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Abstract

A critical process that builds and maintains the eukaryotic cilium is intraflagellar transport (IFT). This process utilizes
members of the kinesin-2 superfamily to transport cargo into the cilium (anterograde transport) and a dynein motor for the
retrograde traffic. Using a novel RNAi knockdown method, we have analyzed the function of the homodimeric IFT kinesin-2,
Kin5, in Tetrahymena ciliary transport. In RNAi transformants, Kin5 was severely downregulated and disappeared from the
cilia, but cilia did not resorb, although tip structure was affected. After deciliation of the knockdown cell, cilia regrew and
cells swam, which suggested that Kin5 is not responsible for the trafficking of axonemal precursors to build the cilium, but
could be transporting molecules that act in ciliary signal transduction, such as guanine nucleotide exchange proteins (GEFs).
Gef1 is a Tetrahymena ciliary protein, and current coimmunoprecipitation and immunofluorescence studies showed that it is
absent in regrowing cilia of the knockdown cells lacking ciliary Kin5. We suggest that one important cargo of Kin5 is Gef1
and knockdown of Kin5 results in cell lethality.
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Introduction

Recent studies suggest that Tetrahymena cilia may contain

evolutionary precursors of important metazoan signaling pathways

[1,2,3]. From studies on Chlamydomonas [4], it has become apparent

that most motile protistan and non-motile sensory metazoan cilia,

including human primary cilia, are built by intraflagellar transport

(IFT) whose molecular constituents are largely conserved.

However, the details of ciliary cargo transport, especially of

transport of signaling and membrane components into the cilium,

although critical for sensory cilia function, have not yet been fully

elucidated. It has been shown that certain axonemal components

are transported in the cilium by a heterotrimeric kinesin-2 [5],

which in Tetrahymena is probably represented by the motor

proteins, Kin1 and Kin2 [6] (protein notation taken from kinesin

literature standards). In previous findings, we characterized Kin5

as a new, probably essential, IFT motor for intraciliary transport

in Tetrahymena [7], which could be involved in the transport of

certain membrane components as part of signaling systems. We

cloned the 2508 bp coding region of Kin5 and identified it as a

member of the kinesin-2 subfamily, whose closest phylogenetic

neighbors were Osm3, a C. elegans homodimeric IFT motor

protein that is responsible for building the distal segments of

sensory cilia in that organism [8,9,10] and Kif17, originally

identified as a mammalian neuronal protein involved in the

transport of NMDA receptor [11] and later shown also to

transport ciliary receptors [12]. Northern and western blots

localized Kin5 to the cilium. With immunofluorescence, Kin5

was shown to be present in a punctate pattern along the cilium,

colocalizing with orthologs of Chlamydomonas IFT complex proteins

[13], including members of both IFT complex A (IFT 139/140),

the complex probably involved in retrograde transport and

complex B (IFT 57, 81, 88, 172) the anterograde transport

complex necessary for building the axoneme [14]. Because

permeabilization for immunolocalization was performed in the

presence of AMP-PNP, it is likely that Kin5 is attached to both the

doublet microtubules and the transport complexes.

We wanted to explore the function of Kin5 as a Tetrahymena IFT

motor possibly involved in the intraciliary transport of membrane-

associated signaling molecules toward the cilium tip. To do this,

we proposed to alter the amount of Kin5 produced in the cell and

observe how the phenotype is altered. Typically, Tetrahymena

contains a somatic macronucleus and a germline micronucleus.

Using biolistic transformation and a mutant construct based on the

work of Cassidy-Hanley et al. [15], we were able to disrupt the

macronuclear KIN5 locus. However, after phenotypic assortment,

we failed to generate a somatic knockout, which indicated that this

was probably an essential gene whose knockout would lead to

lethality. We then decided to investigate whether RNAi produc-

tion for gene knockdown of KIN5 was feasible in Tetrahymena.

In this study, we define a successful technology for KIN5

knockdown by an inducible short hairpin RNA (shRNA), with

relevant conditions and controls. We characterize the KIN5

knockdown phenotype by cell survival studies to confirm that

KIN5 is an essential gene, and we discuss the difficulties this

presents in the knockdown experiments. We present data to

indicate that Kin5 has novel intraciliary transport cargos, some

probably related to the placement of membrane and signaling
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molecules within the cilium, rather than to the transport of

components of the motile axoneme, and we discuss similarities and

possible differences between the functions of Kin5 and Osm3 or

Kif17.

Results

Construction of pK5KOAs.40/pInv2 and cell
transformation

Our initial goal was to deplete Kin5 from the cells by

integrating an inducible shRNA into the genome. T. thermophila

expresses two redundant b-tubulin genes, BTU1 and BTU2. The

pMTT1-BICH3 construct designed by Gorovsky’s laboratory is

able to target the IAG48[G1] sequence behind the powerful

inducible metallothionein MTT1 promoter to the BTU1 coding

region by biolistic transformation [16]. The IAG48[G1] sequence

can be replaced by other sequences of interest that will be

transcribed when a heavy-metal divalent cation such as Cd2+ is

added. To introduce an inducible RNAi construct into the

macronuclear genome, we replaced the IAG48[G1] sequence

with a sequence which when transcribed would fold to produce a

short double-stranded RNA. A short sequence (K5KOAs.40)

based on 19 nucleotides from the KIN5 stalk coding region was

chosen, which was unique to the KIN5 gene as verified by a blast

search of the Tetrahymena genome (http://www.tigr.org/tigr-scripts/

tgi/T_index.cgi?species = t_thermophila). We then designed a

construct containing the coding sequence, a loop of nine bases,

the antisense sequence of the coding region and a termination

codon (Figure 1A). We hypothesized that this construct,

K5KOAs.40, would transcribe into a short double-stranded

RNA that would act in an RNAi mechanism to suppress the

expression of KIN5. A similar scheme was used to construct Inv2

which employed the same 19-nt sequence, but in the inverse

orientation (Figure 1A), a type of scrambled sequence that was

routinely used as a control for RNAi experiments. Using the

HindIII and BamHI sites, the constructs were ligated into the

modified MTT1 plasmid, here pK5KOAs.40 and pInv2,

respectively and used for biolistic transformation as described

by Cassidy-Hanley et al. [15].

CU522 cells contain a point mutation in the BTU1 gene, which

renders them taxol-sensitive [16]; replacement of the BTU1 gene

upon incorporation of the plasmid transforms them to taxol-

resistant. After transformation of the CU522 cells with the

pK5KOAs.40 or pInv2 constructs, the cells were kept at 20 mM

paclitaxel, for phenotypic assortment, selecting for more and more

copies of the K5KOAs.40 construct in the macronucleus as growth

proceeded for a few months [17]. Using BTU1.a and MTT1.s

primers in a PCR reaction, we verified that the K5KOAs.40 and

Inv2 constructs were integrated into the correct loci (Fig 1B). After

allowing for phenotypic assortment, single-cell isolates were grown

up to stationary phase for further experimentation.

Induction of shRNA via the MTT1 promoter
The metallothionein gene, MTT1, responds to stress and to

heavy metals. In particular, Cd2+ serves to induce transcription by

the promoter greater than 200-fold over control conditions [18].

In order to test whether our construct would work to knockdown

KIN5 by an RNAi mechanism and to define the time course of

knockdown in Tetrahymena, we performed RT-PCR in a linear

response range for qualitative analysis on samples following the

addition of CdCl2, initially at 5.0 mg/ml concentration. We saw a

much stronger response to Cd2+ when the clones were grown in

10 mM Tris-HCl, pH 7.5, as compared to 26 proteose peptone

(2XPP). All further experiments were performed in Tris under

starvation conditions. A non-ciliary control RNA (PGM1) was

examined simultaneously with KIN5 RNA.

When cells were exposed to 5.0 mg/ml Cd2+ in the absence of

transformation, both KIN5 RNA and PGM1 RNA remained

qualitatively unchanged for 7 h and both messages persisted for at

least 24 h (Figure 2A).

Figure 2B shows that after Cd2+ addition, the KIN5 message

remained unchanged only in the samples taken 0, 15 and 30 min

post-induction. By 45 min, the message greatly decreased and

finally by 60 min, the message was no longer seen. There was no

change in the PGM1 message in the KO cells for the entire time

period, even though there is identity between the 19-nt KIN5

region and various stretches of the PGM1 gene in as many as 12 of

the 19-nt positions (Figure 3). We conclude that the transcribed

K5KOAs.40 construct specifically eliminated KIN5 RNA within

1 hour of induction, which suggests that the construct strategy was

successful, probably working as hypothesized, via shRNA tran-

scription and an RNAi mechanism.

Figure 1. pK5KOAs40/pInv2 Vector Constructs. A. Schematic diagram showing nucleotide sequences of K5KOAs.40 and Inv2 for shRNA inserted
into the MTT1-containing vector. B. PCR verification of KO insert. Left lane: marker DNA; Right lane: Expected PCR product on genomic DNA based on
MTTI.s and BTU1.a primers for the KO insert. An identical band was seen with the Inv2 insert for Inv2 cells.
doi:10.1371/journal.pone.0004873.g001

Kin5 Knockdown in Tetrahymena
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Optimization of [Cd2+]
Viability and motility could also be affected by Cd2+, in

concentrations that could be toxic under starvation conditions. In

5.0 mg/ml Cd2+, the KO cell population was not viable much

beyond 1 h. In untransformed and Inv2 transformed cells in this

Cd2+ concentration, viability also dropped sharply within a few

hours, so that less than 10% of the population persisted for 24 h.

Many cells ruptured, presumably because of failure of osmoreg-

ulation, which is a non-specific effect of heavy metal poisoning

[19]. We set about to find the optimal [CdCl2] that would elicit the

RNAi response without affecting the control cell viability or

causing the cells to rupture. We chose concentrations of 0, 0.1,

0.25, and 0.5 mg/ml CdCl2 and performed RT-PCR at 0, 6, and

24 h on KO and Inv2 cell populations. At 0 and 6 h, the KIN5

message was present in similar amounts in all the samples. By

Figure 2. Stability of KIN5 and PGM1 messages. A. CU522 cells grown in starvation conditions+5.0 mg/ml Cd2+ prior to transformation showing
comparable relative stabilities of the KIN5 and PGM1 mRNA. B. Time course of degradation of KIN5 message after shRNA induction in K5KOAs.40 cells
using 5.0 mg/ml Cd2+. RT-PCR products resolved on a 1% agarose gel. Left lane: DNA markers. The KIN5 message decreases at 45 min post-induction
and is eliminated at 60 min. The PGM1 message remains constant.
doi:10.1371/journal.pone.0004873.g002

Figure 3. Sequence Comparison of K5KOAs.40 vs. PGM1. The
indicated PGM1 coding regions show high degree of homology to the
19 nt (positions 1742–1760) chosen for KIN5 shRNA yet KIN5 shRNA
does not affect PGM1.
doi:10.1371/journal.pone.0004873.g003

Kin5 Knockdown in Tetrahymena
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24 h, in KO cells, the KIN5 message was unchanged in 0, 0.1 or

0.25 mg/ml Cd2+, but essentially absent in 0.5 mg/ml CdCl2,

while the PGM1 levels remained unaffected (Fig 4A). Both the

KIN5 and PGM1 messages remained unaffected in Inv2 control

cells from 0 to 24 h at 0.5 mg/ml Cd2+ (Figure 4B). The is

confirmed by the loss of Kin5 protein in the KO cells upon

cadmium induction whereas Kin5 levels remain unchanged in the

Inv2 cells (Figure 4C)

To show that Cd2+ was not toxic at 0.5 mg/ml, we measured

cell survival with or without KIN5 knockdown, compared to

untreated controls. In cells containing the Inv2 construct with or

without Cd2+, survival at 24 h decreased only slightly with

addition of cadmium (Figure 5). This suggests that Cd2+ toxicity

at this concentration was minimal. Cells containing the KO

construct without Cd2+ also survived as expected, but when Cd2+

was added so that Kin5 was knocked down, only about 10% of the

original population survived. For the initial 12 h, the time course

of loss of viability as measured by cell count paralleled the loss of

KIN5 RNA and of survival measured by motility (Figure 5),

implying that the reduced population under study remained

viable. By 12 h, most of the KO cells were moving very slowly,

while overall cell shape remained unchanged, nuclear morphology

was normal and cilia were still beating. Taken together, these

observations suggested that the KIN5 knockdown phenotype

produced loss of normal coordinated movement and then lethality,

which is consistent with our earlier finding that KIN5 is an essential

gene. We concluded that most of the lethality seen at 12 h in the

K5KOAs.40 population was not due to the presence of Cd2+, but

rather to the loss of KIN5 mRNA and its consequences and that, at

this time, there are still enough viable cells for study. In further

experiments, we used 0.5 mg/ml Cd2+ and 12 h exposure to study

the effects of KIN5 knockdown on Kin5 localization.

Localization of Kin5
From previous studies [7], Kin5 localized to cilia in a punctate

pattern, which is consistent with activity as an intraciliary transport

motor. To confirm that loss of KIN5 RNA resulted in loss of Kin5

in cilia, we used a specific Kin5 Ab [7]. Immunofluorescence

microscopy confirmed that after 12 h exposure to 0.5 mg/ml

Cd2+, Kin5 was greatly reduced in K5KOAs.40 cells, while Kin5

in Inv2 cells was unaffected (Figure 4). The Kin5 signal completely

disappeared from cilia upon exposure to CdCl2, although the cilia

seemed otherwise unaffected. Some cilia, however, were found to

have bulbous tips, as if tip elongation were blocked. In contrast,

Kin5 remained in the cilia of Inv2 cells after 12 h in CdCl2
(Figure 6).

To address whether or not KIN5 knockdown due to RNAi

affects axonemal assembly and function, we deciliated the cells just

prior to CdCl2 treatment. After deciliation, the cells were initially

non-motile. In the absence of CdCl2, the K5KOAs.40 cells were

able to regenerate cilia and begin swimming after 2 h. The newly

formed cilia contained Kin5. After CdCl2 treatment, the deciliated

cells still grew cilia, but fewer and perhaps of shorter length. The

cells became motile, but although some cytoplasmic Kin5 staining

Figure 4. Optimization of KIN5 shRNA. A. Degradation of KIN5 message after shRNA induction in KO cells using 0–0.5 mg/ml Cd2+. Above: RT-PCR
products resolved on a 1% agarose gel. At Cd2+ concentrations lower than 0.5 mg/ml, KIN5 mRNA is stable for 24 h. After 24 h in 0.5 mg/ml Cd2+, KIN5
mRNA is dramatically decreased, while PGM1 is unaffected. B. Effect of 0.5 mg/ml Cd2+ on KIN5 and PGM1 messages in Inv2 cells. KIN5 and PGM1
mRNA levels remain unaffected after 24 h. DNA markers shown: lines indicate 600 and 300 bp. C. Effect of 0.5 mg/ml Cd2+ on Kin5 protein levels in KO
and Inv2 cells. Corresponding KO (left) and Inv2 (right) cell homogenates 12 h post-induction at either 0 or 0.5 mg/ml Cd2+ and blotted with K5T1 Ab
to Kin5. While the Kin5 protein is severely knocked down in the KO cells upon shRNA induction, Kin5 levels remain unaffected in Inv2 cells under
similar conditions.
doi:10.1371/journal.pone.0004873.g004
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could be seen, ciliary Kin5 was completely absent. In contrast, the

Inv2 cells continued to show Kin5 localization in the cilia after

deciliation and CdCl2 treatment (Figure 7).

Gef1 Transport by Kin5
Kin5 has a close phylogenetic relationship to Kif17, a kinesin

involved in the transport of NMDA-containing vesicles [11] and of

cyclic nucleotide gated channels in mammalian ciliated cells [12]

which suggested that Kin5 might also be involved in the transport

of membrane proteins or signaling molecules. Gef1 is a Tetrahymena

ciliary protein whose orthologue appears to be a guanine

nucleotide exchange factor (GEF) of the Sec7 family, cloned in

Paramecium. An antibody to the PH domain of the Paramecium

protein (PSec7, [20]) recognized the corresponding protein

fragment at ca. 100 kDa in Tetrahymena cilia, and therefore

identified Gef1 (Figure 8). A pulldown using the Kin5 (K5T1)

antibody also pulled down the Gef1 fragment, while in reverse, a

pulldown of Gef1 using the PSec7 antibody also pulled down Kin5

(Figure 8), which suggests that Gef1 could be a cargo of Kin5. As a

control, when the antibody was omitted, no bands were seen. If

Gef1 was one such cargo of Kin5, transport of Gef1 should be

disrupted in the K5KOAs.40 knockdown cells. We therefore

examined Gef1 localization in KO and Inv2 cells before and after

exposure to CdCl2. As anticipated, Gef1 identified by the PSec7

antibody localized along the cilium with Kin5 in the KO and Inv2

cells after 12 h if no Cd2+ was present and also in Inv2 cells when

exposed to Cd2+ (Figure 9). Surprisingly, Gef1 was still present in

the cilia of K5KOAs.40 cells after exposure to Cd2+, when Kin5

was no longer seen (Figure 9). This might occur if Kin5

transported Gef1 into the cilium and then released it along the

ciliary membrane where Gef1 persisted even after ciliary Kin5

depletion. To test this hypothesis, we deciliated the K5KOAs.40

cells and examined the localization of Gef1 as cilia regrew in the

absence vs. presence of Cd2+. In the absence of Cd2+, Gef1 and

Kin5 both reappeared in the growing cilium, but in the presence

of Cd2+, although the cilia regrew, neither Gef1 (Figure 10) nor

Kin5 was present (Figure 7). We conclude that Gef1 is a likely

Kin5 cargo that can be released from the transport apparatus to

remain along the cilium.

Discussion

RNAi in Tetrahymena
For this study, we developed a method of knockdown of a

specific macronuclear transcript in Tetrahymena by constructing an

inducible shRNA. We relied on previous methodology [21]. We

chose a 19 nt sequence specific to the gene of interest, KIN5, and

linked the sense and antisense strands by a short hairpin which

would be excised during processing [22]. We placed this behind

the metallothionein promoter and used biolistic transformation to

insert the construct into the genome. After selection for phenotypic

assortment and addition of an inducer (Cd2+), we could

demonstrate specific knockdown of the mRNA of interest, while

a control transcript was unaffected. The inverse construct from the

19-nt sequence had no effect. This methodology should be

applicable to shRNA production for knockdown of other genes of

interest in Tetrahymena. A similar conclusion was reached by

Howard-Till and Yao [23].

In our experiments, we transformed and selected cells grown to

stationary phase in growth medium (proteose peptone), but for

shRNA induction, following Nilsson [19], we moved the cells into a

simplified buffer that does not support division and yielded cells

that were more sensitive to Cd2+. Presumably, under growth

conditions, more MTT1 protein will be synthesized to transport

Cd2+ out of the cytoplasm. We found that exposure to 5.0 mg/ml

Cd2+ produced a knockdown, but was highly toxic, leading to cell

death within a few hours, even in control cells. Cells transformed

with an RNAi control construct (Inv2) at an order of magnitude

lower concentration of Cd2+ (0.5 mg/ml) were unaffected for at

least 12 h, suggesting that there was a little Cd2+ toxicity at this

time. In contrast, only about 10% of the cells transformed with the

KO construct survived, whether survival was measured by number

of motile cells or by cell counts, which is consistent with the

production of shRNA for KIN5 knockdown by 12 h exposure to

0.5 mg/ml Cd2+. We attribute lethality mainly to the near absence

Figure 5. Effect of 0.5 mg/ml Cd2+ on K5KOAs.40 and Inv2 cell survival. Initial population indicated as 100%. Solid lines: survival measured by
cell count. Dashed lines: Survival measured by cell motility. Essentially, all surviving cells in the culture are motile.
doi:10.1371/journal.pone.0004873.g005
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of Kin5 in the cell, rather than to Cd2+ toxicity under these

conditions. Lower concentrations of Cd2+ did not induce shRNA

for up to 24 h. There is a window of Cd2+ concentration and

time of exposure that maximizes shRNA production and

minimizes Cd2+ toxicity. For essential proteins, like Kin5, it is

important to demonstrate survival in control populations with

the Cd2+ conditions chosen. Therefore, we used 0.5 mg/ml

Cd2+and 12 h exposure as standard conditions, but flexibility

should be possible.

KIN5 knockdown phenotype and Kin5 function in
intraciliary transport

The anterograde transport of materials within many cilia and

flagella is powered by at least two different motor complexes; a

heterotrimeric kinesin-2 and a homodimeric kinesin-2. In

Tetrahymena, Kin1 and Kin2 are motors of the heterotrimeric

kinesin-2 whose individual knockout has little effect, but whose

combined knockout leads to a resorption of cilia [6]. This suggests

that, like Chlamydomonas Fla10 and Fla10h [5], the principal cargos

of the Kin1/Kin2 motor complex are probably axonemal

precursors, such as radial spoke proteins, necessary for the

assembly and maintenance of the 9+2 cilium.

Kin5, the presumed homodimeric kinesin-2 characterized

previously [7], is similar to Kin1/Kin2 in that the knockdown

of this molecule results in its disappearance from cilia and

eventual lethality. But, unlike the kin1/kin2 knockout pheno-

type, the KIN5 knockdown evidently does not cause ciliary

resorption. Although forward progression is affected, cilia

generally remain motile, until just before cell death. The

disappearance implies that Kin5-based transport turns over

recurrently to bring new motors, and presumably their cargos,

into the cilium. Furthermore, the cargo transported by Kin5

cannot be critical for the maintenance of ciliary structure,

except for perhaps at the cilium tip, or for motility, as

demonstrated when cells are deciliated after knockdown. When

RNAi for KIN5 is induced, even though KIN5 message remains,

Figure 6. Kin5/tubulin immunofluorescence in cells without deciliation. Top panel: K5KOAs.40 cells with 0 mg/ml Cd2+; middle panel:
K5KOAs.40 cells with 0.5 mg/ml Cd2+ (12 h); bottom panel: Inv2 cells with 0.5 mg/ml Cd2+ (12 h). Right panels: Enlarged cilia showing the presence or
absence of punctate pattern of Kin5 antibody (red) localization offset from the continuous tubulin localization (green). Scale bars: (left) 10 mm; (right)
1 mm. In K5KOAs.40 cells treated with Cd2+, Kin5 fluorescence is missing in the cell body and the cilia.
doi:10.1371/journal.pone.0004873.g006

Kin5 Knockdown in Tetrahymena
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the cell regrowing the cilia end up with little or no Kin5. These

cilia are motile. In Tetrahymena, Kin5 must at least in part be

involved in a pathway of intraciliary transport where the cargo

must presumably not include the axonemal precursors necessary

for the building of the cilium.

In C. elegans, unlike Tetrahymena, the orthologous homodimeric

kinesin-2, Osm3, and the heterotrimeric kinesin are redundant in

building the cilia-based sensillum body [10], while Osm3 alone is

the IFT transporter necessary to build the distal ends [9].

Presumably, membrane receptors are enhanced at the distal ends

of invertebrate sensilla. The mammalian homologue of Kin5,

Kif17, is endogenously expressed in the ciliary layer of olfactory

neurons and in MDCK cell cilia. Coimmunoprecipitation suggests

that Kif17 complexes with olfactory cyclic nucleotide-gated

channel (CNG) subunits in olfactory epithelium, implying that

Kif17 is the motor for CNG intraciliary transport. CNG channels

transfected into MDCK cells are transported into their primary

cilia [12]. Similar to Tetrahymena, but unlike C. elegans, transfection

with dominant negative Kif3a results in complete loss of cilia,

whereas transfection with dominant negative Kif17 does not

Figure 7. Kin5/tubulin immunofluorescence in cells after deciliation and ciliary regrowth for 2 h. Top panel: K5KOAs.40 cells with 0 mg/
ml Cd2+; middle panel: K5KOAs.40 cells with 0.5 mg/ml Cd2+ (12 h); bottom panel: Inv2 cells with 0.5 mg/ml Cd2+ (12 h). Right panels: Enlarged cilia
showing the presence or absence of punctate pattern of Kin5 antibody (red) localization offset from the continuous tubulin localization (green). Scale
bars: (left) 10 mm; (right) 1 mm. After deciliation, Cd2+ treated-K5KOAs.40 cells regrow cilia without Kin5.
doi:10.1371/journal.pone.0004873.g007

Kin5 Knockdown in Tetrahymena
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produce ciliary resorption. CNG channels are clustered at the

distal ends of olfactory cilia [24], suggesting that like Osm3, Kif17

is particularly important in transporting receptors to the distal

ends of the cilia. In this regard, knockdown of KIN5 may produce

some ciliary shortening because Kin5 is necessary to build the

mature cilia tip. However, this remains to be quantitated and the

kinetics of Kin5 synthesis and turnover within the cilium remain to

be defined.

Gef1 is a Kin5 cargo
One viable hypothesis is that, like Kif17, and perhaps Osm3,

Kin5 transports specific membrane proteins such as guanylyl

cyclase [1] into the Tetrahymena cilium. Gef1 could be a cargo of

Kin5 that facilitated concentration of targeted membrane

receptors. Based on immunolocalization and sequence homology,

Gef1 is a PH domain-containing GEF that is itself probably a

ciliary membrane peripheral protein. Gef1 and Kin5 coimmuno-

precipitate and in untransformed, uninduced or Inv2 cells induced

with Cd2+, Gef1 and Kin5 localize together along the cilia. When

cells are deciliated in the absence of KIN5 shRNA induction, Gef1

and Kin5 reappear in a similar punctate pattern as new cilia grow.

However, when cilia are examined after induction of KIN5 shRNA

so that Kin5 is no longer seen, Gef1 is still found along the ciliary

membrane. When these cells are deciliated, cilia regrow without

Gef1. These results suggest that Gef1 is released from the Kin5

transport apparatus to become resident in the ciliary membrane

independent of further transport. Gef1 remains to be fully

characterized, but a GEF is also found resident in the connecting

cilium of mammalian photoreceptors as well as in ciliated

epithelial tissues [25,26] and in primary cilia [27]. GEFs interact

with G-proteins involved in protein import into specialized cellular

compartments, for example in nuclear import [28] Similarly, these

results might imply that a specific GEF, Gef1 for Tetrahymena,

would be localized along the ciliary membrane, where it might

operate to facilitate release of other cargo, particularly membrane

channels and receptors, imported into the cilium.

Materials and Methods

Plasmid Construction & Biolistic Transformation
20 mg of pMTT1-BICH3 (obtained from Dr. Martin Gorovsky,

Univ. of Rochester, NY) was digested with HindIII and BamHI and

resolved on a 1% low-melt agarose (Fisher Scientific, Pittsburgh,

PA). The ,6.0 KB vector was gel isolated away from the ,1.5 KB

of IAG48[G1] sequence using the Qiaquick Gel Isolation Kit

(Qiagen, Valencia, CA) in a final elution volume of 50 ml. 1 mg of

pK5KOAs.40s sense (GATCCCTTGACGCCACAAAAAA-

GATTCAAGAGATCTTTTTGTGGCGTCAAGTGAA) and

1 mg of pK5KOAs.40a anti-sense (GGAACTGCGGTGTTT-

TTTCTAAGTTCTCTAGAAAAACACCGCAGTTCACTTTC-

Figure 8. Gef1 is a cargo of Kin5. A. Immunoblot of Gef1. The Gef1 Ab identifies a ca. 100 kDa band (PSec7) from Paramecium, and an ortholog
(Gef1) in Tetrahymena cell and ciliary membrane fractions. The Sec7 motif, which delineates a function in guanine nucleotide exchange, is found in
both proteins (Grey letters indicate similarity). B. Co-immunoprecipitation of Kin5 and Gef1. 1: Kin5 immunoprecipitate probed with Gef1 Ab. 2: Gef1
immunoprecipitate probed with Kin5 Ab.
doi:10.1371/journal.pone.0004873.g008
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GA) oligonucleotides were mixed together in a 50 ml volume, heated

at 95uC for 2 min, and incubated at 37uC for 2.5 h. A similar

reaction was done for the inverse control using pInv2s sense

(GATCCAGAAAAAACACCGCAGTTCTTCAAGAGAGAAC-

TGCGGTGTTTTTTCTTGAA) and pInv2a anti-sense

(GTCTTTTTTGTGGCGTCAAGAAGTTCTCTCTTGACGC-

CACAAAAAAGAACTTTCGA) oligonucleotides. 5 ml of the

oligonucleotide mix were ligated with 5 ml of pMTT1-BICH3

(HindIII/BamHI digested and gel isolated to remove IAG48[G1]).

CaCl2 competent E coli (DH5a) were transformed with the ligation

mix. After plasmid minipreps (Qiagen), restriction digests and PCR

were used to verify correct insertion.

20 mg of each vector was digested with KpnI/SacII (New

England Biolabs) and phenol:chloroform purified. 4 ml of the

digest were mixed with 40 ml of prepared gold particles for biolistic

transformation of T. thermophila CU522. After the shootings using

the basic biolistic transformation protocol [29] and the Model

PDS-1000/He Biolistic Particle Delivery System (Biorad, Hercu-

les, CA), the cells were resuspended in 50 ml 26proteose peptone

(PP) plus 16 anti-mycotic mix (Gibco, Grand Island, NY). After

incubation at room temperature for 2 h, paclitaxel (LC Labora-

tories, Woburn, MA) was added to a concentration of 20 mM.

After 3 days at 25uC, a small aliquot was cultured into a 5 ml tube

with 2XPP+20 mM paclitaxel. Every 3–4 days, ,20 ml of cells

were recultured into 5 ml 2XPP media containing 20 mM

paclitaxel in order to complete phenotypic assortment. After a

period of a few months, they were cultured into 2XPP media

without any paclitaxel, maintained for at least two weeks and

Figure 9. Gef1/tubulin immunofluorescence in cells without deciliation. Top panel: K5KOAs.40 cells with 0 mg/ml Cd2+; middle panel:
K5KOAs.40 cells with 0.5 mg/ml Cd2+ (12 h); bottom panel: Inv2 cells with 0.5 mg/ml Cd2+ (12 h). Right panels: Enlarged cilia showing the presence or
absence of punctate pattern of Gef1 antibody (red) localization offset from the continuous tubulin localization (green). Scale bars: (left) 10 mm; (right)
1 mm. In KO cells treated with Cd2+, unlike Kin5, Gef1 remains in the cilia.
doi:10.1371/journal.pone.0004873.g009
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Figure 10. Gef1/tubulin immunofluorescence in cells after deciliation and ciliary regrowth for 2 h. Top panel: K5KOAs.40 cells with 0 mg/
ml Cd2+; middle panel: K5KOAs.40 cells with 0.5 mg/ml Cd2+ (12 h); bottom panel: Inv2 cells with 0.5 mg/ml Cd2+ (12 h). Right panels: Enlarged cilia
showing the presence or absence of punctate pattern of Gef1 antibody (red) localization offset from the continuous tubulin localization (green). Scale
bars: (left) 10 mm; (right) 1 mm. In control cells, Gef1, like Kin5, returns to the cilia. In KO cells treated with Cd2+, Gef1, like Kin5, does not return to the
cilium.
doi:10.1371/journal.pone.0004873.g010
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recultured by similar methods to allow for complete phenotypic

assortment. They were then inoculated into 2XPP media

containing 20 mM paclitaxel and grown overnight. Single-cells

were isolated in drops and then transferred to 2 ml 2XPP with 16
anti-mycotic solution and grown to produce small clonal colonies

for 3 days to select for cells that had completed phenotypic

assortment with respect to the K5KO construct. Integration of the

appropriate constructs was verified by PCR using the following

primers: BTU1.a: TGGTTTAGCTGACCGATTCAG; MTT1.s:

GCTGCTCAAAACATAGCTCATTC. The reaction conditions

were performed on the Geneamp PCR System 2400 (Perkin

Elmer, Boston, MA) using 1 ml of genomic DNA as follows: 95uC
– 2 min; 95uC – 45 sec, 57uC – 1 min, 72uC – 1 min for 35 cycles;

72uC – 10 min; 4uC hold. 5 ml of the reaction products were

resolved on a 1% agarose gel. Cells incorporating the RNAi

construct were designated K5KOAs.40 (KO cells); cells incorpo-

rating the inverse construct were Inv2 cells.

Cell Growth and Induction
KO and Inv2 cells were grown in 15 ml 2XPP for two days,

spun down, resuspended in 5 ml starvation media (10 mM Tris,

pH 7.5), incubated overnight without shaking, and diluted to

2.06104 cells/ ml. CdCl2 was added to a final concentration,

either in a range from 0 to 0.5 mg/ml or 5.0 mg /ml. Aliquots of

motile cells were studied. For ciliary regrowth experiments,

deciliation was performed by shear. Cells were routinely examined

microscopically for the presence of motility and cilia, and then

placed in new 2XPP. Return of motility and beating cilia were

monitored for up to 2 h.

Cell Motility & Survival
Cell survival was measured by counting the cells in the motile

population by hemocytometer. One to three readings were taken

at each time point and a percentage survival calculated by

comparison to t = 0. To ensure that the populations were

composed of viable cells, motility was measured as the number

of cell crossings at a pre-determined line in a one minute-time

period. One to four readings were taken at t = 0 and every four hrs

up to 24 hrs and calculated as a percentage corresponding to t = 0.

RNA Isolation & RT PCR
Total RNA was isolated from equal number of cells at various

time points using an RNeasy mini prep kit (Qiagen). Afterwards,

1 ml was used as template for the One-Step RT PCR kit (Qiagen)

using either KIN5 primers (tkin5.40s CCAGCAGCATAAGC-

TATGG; tkin5.40a ATGAAGACTGTTGCCGCCACC) or

PGM1 primers (PGM3s AAAAGGTTAGTGGTTGTTAAGG;

PGM3a CTTGTGTAAATCATACTTTATTT) in a total

reaction volume of 25 ml. The reaction conditions were

performed on the Geneamp PCR System 2400 (Perkin Elmer)

as follows: 50uC – 30 min, 95uC – 15 min; 95uC – 45 sec, 57uC –

1 min, 72uC – 1 min for 35 cycles; 72uC – 10 min; 4uC hold.

5 ml of the reactions were resolved on a 1% agarose gel. Within

the linear range of product production as described by the kit, the

amount of product produced is at least qualitatively proportional

to the amount of message, which was confirmed by gel analysis of

repeated multiple replications of the PCR experiments.

Immunofluorescence
T. thermophila K5KOAs.40 and Inv2cells were incubated at

0.5 mg/ml CdCl2, spun down at different time points and

resuspended in PHEM buffer (50 mM PIPES 50 mM HEPES

1 mM EGTA 2 mM MgS04) and an equal volume of Buffer A

(PHEM buffer +4% paraformaldehyde +1% Triton X-100)

containing 2 mM AMP-PNP (Sigma-Aldrich). After incubating

for 5 min at room temperature, 1/20 volume of 10% Triton X-

100 was added for 30 min. The cells were spun down (1100 g for

3 min) and washed 26 with TBST (10 mM Tris-HCl, pH 8.0

150 mM NaCl 0.05% Tween-20). For immunofluorescence

microscopy, cells were incubated in the primary antibody for

Kin5 [7], acetylated tubulin (Sigma-Aldrich), or Gef1 [20] for

15 min, washed two times in Buffer B (10 mM Tris-HCl pH 8.0,

150 mM NaCl, 0.05% Tween-20, 3% bovine serum albumin,

5 mM CaCl2), incubated with Cy3 or Cy5 secondary antibody

(Jackson Lab, West Grove, PA) at 1:100 dilution for 15 min and

washed once with Buffer B. Controls omitted primary antibody

incubation. Gef1 is a ciliary protein defined by a rabbit

polyclonal antibody (Gef1 Ab) based on a peptide sequence

(IQLMGRFDLDEEKDT) from the PH domain of a cloned

Paramecium ciliary protein, PSec7 [20] probably a guanine

nucleotide exchange factor (GEF1). A Scanalytics EPR decon-

volution system (Scanalytics Inc., Fairfax, VA) [30] was

employed for 3D reconstruction. Matched images were subjected

to pseudocoloring for comparison of localizations. For critical

analysis, the gain on the red channel was set to saturate the cell

cytoplasm and individual cilia were selected. Colocalization in

red and green images of the same cilium was compared by

offsetting the images slightly [7].

Western Blotting for Kin5 and Gef1
For western blotting, cilia fractions were prepared by shear or

by dibucaine deciliation. After pelleting by centrifugation,

membrane/matrix and axoneme fractions were prepared by

demembranation in Triton 6100. Ciliary membranes were

precipitated from the Triton supernate with 10%TCA and

pelleted at 16000 g for 10 min. Normally, 15–20 ml samples

derived from diluted packed cells calculated as about 104

Tetrahymena cells or cell equivalents (from an original sample

containing 106 cells/ml) were used. Samples were run on a 7.5%

SDS-PAGE gel and transferred to a nitrocellulose membrane

(250 mA, 4 h) and blocked with blotto (10 mM Tris-HCl, pH 8.0,

150 mM NaCl, 0.05% TWEEN 20, 2 mM sodium azide, 2%

non-fat milk) for one hour. The membrane was incubated

overnight in blotto+affinity-purified K5T1 antibody (1:100) or

Gef1 Ab (1:500). The membrane was washed three times in TBST

(10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.05% TWEEN 20,

2 mM sodium azide) for 5 min each and incubated with anti-

rabbit secondary antibody (1:4000 in blotto) conjugated with

alkaline phosphatase (Sigma-Aldrich). After washing in TBST for

5 min each, the membrane was exposed to NBT/BCIP (KPL,

Gaithersburg, MD).

Coimmunoprecipitation
To ensure clean results with protein immunoprecipitation, a

mucocyst-less strain of T. thermophila (SB255) was employed. 15 ml

of T. thermophila SB255 at stationary phase were spun down

(1100 g for 3 min) and resuspended in 1.0 ml lysis buffer (0.15 M

NaCl, 1% Triton-X-100, 50 mM Tris). After incubation on ice for

30 min, the tube was spun (13200 RPM for 1 min) in a table-top

centrifuge to remove cell debris. 100 ml of K5T1 antibody or Gef1

antibody was added and incubated at 4uC with gentle shaking

overnight. 100 ml of Protein-A coated sepharose beads (10% v/v)

were added and incubated at 4uC for one h. The tube was

centrifuged (13200 RPM for 1 min) to pellet the beads which were

washed twice with 350 ml lysis buffer and resuspended in 50 ml

lysis buffer. After brief vortexing, 8 ml was used for Western blot

with the opposite antibody (K5T1 Ab used for the Gef1
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immunoprecipitate and the Gef1 Ab for the K5T1 immunopre-

cipitate).
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