Similarly to CB1 receptors, LPS- or DSS-induced colitis does not
alter the mRNA expression of CB2 receptors, but these receptors do play an important
role during intestinal inflammation. In particular, the activation of CB2 receptors with
a selective agonist (JWH-133) attenuates chronic colitis in IL-10 deficient mice [161,162].
Furthermore, according to Storr et al. [163], CB2 mRNA is up-regulated in mice with
2,4,6-trinitrobenzene sulfonic acid (TNBS) induced intestinal inflammation.

In animal models of intestinal inflammation (induced by DNBS or TNBS), the level
of AEA is increased in the mucosa, but not in the muscular layer of the colon [164]. Fur-
thermore, AEA is up-regulated in the colonic biopsies collected from patients with UC.
However, the expression of 2-AG is not altered in both, animal, and human, inflamed
colonic samples [164].

According to Grill et al. [160], MAGL mRNA expression decreases in mouse intestines
in LPS- and DSS- induced colitis. Furthermore, it was found that the inhibition of en-
zyme activity increases the level of 2-AG and thus improves TNBS-induced colitis in
mice [165]. Interestingly, Wasilewski et al. [166] investigated the impact of inhibition of the
activity of enzymes involved in the degradation of ECBs (FAAH, MAGL) on the colonic
secretion stimulated with forskolin (cyclic adenosine monophosphate, cAMP-dependent
secretagogue), veratridine (voltage-dependent sodium channel activator) or bethanechol
(cholinergic receptor agonist, resistant to the action of cholinesterases). The inhibition
of FAAH activity abolishes the pro-secretory effect induced by forskolin, which is medi-
ated through CB1/CB2 receptors. On the other side, the anti-secretory action of MAGL
inhibitors is reversed by the CB2 receptor antagonist AM-631, but not by AM-251 (CB1
receptor antagonist).

The ECS is also involved in the control of GI peristalsis and transit [14]. In particular,
CB1 receptors were pointed out as involved in the inhibitory effect of cannabinoids, both,
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under control [167–171] and under inflammatory conditions [172]. IBS, or chemotherapy-
induced dysmotility are associated with alterations in CB1 and CB2 receptors expres-
sion/activity, levels of ECBs or ECB biosynthesis/degradation.

Thus, the levels of 2-AG in plasma were higher in IBS-D patients, while oleoylethanolamide
(OEA) and palmitoylethanolamide (PEA) were lower in comparison to healthy participants [173].
On the contrary, OEA concentration in plasma was higher in IBS-C patients as compared to
controls. The AEA levels were similar in all IBS subtypes. Interestingly, the ECB turnover may
be a key factor in the pathophysiology of IBS as the mRNA expression of FAAH in the colonic
biopsies was significantly lower in IBS-C patients in comparison to healthy controls and the
IBS-D group [173]. These results suggest that the impaired process of ECB degradation may
lead to sustained activation of CB receptors and be the cause of prolonged intestinal transit.
Furthermore, the symptoms of IBS have been related to the genetic polymorphism of genes
encoding CB1 receptors and FAAH [174,175]. For example, a higher number of AAT triplets in
the CNR1 gene (10 or more triplets) was noted in IBS patients in comparison to healthy controls.
Moreover, this polymorphism was reported in patients with higher scores on the abdominal
pain/discomfort symptoms scale [174]. The polymorphism in CNR1 rs806378 (CC vs. CT/TT)
correlated with the efficacy of colonic transit: patients with TT variant were characterized
with the fastest colonic transit [175]. The polymorphism in genes encoding FAAH may be
related to IBS: conversion of 385C to A leads to decreased expression of FAAH. The CA/AA
polymorphism was more frequent in IBS-D and IBS-M patients. There was a strong association
between the FAAH CA/AA and accelerated colonic transit in IBS-D patients [176].

With regards to chemotherapy-induced dysmotility, it was found that the non-selective
synthetic cannabinoid agonist WIN 55,212-2 (WIN), at a low dose devoid of central effects,
partially decreased diarrhea associated with 5-FU treatment in rats, despite not being able
to improve gut inflammation [177], suggesting a direct effect on the myenteric plexus. In
contrast, animals treated with vincristine displayed paralytic ileus that improved when
treated previously with the CB1-selective antagonist AM251, suggesting that vincristine-
induced GI motor reduction is associated with an increase in ECS activity, involving CB1
receptors [178]. This is consistent with findings of ECS activation in other paralytic ileus
conditions, like that produced by LPS administration [179]. Finally, WIN was not able
to prevent repeated cisplatin-induced pica or gastric dysmotility (indirect markers of
nausea/vomiting in non-vomiting species [180,181]) in the rat [182,183]. These results are
conflicting with the known empiric use of cannabinoids to prevent chemotherapy-induced
nausea and vomiting but might be related to similar mechanisms occurring during the
so-called cannabis hyperemesis syndrome, suffered by heavy cannabinoid consumers [184],
at least those genetically susceptible [20].

Finally, a role for ECS has been demonstrated in abdominal pain [185]. Thus, in
early preclinical studies using colorectal distension (CRD), both CB1 and CB2 receptors
elicited analgesic effects under basal conditions and during inflammation-induced hy-
peralgesia [186,187]. Interestingly, an endogenous cannabinoid tone able to activate CB1
receptors was found in response to noxious CRD [188]. Moreover, TRPV1 channels were
early demonstrated to be involved in the development of chemically induced visceral
hypersensitivity to CRD [189] and acute mechanical colonic hyperalgesia without prior
chemical challenge [190]. Furthermore, compared with control animals, AEA levels and
TRPV1 expression increased whereas CB1 receptor expression decreased in DRG from rats
submitted to water avoidance stress for 10 consecutive days (a paradigm well known to
produce visceral hypersensitivity to CRD), and these changes were prevented by prior
administration of the non-selective cannabinoid agonist WIN or the TRPV1 antagonist
capsazepine [191]. More recently, it has been proposed that modulation of both FAAH and
MAGL by dual inhibitors (i.e., increasing both AEA and 2-AG) might be a good strategy to
control visceral pain [192]. Importantly, changes in the ECS in some cerebral areas, at least
those affecting CB1 and TRPV1, may contribute to visceral hypersensitivity development
at the supraspinal level [193].
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Whatever the mechanism, the preferred cannabinoid-based strategies to counteract
visceral pain and other altered functions of the GI tract are those not capable of exerting
psychotropic effects, including peripherally-acting CB1 agonists [167], CB2 agonists (which
regulate inflammation but lack psychotropic actions), inhibitors of ECB degradation or
other compounds like the phytocannabinoid cannabidiol (CBD), whose amazing number
of molecular targets and lack of psychoactivity constitute an attractive alternative in this
field [18]. Many other compounds in hemp (the variety of Cannabis sativa with lower con-
centrations of the main psychoactive compound of marijuana, ∆9-tetrahydrocannabinol),
including other phytocannabinoids, terpens, alkaloids, steroids, flavonoids, and lignans are
being studied for their potential use as nutraceuticals in the context of the GI ailments [194].

Likewise, other cannabinoid-like compounds may produce beneficial effects in those
GI conditions [18]. However, as shown in the following section, thus far only a few studies
have addressed the effects on the EGCs of phytocannabinoids and other cannabinoid-like
molecules with potential nutraceutical use.

3.2. EGCs and the ECS

Cannabinoid compounds, due to their antioxidant and anti-inflammatory activity,
could help to modulate the inflammatory processes in which EGCs intervene. However, not
much is known about the specific interaction between the ECS and EGCs, probably because
these cells do not seem to express the typical cannabinoid CB1 and CB2 receptors. In fact, a
study using mouse colonic myenteric plexus found no co-localization of the CB1 receptor
with specific markers for these cells, S100-β or GFAP [195]. Other immunostainings did not
prove the presence of CB1 or CB2 receptors in EGCs in the GI tract (pylorus, duodenum,
ileum, and colon) of cats [196]. In a study carried out in dogs, the CB1 and CB2 receptors
were not seen either in the EGCs from the myenteric plexus, although weak-to-moderate
immunoreactivity was detected in both neurons and glial cells from a few submucosal
ganglia [197]. However, in a recent study carried out in cryosections of the distal ileum of
horses, EGCs showed immunoreactivity for the CB1 receptor and PPARα [198]. Thus, the
expression of cannabinoid receptors by the EGCs may be species-dependent. Not much is
known about the expression and role of CB1 and CB2 receptors in human EGCs. Despite
the apparent lack of expression of CB receptors in the ENS in most species evaluated, CB
agonists and antagonists might exert indirect actions on the EGCs. For example, it was
shown that LPS increased the expression of c-fos in rat ileal EGCs and enteric neurons, and
this was attenuated by CB2 agonists. Since enteric neurons do express CB2 receptors under
inflammatory conditions, LPS activation of EGCs could be secondary to CB2-mediated
neuronal activation [156].

TRPV1 is a non-selective cation channel activated by exogenous plant-derived vanil-
loid compounds as well as by endocannabinoids (namely, anandamide). In a study carried
out by Yamamoto et al. [199], TRPV1-immunoreactive signals were detected in EGCs of the
myenteric plexus of wild-type mice but not in TRPV1 knockout mice. Altered expression
of GFAP at early postnatal time points in knock-out mice suggested that TRPV1 could
be involved in enteric glia maturation. Furthermore, the addition of a TRPV1 antagonist
to EGC cultures from wild-type mice myenteric plexus, decreased the expression ratio
of GFAP to S100-β [199]. Thus, anandamide (and exogenous vanilloid compounds, like
capsaicin), acting through TRPV1, may be a regulator of EGCs development and function,
a hypothesis that still needs to be proved.

In contrast, EGCs express PPARα [196,197], a nuclear hormone receptor to which
transcription-related ligands bind, and whose activation may induce anti-inflammatory
and antinociceptive effects [58]. Since 2002, there has been accumulating evidence of the
interaction of endocannabinoid compounds with PPARα, which may also be activated
by other compounds similar to cannabinoids, phytocannabinoids or synthetic cannabi-
noids [200]. Since this receptor is expressed in EGCs, some investigations have been
carried out to analyze the modulation of the pro-inflammatory activity of these cells by
cannabinoid/cannabinoid-like compounds able to activate PPARα.
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The AEA-like molecules OEA and PEA have an affinity for different receptors, includ-
ing nuclear receptors such as PPARα, channels such as TRPV1, and membrane receptors
such as GPR119 (OEA) and GPR55 (PEA). Of the two, PEA is the only one whose effects
on EGCs have been reported [58]. PEA exerts dose-dependent anti-inflammatory effects
on mouse models of UC and in human biopsies. This is due to its ability to reduce EGC
activation, with the involvement of a cascade of PPARα activation, decreased expression of
S100-β and TLR4, reduced expression of pro-inflammatory proteins such as iNOS, COX-
2, and TNF-α, decreased NO production, reduced myeloperoxidase activity in mucosal
neutrophils and reduced macrophage infiltration [58].

Interestingly, in a rat model of HIV-1-associated diarrhea induced by administration of
HIV-1 tat, PEA reduced diarrhea through PPARα and consequent blockade of TLR4/NFκB
activation, of colonic submucosal EGCs activation and overexpression of S100-β and
iNOS [201].

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders
characterized by functional digestive disturbances, including infrequent bowel movements,
constipation, and defecatory disorder. The possible benefits of PEA administration in
counteracting enteric inflammation have been investigated in an AD mouse model (SAMP8;
Senescence-Accelerated Mouse-prone 8) [202]. In addition, the effects of PEA on EGCs
were tested in cultured cells treated with LPS and β-amyloid 1–42 (Aβ) to mimic AD
conditions. In this study, SAMP8 mice showed an increase in the expression of S100-β in
colonic tissues, suggesting the presence of reactive gliotic processes. PEA administration
induced a reduction of enteroglial-derived S100-β protein expression indicating that PEA
is able to blunt the gliotic reaction. In cultures, EGCs treatment with PEA counteracted
the increment of S100-β, TLR-4, NF-κB p65, and IL-1β release induced by LPS and Aβ.
These results suggest that the anti-inflammatory effect of PEA prevents the enteric glial
hyperactivation and counteracts the onset and progression of the colonic inflammatory
condition by selectively targeting the S100-β/TLR-4 axis on ECGs, resulting in an inhibition
of the NF-κB p65 pathway and cytokines release [202].

To our knowledge, no report has been published evaluating the involvement of other
components of the endocannabinoid system (degradation enzymes FAAH and MAGL,
GPR55, GPR119, . . . ) in the physiopathology of EGCs.

3.3. Nutraceuticals Acting on the ECS with Potential Effects on EGCs

Taking the previous information into account it seems that many cannabinoids and
cannabinoid-like molecules might exert an action on EGCs, by modulating the different
receptors or targets already mentioned.

Indeed, hemp and its derivatives can be a source of nutraceuticals enriched in bioactive
compounds. In this context, different compounds found in hemp may be an interesting
choice to regulate EGCs functions: ∆9-tetrahydrocannabinol is a CB2 partial agonist and
PPARγ agonist (although this compound appears in hemp in low quantities, only 0.3% or
less); CBD is a PPARγ agonist, TRPV1 agonist, and CB2 partial agonist; cannabigerol acts
as a weak CB2 partial agonist and TRPV1 agonist; cannabichromene is an agonist for CB2
and TRPV1; and both cannabidivarin and cannabidiolic acid are TRPV1 agonists [18].

CBD is the only phytocannabinoid whose effects on EGCs have been reported. CBD
is an interesting phytocannabinoid devoid of psychoactivity, with great potential for the
treatment of different GI disorders [18] and appears to be a key regulator of glia-mediated
neuroinflammation in the GI tract. Although CBD does not directly interact with CB1 or
CB2 receptors, it indirectly interacts with other cannabinoid receptors. A study performed
by De Filippis [50] demonstrated that the activity of CBD is, at least partly, mediated via the
selective PPAR-γ receptor pathway because GW9662, a potent PPAR-γ antagonist, reversed
CBD effects on S100-β production. Thus, in a mouse model of intestinal inflammation
induced by LPS, CBD prevented the hyperactivation of glial cells, decreased the expression
of S100-β and reduced the infiltration of immune cells (mainly mast cells) [50]. Accordingly,
in human rectal biopsies from patients with UC biopsies cultured with CBD, there was a
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reduction of S100-β expression, preventing EGCs activation. The exact cellular signaling
pathways responsible for the effect of CBD still remain unclear but PPAR-γ may act as a
key receptor in its action during gut inflammation.

Likewise, the endocannabionid-like lipids OEA (derived from oleic acid) and PEA
(present in many plant and animal food sources, like milk, tomatoes, soybean, or peanuts)
may modulate these cells via PPARα activation.

Thus, different compounds capable of activating or inactivating the ECS components
related to the EGCs (TRPV1, PPARα, PPARγ, CB2), with potential nutraceutical use, might
exert interesting modulatory effects in different GI conditions, and should be specifically
evaluated in these regards (Table 3).

Table 3. Other nutraceuticals capable of activating or inactivating the ECS components related to
the EGCs.

ECS Component Nutraceutical (And its Natural Source) Effect/Reference

CB2

Harpagophytum procumbens root extract Activation [203]
β-caryophyllene (oregano, cinnamon, and black pepper) Agonist [204]

Olive oil Increase CB2 expression [205]
Lactobacillus fermentum MCC2760 * Increase CB2 expression [206]

Lactobacillus acidophilus NCFM * Decrease CB2 expression [207]

TRPV1

Capsaicin (chili peppers) Agonist [208]
Decursin (eggs) Antagonist [209]

Fish oil Decrease TRPV1 expression [210]
Omega 3 fatty acids Activation [211]
Probiotics: VSL#3

Lactobacillus fermentum CQPC03 * Decrease TRPV1 expression [212]
Lactobacillus casei Qian * Decrease TRPV1 expression [213]

Lactobacillus reuteri DSM 17938 * Decrease TRPV1 expression [214]
Antagonist [215]

PPAR α

Oleic acid Agonist [216]
Oleoylethanolamide (oleic acid derivative) Agonist [217]

Extracts from Chinese sumac (Rhus chinensis Mill.) Increase PPAR α expression [218]
Bioactive peptides from corn Increased expression [219]

Lactobacillus kefiri DH5 * Upregulation [220]
Lactobacillus fermentum CQPC06 * Increase PPAR α expression [221]

PPAR γ

Quercetin (red wine, tea, cherries, grapes) Activation [222]
Abscisic acid (fruits and vegetables) Activation [223]

Gallic acid (tea and fruits) Partial agonist [224]
Capsaicin (chili peppers) Agonist [225]

Genistein (soybeans and legumes) Decrease PPARγ levels [226]
Phycocyanin (blue-green algae) Downregulation [227]

Kaempferol Inverse agonist [228]
Methoxyeugenol (nutmeg and Brazilian red propolis) Agonist [229]

Crocin (saffron) Activation [230]
Punicic acid (pomegranate) Activation [231]

Linoleic acid (sunflower, soybean, corn, and canola
oils, nuts and seeds) Activation [232]

Phloretin (apples) Inhibition [233]
Phloridzin (apples) Inhibition [233]

Equol (eggs and dairy) Activation [234]
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Table 3. Cont.

ECS Component Nutraceutical (And its Natural Source) Effect/Reference

PPAR γ

Daidzein (soybean and legumes) Activation [234]
Cinnamon Activation [235]

Lactobacillus rhamnosus JL1 * Increased expression [236]
Lactobacillus fermentum TKSN04 * Upregulation [237]

Lactobacillus casei Zhang * Increased expression [238]
Lactobacillus gasseri * Activation [239]
Omega 3 fatty acids Upregulation [240]

Fish oil Decreased expression [241]
Bioactive peptides:
Chia seed peptides
Egg white peptides

Whey peptides
Milk peptides

Inhibition [242]
Activation [243]
Activation [244]
Inhibition [245]

Phenolic compunds:
Mulberry Leaf Inhibition [246]

Glycyrrhiza glabra Activation [247]
Rumex dentatus Upregulation [248]

Pomegranate juice Activation [249]
Canola Meal Downregulation [250]
Mango Leaf Upregulation [251]

* Probiotics. Abbreviations: CBD, cannabidiol; COX, cyclooxygenase; EGC, enteric glial cells; NFkB, nuclear factor-
κB; iNos, inducible nitric oxide synthase; PEA, palmitoylethanolamide; PPAR, peroxisome proliferator-activated
receptors; TNF, tumor necrosis factor; TLR4, toll-like receptor 4; TRPV, transient receptor potential vanilloid.

4. Conclusions

Enteric glia have recently attracted attention as an important functional component
of the ENS that may contribute to the development and maintenance of GI dysfunctions
of local and systemic origin [6]. These dysfunctions are also associated with important
alterations in the expression and function of the different components of the ECS, suggesting
some important connections between this system and the enteric glia (Figure 4).

Thus, AEA and other ligands of TRPV1 could be important for EGCs maturation.
Furthermore, cannabinoid and cannabinoid-like compounds can regulate EGCs activity,
directly through PPARα receptors (PEA) and indirectly through PPARγ or CB2 receptors
(under GI inflammatory conditions), exerting an anti-inflammatory effect that can be
beneficial in IBD and, maybe, other types of GI pathologies displaying ENS inflammation
(i.e., plexitis [252]). However, the studies available so far are strikingly scarce.

We hope further studies are performed in the near future to more precisely define the
connections between enteric glia and the endocannabinoid system as a possible target to
treat or prevent the different disorders that affect the GI tract and the brain-gut axis, and
the possible usefulness of nutraceuticals like those proposed in this review (Table 3).
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Abbreviations

15d-PGJ2 15-deoxy-∆12,14-prostaglandin J2
2-AG 2-arachidonoyl glycerol
2-AGE 2-arachidonoyl glyceryl ether
5-FU 5-fluorouracil
ABHD α,β-hydrolase
ACE2 angiotensin converting enzyme 2
ACh acetylcholine
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AD Alzheimer’s disease
AEA anandamide, N-arachidonoyl ethanolamine
ANS autonomic nervous system
ATP adenosine triphosphate
BDNF brain derived neurotrophic factor
BR1 bradykinin receptor 1
Ca2+ calcium
cAMP cyclic adenosine monophosphate
CBD cannabidiol
CD Crohn’s disease
ChAT choline acetyltransferase
CNS central nervous system
COX cyclooxygenase
CRD colorectal distension
Cx43 connexin 43
DNBS 2,4-dinitrobenzene sulfonic acid
DRG dorsal root ganglion, dorsal root ganglia
DSS dextran sulfate sodium
ECB endocannabinoid
ECC enterochromaffin cell
ECS endogenous cannabinoid system, endocannabinoid system
EGC enteric glial cell
ENS enteric nervous system
ET-B endothelin-1 receptor B
FAAH fatty acid amide hydrolase
GABA gamma amino butyric acid
GAT2 GABA transporter
GDNF glial cell-derived neurotrophic factor
GFAP glial fibrillary acidic protein
GI gastrointestinal
GLP-2 glucagon-like peptide 2
GPCR G-protein coupled receptor
GPR55 G protein-coupled receptor 55
GSH glutathione
HA haemagglutinin
HFD high-fat diet
HIV human immunodeficiency virus
IBD inflammatory bowel disease
IBS-C irritable bowel syndrome with constipation
IBS-D irritable bowel syndrome with diarrhea
IBS-M mixed or alternating irritable bowel syndrome
IBS irritable bowel syndrome
ICC interstitial cell of Cajal
IFN interferon
IL-1R interleukin 1 receptor
IL interleukin
iNOS inducible nitric oxide synthase
IPAN intrinsic primary afferent neuron
KO knock-out
LPI lysophosphatidylinositol
LPS lipopolysaccharide
MAGL monoacylglycerol lipase
M-CSF macrophage colony-stimulating factor
MCP1 monocyte chemotactic protein 1
MHC major histocompatibility complex
MPO myeloperoxidase
mRNA messenger ribonucleic acid
NADA N-arachidonoyl dopamine
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NF-κB nuclear factor kappa B
NGF nerve growth factor
nNOS neuronal nitric oxide synthase
NO nitric oxide
O-AEA O-arachidonoyl ethanolamine
OEA oleoylethanolamide
PACAP pituitary adenylate cyclase-activating polypeptide
Pdk1 pyruvate dehydrogenase lipoamide kinase isozyme 1
PEA palmitoylethanolamide
PGE2 prostaglandin E2
PI-IBS post-infectious irritable bowel syndrome
PI3K/Akt phosphatidylinositol 3-kinase/protein kinase B signaling pathway
PKC protein kinase C
PPAR peroxisome proliferator-activated receptor
proEGF proepidermal growth factor
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SP substance P
TACE tumor necrosis factor (TNF)-a converting enzyme
TGF transforming growth factor
TLR toll-like receptor
TMRPSS2 transmembrane protease serine 2
TNBS 2,4,6-trinitrobenzene sulfonic acid
TNF tumor necrosis factor
TrkA tropomyosin receptor kinase A
TrkB tropomyosin receptor kinase B
TRPV1 transient receptor potential channel of subfamily V member 1
UC ulcerative colitis
VH visceral hypersensitivity
VIP vasoactive intestinal peptide
WIN WIN 55, 212-2
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29. Grubišić, V.; Gulbransen, B.D. Enteric glia: The most alimentary of all glia. J. Physiol. 2017, 595, 557–570. [CrossRef]
30. Rosenberg, H.J.; Rao, M. Enteric glia in homeostasis and disease: From fundamental biology to human pathology. iScience 2021,

24, 102863. [CrossRef]
31. Hanani, M.; Reichenbach, A. Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the

guinea-pig. Cell Tissue Res. 1994, 278, 153–160. [CrossRef]
32. Ferri, G.L.; Probert, L.; Cocchia, D.; Michetti, F.; Marangos, P.J.; Polak, J.M. Evidence for the presence of S-100 protein in the glial

component of the human enteric nervous system. Nature 1982, 297, 409–410. [CrossRef]
33. Jessen, K.R.; Mirsky, R. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 1980, 286, 736–737.

[CrossRef]
34. Hoff, S.; Zeller, F.; von Weyhern, C.W.; Wegner, M.; Schemann, M.; Michel, K.; Rühl, A. Quantitative assessment of glial cells in the

human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J. Comp. Neurol. 2008, 509, 356–371. [CrossRef]
[PubMed]

35. Hanani, M.; Zamir, O.; Baluk, P. Glial cells in the guinea pig myenteric plexus are dye coupled. Brain Res. 1989, 497, 245–249.
[CrossRef]

36. Christofi, F.L.; Wood, J.D. Effects of PACAP on morphologically identified myenteric neurons in guinea pig small bowel. Am. J.
Physiol.-Gastrointest. Liver Physiol. 1993, 264, G414–G421. [CrossRef] [PubMed]
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