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Geospatial modeling methods in population-level kidney research have not been used to full potential

because few studies have completed associative spatial analyses between risk factors and exposures and

kidney conditions and outcomes. Spatial modeling has several advantages over traditional modeling,

including improved estimation of statistical variation and more accurate and unbiased estimation of co-

efficient effect direction or magnitudes by accounting for spatial data structure. Because most population-

level kidney research data are geographically referenced, there is a need for better understanding of

geospatial modeling for evaluating associations of individual geolocation with processes of care and

clinical outcomes. In this review, we describe common spatial models, provide details to execute these

analyses, and perform a case-study to display how results differ when integrating geographic structure. In

our case-study, we used U.S. nationwide 2019 chronic kidney disease (CKD) data from Centers for Disease

Control and Prevention’s Kidney Disease Surveillance System and 2006 to 2010 U.S. Environmental

Protection Agency environmental quality index (EQI) data and fit a nonspatial count model along with

global spatial models (spatially lagged model [SLM]/pseudo-spatial error model [PSEM]) and a local

spatial model (geographically weighted quasi-Poisson regression [GWQPR]). We found the SLM, PSEM,

and GWQPR improved model fit in comparison to the nonspatial regression, and the PSEM model

decreased the positive relationship between EQI and CKD prevalence. The GWQPR also revealed spatial

heterogeneity in the EQI-CKD relationship. To summarize, spatial modeling has promise as a clinical and

public health translational tool, and our case-study example is an exhibition of how these analyses may be

performed to improve the accuracy and utility of findings.
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G
eographic information science is a relatively new
theoretical and methodological approach to eval-

uating epidemiological policy and research aims, only
becoming widely used since the broader application of
geographic information systems (GIS; i.e., geographical
computer programs) in the mid-1990s.1 Since then, GIS
and spatial analysis have been utilized extensively to
address research in many health care contexts,
including chronic conditions (namely, cancer, obesity,
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diabetes, heart disease, among others)2-5; however,
there is a paucity of research literature incorporating
geospatial epidemiological methods in the context of
kidney disease, including CKD and kidney trans-
plantation. In cancer research specifically, GIS methods
have revolutionized disease surveillance or study of
novel exposures and have had a transformational
impact on targeting real-world interventions and pol-
icy.2,6-10 Most existing epidemiological spatial studies
of kidney disease, transplantation, and outcomes use
descriptive spatial methods, such as disease mapping
and cluster analyses with only a handful of studies
applying associative methods.11-21 Many previous re-
views have described in depth the importance of ge-
ography and strengths of spatial analysis in
epidemiology, and the central concept is that health
807
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Table 1. Brief summary of comparative advantages, disadvantages, and limitations of various types of modeling in population health research

Comparative advantage/disadvantage characteristics

Type of model

Traditional regressions

Global spatial models

Local spatial models (e.g., GWR)Spatially lagged models Spatial error models

Easier implementation and interpretation X

Stronger methodological development X

Stronger literature base X

Accounting for spatial structure of data X X X

Improved reduction of type I and type II error X X X

Require larger sample size of areal units X

Require higher geographic continuity of areal units X

Directly measure local geographic differences in modeled relationships X

GWR, geographically weighted regression.
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conditions and outcomes are heavily influenced by
where individuals live and/or work.22-24 Without
adjusting for the inherent spatial distribution of the
population and risk factors linked to geographic loca-
tion, traditional (nonspatial) associative modeling be-
comes biased due to violation of model assumptions,
potentially resulting in bias via misrepresentations of
coefficient direction and magnitude of effects and un-
derestimation of standard errors.25 These issues can
lead to flawed results and interpretation, which may be
particularly problematic for those risk factors and ex-
posures with more complicated relationships with
kidney outcomes. A summarized description of
comparative advantages, disadvantages, and limitations
of traditional and spatial modeling in epidemiology can
be found in Table 1.

The primary goal of this overview is not to discuss
strengths and weaknesses of previous spatial
population-level kidney research, but instead to
display the potential importance of accounting for ge-
ography in modeling through application of spatial
models and comparisons with traditional statistical
modeling. We describe common and useful types of
spatial models in epidemiology, show how to execute
these analyses, and provide examples of how results in
epidemiological analyses of population kidney data
shift when integrating geographic structure to models.
We also discuss how wider application of spatial
methods for the study of kidney disease and outcomes
may better inform translational public health and
clinical and translational science in the field.

Types of Geospatial Regression

The aim of geospatial regression in epidemiology is to
integrate and/or account for the geographic distribu-
tion of population characteristics into associative
modeling with health conditions,22 which is achieved
by directly or indirectly targeting spatial autocorrela-
tion (also known as spatial dependence or clustering) in
spatial health data (i.e., outcome and/or predictor
808
values that vary across space).25 There are many types
of associative spatial models, but they can be catego-
rized into 2 broader groups, namely “global” spatial
models and “local” spatial models.26,27

Global spatial models are named as such because
they account for spatial autocorrelation across the
entire study area via spatial parameters, but resulting
model coefficients do not vary across space (i.e., global
results represent predictor-outcome relationships rep-
resenting the entire geographic extent of the study
area).26 Global spatial models commonly used in
epidemiological research include classical spatial
autoregressive models, such as SLMs and spatial error
models (SEMs), among others.28 Spatial autoregressive
models account for geographic space via inclusion of
spatial model terms, which reduce or remove spatial
autocorrelation.29 SLMs incorporate spatial structure (a
lag or weighted average of neighboring values) via the
outcome variable, whereas SEMs incorporate spatial
structure into model residuals (error terms).25 SLMs
have the components of the traditional regression and
include a spatial representation of the outcome variable
on the right-hand side of the model equation. The SEM
applies the basic linear regression formula but accounts
for clustering in the residuals with a different model
term. It is generally best practice to perform both SLM
and SEM models to aid in identifying whether spatial
relationships are better adjusted for by accounting for
the influence neighboring outcome values (SLM) or by
accounting for clustering in model residuals (SEM).

Conversely, local spatial models, also known as
spatially varying coefficients models, do not use spatial
model terms and instead construct separate model
equations for specified spatial zones (such as for a county
and its 10 closest neighbors). Local spatial models,
including variations of the commonly used geographi-
cally weighted regression (GWR) model, produce local
coefficients showing local variation in predictor-
outcome relationships. GWR models are useful for
examining how predictor-outcome associations vary
Kidney International Reports (2024) 9, 807–816
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across geographic areas while adjusting for related var-
iables. GWR models have been used in chronic disease
epidemiology extensively, including for cancer, dia-
betes, and heart disease30-32; however, they are
comparatively rare in epidemiological research of kidney
conditions and outcomes.13,19 GWR has been identified
as a promising translational public health tool due to its
unique ability, along with other spatially varying co-
efficients models, of identifying areas of disparate risk
factor or exposure-outcome relationships that are
adjusted for related variables.5,33-35 The inferential
ability of GWR is unclear,36 but it remains a useful tool
for exploration of spatial heterogeneity.

Expanded explanation and model equations of each
of these types of models (including nonspatial count
regressions) can be found in the Supplementary
Material.

Pitfalls of Geospatial Data

Comparative advantages and disadvantages of tradi-
tional and geospatial regression can be found in
Table 1; however, there are broader limitations of
epidemiological spatial data that should be considered
in the context of formulating models. The ecological
fallacy is a consistent issue in epidemiological analysis
of area-level (e.g., county-level) data,37 where statistical
relationships between areal variables may simply be
coincidental. The fallacy extends to analyses of epide-
miological spatial data, where spatial relationships be-
tween variables without plausible explanations for
identified relationships can also be coincidental.38

Therefore, it is important to consider from a theoret-
ical perspective why variables may be associated both
statistically and spatially. For example, socioeconomic
status, race or ethnicity distributions, and disease
burden of U.S. communities do not occur at random
across geographic space, and communities near one
another may be more similar to one another compared
with those further away due to a constellation of fac-
tors such as historical racism (e.g., redlining and
segregation), availability of amenities and services (e.g.,
hospitals and groceries), and built environment factors
(e.g., locations of highways), among others.39,40

Another routinely noted pitfall in analysis of spatial
data is the modifiable areal unit problem, which is a
long-recognized issue in spatial epidemiology where
units with arbitrary boundaries, such as counties, are
selected to compare health-related variables between
areas.41,42 In short, the modifiable areal unit problem is
both a geographic shape and an aggregation problem,
where values of disease or risk factor values are
aggregated for counties or other units that have arbi-
trary shapes and sizes. The modifiable areal unit
problem is not easily rectifiable, and researchers have
Kidney International Reports (2024) 9, 807–816
observed that it is not likely to be completely resolved
ever,43 yet it remains an important limitation and
consideration when pursuing spatial analyses.

Case-Study

Though the population burden and patient-level pro-
gression of CKD due to certain factors, such as hyper-
tension and diabetes, are well-established,44,45 only a
limited number of studies have examined relationships
with environmental variables, such as ambient air
pollution or water quality.46-49 To examine how inte-
gration of spatial structure to modeling affects resulting
coefficients, we performed a spatial modeling case-
study exploring associations between county-
aggregated CKD prevalence and a measure of overall
county-level environmental quality, the EQI. EQI has
been utilized extensively as a predictor variable in
epidemiological literature50-55 but not in relation to
CKD prevalence. We utilized county-level diabetes and
hypertension data as adjustment variables and have
purposely not interpreted results for these variables
because there is strong existing patient-level evidence
of relationships with CKD.

Methods
Data

We obtained county-level CKD, diabetes, and hyper-
tension prevalence for Centers for Medicare and
Medicaid Services beneficiaries aged 65 and older from
the Centers for Disease Control and Prevention’s Kid-
ney Disease Surveillance System for 3083 U.S. counties,
which is based on claims data from the 5% Medicare
random sample from the Centers for Medicare and
Medicaid Services. This sample includes beneficiaries
who had at least 1 inpatient or outpatient visit during
the calendar year, estimated at over 1.8 million annu-
ally. Further description of the dataset is available in
the existing literature.56,57 In our analysis, the per-
centage of the Centers for Medicare and Medicaid
Services beneficiary population with CKD was consid-
ered the outcome variable, whereas percentage of the
Centers for Medicare and Medicaid Services beneficiary
population with (i) diabetes and (ii) hypertension serve
as adjustment variables. We obtained county-level data
for the main predictor variable, EQI, from the most
recent U.S. Environmental Protection Agency data
release, representing years 2006 to 2010.58 Briefly, the
EQI is a composite indicator of the overall quality of the
ambient environment in a given county, including the
air, water, land, built, and sociodemographic do-
mains.58 Though we focused on environmental quality
and certain important adjustment variables, theoreti-
cally, any county-level population characteristics could
be used for adjustment in our models.
809
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Statistical Analysis

We performed a traditional type of count modeling,
quasi-Poisson (QP) regression, along with 2 types of
global spatial regression (SLM and PSEM) and a local
spatial regression, GWQPR. All analyses were
completed in R version 4.3 or GeoDa version 1.2, and
maps were produced in both GeoDa version 1.2 and
ArcGIS version 2.4.59-61 Both R and GeoDa are free
publicly available software suites with GIS capability,
whereas ArcGIS requires licensure. Full R code and
case-study datasets can be found at the following
Github link: https://github.com/spatialepidemiology/
spatial_kidney_review.

Count Modeling

We fit a county-level QP general additive model (GAM)
with CKD counts as the outcome, county population 65
years and older as the offset, EQI as the main predictor,
and diabetes and hypertension percentage as adjust-
ment variables. The overdispersion-resistant QP GAM
count model was selected over a negative binomial
model to allow for comparison with the GWQPR.
Geographically weighted negative binomial regression
is not yet developed for open-source statistical soft-
ware, such as R. We did not pursue zero-inflated ver-
sions of the count modeling, because only 0.6% of
counties had counts of zero. For comparison purposes,
we computed goodness-of-fit measures, including
deviance R2 and 2 indicators of spatial autocorrelation
in model residuals: global and local Moran’s I. Global
Moran’s I values were computed in R, whereas local
Moran’s I clustering and outlier maps were computed
in GeoDa software. We produced maps of the local
Moran’s I values of deviance residuals for comparison
with the spatial models. Further details, explanations,
and model specifications for the nonspatial QP model
can be found in the Supplementary Material.

Global Spatial Modeling

For the 2 global geospatial models (SLM and PSEM), a
necessary first step was constructing the spatial
structure of the dataset. For the SLM, we selected a k-
nearest neighbors spatial weights matrix to form the
dataset spatial structure. For the PSEM, we decom-
posed the spatial geometry into spatial coordinates for
inclusion in a tensor product smooth of thin plate
regression splines. Details, explanations, and specifi-
cations for creating the spatial data structure can be
found in the Supplementary Material. We fit a
spatially lagged auto-covariate QP GAM (SLM) and a
tensor product smooth spatial QP GAM (PSEM) using
the same base formula as the nonspatial QP model.
SLMs and SEMs produce spatial coefficient parameters
(lag coefficient for SLM and spatial spline coefficients
for PSEM), which reflect spatial dependence in the
810
data. In the SLM, when the lag coefficient is greater
than zero, it indicates that counties are expected to
have higher predictor variable values if, on average,
their neighbors have higher values. We computed the
same goodness-of-fit measures for the global spatial
models as the nonspatial model. Local Moran’s I values
of residuals were mapped for the 2 global spatial
models. Further details, explanations, and model
specifications for SLM and PSEM can be found in the
Supplementary Material.

Local Spatial Modeling

We implemented a generalized GWQPR using the same
base model formula as for the QP GAM. Details, ex-
planations, and specifications of the GWQPR can be
found in the Supplementary Material. We computed
the same goodness-of-fit measures for the GWR as for
the QP GAM and global spatial models. Local Moran’s I
values of residuals and multiple testing-adjusted local
coefficients were then mapped. We also produced a
forest plot directly comparing resulting coefficients for
EQI from each of the models (nonspatial QP GAM,
SLM, PSEM, and GWQPR).

Results
Count Modeling Results

Results from the nonspatial QP GAM showed that wors-
ening EQI was associated with higher county-level CKD
prevalence (prevalence ratio [PR]: 1.013; 95% confidence
interval: 1.010–1.016). In other words, for every 1 unit
increase (worsening) of the EQI, county-aggregated CKD
prevalence among the Medicare population significantly
increased by 1.3% (Table 2). Global Moran’s I results
showed significant clustering in the residuals (Moran’s I:
0.304; P < 0.0001). Clustering in the residuals is also clear
in local Moran’s I value map in Figure 1a. Clustering in the
residuals indicates that an underlying spatial process or
pattern exists in the data that must be accounted for via
spatial modeling. Goodness-of-fit metrics showed a devi-
ance R2 value of 0.88 for the nonspatial QP GAM.
Increasing deviance R2 indicates improving model fit,
where R2 is bounded in a range from zero to one.

Global Spatial Modeling Results

Results from the SLM showed that increasing EQI is
associated with higher CKD prevalence in U.S. counties
(PR: 1.014; 95% confidence interval: 1.011–1.016)
(Table 2). In comparison to the nonspatial count model,
the PR for the EQI-CKD in counties was slightly larger
(1.014 vs. 1.013), representing a roughly 0.1% increase
compared with the nonspatial model (Figure 2). Global
Moran’s I results for the SLM showed that significant
clustering in the residuals was decreased by nearly half
in comparison to the linear regression; however, it was
still significant (Moran’s I: 0.188; P < 0.0001), which is
Kidney International Reports (2024) 9, 807–816
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Table 2. County-level quasi-Poisson regression, spatial lag model, pseudo-spatial error model, and geographically weighted quasi-Poisson
regression results for associations between environmental quality, adjustment variables, and chronic kidney disease prevalence among
Medicare beneficiaries aged 65 and older (N ¼ 3083 counties)

Parameter

Quasi-Poisson regression Spatially lagged model Pseudo-spatial error model Geographically weighted quasi-Poisson regression

Exponentiated
estimate (95% CI)

Exponentiated
estimate (95% CI)

Exponentiated
estimate (95% CI)

Minimum
exponentiated

estimate

Median
exponentiated

estimate

Maximum
exponentiated

estimate

Intercept 0.215 (0.214–0.216)a 0.178 (0.175–0.181)a 0.214 (0.213–0.215)a 0.213 0.215 0.216

Spatial parameterb – 2.297 (2.126– 2.482)a See noteb – – –

Parameter Prevalence ratio (95% CI) Prevalence ratio (95% CI) Prevalence ratio (95% CI) Minimum
prevalence ratio

Median
prevalence ratio

Maximum
prevalence ratio

Environmental
Quality Index

1.013 (1.010–1.016)a 1.014 (1.011–1.016)a 1.007 (1.004–1.010)a 1.011 1.012 1.015

Diabetes 0.997 (0.990–1.004) 0.997 (0.990–1.003) 1.013 (1.007–1.019)a 0.997 0.998 0.999

Hypertension 1.332 (1.324–1.340)a 1.305 (1.298–1.313)a 1.304 (1.297–1.311)a 1.326 1.328 1.336

Diagnostics

Deviance R2 0.88 0.89 0.93 0.88

Residual global Moran’s I value 0.304 (P < 0.0001)a 0.188 (P < 0.0001)a 0.026 (P ¼ 0.0009)a 0.286 (P ¼ 0.0001)a

CI, confidence interval; CKD, chronic kidney disease; PSEM, pseudo-spatial error model; SLM, spatially lagged model.
aSignificant at P < 0.05.
bSpatial parameter for SLM is a coefficient for a spatially lagged auto-covariate of CKD counts by county offset by the population count of those 65 years or older. Spatial parameter for
the PSEM is a tensor product smooth term with 24 spline knots and therefore cannot be represented by a single coefficient. See tensor product smooth contour map (Figure S1) for
representation of spatial parameter.

Figure 1. Local Moran’s I clustering and outlier results for residuals of (a) nonspatial quasi-Poisson general additive model, (b) spatially lagged
model with auto-covariate, (c) pseudo-spatial error model, and (d) geographically weighted quasi-Poisson regression at alpha <0.01. High-High
(clustering): significantly higher values than expected and surrounded by other high values; Low-Low (clustering): significantly lower values
than expected and surrounded by other low values; Low-High (outliers): significantly lower values than expected and surrounded by high
values; High-Low (outliers): significantly higher values than expected and surrounded by low values.

RB Buchalter et al.: Geospatial Modeling Methods in Kidney Research REVIEW
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Figure 2. Forest plot comparing EQI-CKD prevalence ratios for sta-
tistical and spatial models with 95% confidence interval for
nonspatial quasi-Poisson regression, SLM, and PSEM; and
minimum-maximum prevalence ratio for the GWQPR. Estimate for
GWQPR represents median coefficient estimate. GWQPR prevalence
ratio should not be interpreted in the context of statistical signifi-
cance. CKD, chronic kidney disease; EQI, environmental quality in-
dex; GWQPR, geographically weighted quasi-Poisson regression;
PSEM, pseudo-spatial error model; SLM, spatially lagged model.
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clear in the local Moran’s I clustering and outlier map
(Figure 1b). A significant exponentiated lag coefficient
of 2.297 indicated that counties near to one other are
more likely to have higher predictor variable values, on
average, if neighboring counties have higher predictor
values. Goodness-of-fit metrics for the SLM showed a
strong deviance R2 value of 0.89.

The PSEM also showed that increasing EQI is
significantly associated with higher CKD prevalence in
U.S. counties (PR: 1.007; 95% confidence interval:
1.002–1.008) (Table 2). The PR for EQI was roughly half
in the PSEM in comparison to the nonspatial model.
Comparisons of PSEM coefficients with nonspatial QP
and SLM coefficients for EQI can be seen graphically in
Figure 2. Global Moran’s I results for the PSEM showed
significant clustering in the residuals less extreme than
the nonspatial QP GAM and the SLM (Moran’s I: 0.090;
P < 0.0001), which is again clear in the local Moran’s I
clustering and outlier map (Figure 1c). The highly
significant smooth term of the PSEM also indicated
significant spatial dependence in the residuals, which
is clear in the contour map of exponentiated partial
effects of spatial coordinates on CKD prevalence
(Supplementary Figure S1). Goodness-of-fit metrics for
the PSEM again had a strong deviance R2 value of 0.93.
Among the nonspatial QP and global spatial models, the
PSEM had the best fit based on deviance R2, whereas the
nonspatial model had the worst fit.

Local Spatial Modeling Results

Unlike the nonspatial count model and global spatial
models, the GWQPR does not produce a single coefficient
812
for each predictor variable, and instead coefficients for
each county can be aggregated in the form of minimum,
median, and maximum coefficients. The median PR for
the relationship between EQI and CKD prevalence was
1.012, whereas the minimum coefficient was 1.011 and
the maximum coefficient was 1.015 (Table 2). Mapping
results of the relationships between EQI and CKD burden
show spatial heterogeneity. PRs for the EQI-CKD rela-
tionship were increasingly positive moving from eastern
to western counties (Figure 3). Global Moran’s I results
for the GWR showed significant clustering in the re-
siduals (Moran’s I: 0.286; P ¼ 0.0001), yet were still
improved over the nonspatial model. With a deviance R2

of 0.88, the GWQPR explained approximately the same
percent of deviance as the nonspatial model. Local
Moran’s I results indicated clustering and outliers were
visually slightly reduced in comparison to the nonspatial
model (Figure 1d).

Taken together, all spatial models improved upon
the base QP regression, as measured by statistical re-
ductions in global Moran’s I values and visual
shrinkage of clustering in local Moran’s I values. The
GWQPR model also provided the ability to produce
local coefficient maps to inform geographic differences
in predictor-outcome relationships. Comparing the EQI
model coefficients in Figure 2, one can see the effect
shifts caused by the introduction of spatial modeling.
Methodologically, our case-study results show the
importance of testing a variety of spatial models.

Discussion

As both consumers and investigators of research with
geospatial exposures and population health aims, we
should strive to integrate rigorous spatial methods to
improve our understanding of complex data. This is
particularly important with the increasing recognition
of ecological and environmental factors that contribute
to health outcomes, as well as the opportunity to have
more targeted interventions that are cognizant of
structural barriers that can differ across the country.
Spatial methods in regression modeling can be highly
effective tools for effectively describing relationships
between predictor variables and outcomes in
geographically referenced population-level epidemio-
logical research of kidney conditions and outcomes.
Our case-study is not only an exhibition of how to
flexibly perform these types of analyses for predictors
of CKD prevalence, but also a display of the potential
strengths of spatial modeling. In comparison with
nonspatial regression, our best fitting global spatial
model (PSEM) decreased the PR in the relationship
between EQI and CKD burden by nearly half, indi-
cating that accounting for spatial dependency in CKD
burden across counties substantially changed resulting
Kidney International Reports (2024) 9, 807–816



Figure 3. Quantile map of local prevalence ratios for county-level environmental quality index-CKD prevalence association. White space
signifies missingness in Medicare data. CKD, chronic kidney disease.
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model coefficients in our case-study. In the geograph-
ically weighted model, the PR for the EQI-CKD prev-
alence association is clearly spatially heterogeneous
across U.S. counties. In other words, without applying
spatial modeling to account for the geographic patterns
present in our case-study data, predictor-outcome re-
lationships were mis-estimated and did not integrate
spatial variations into resulting coefficients. We have
provided a visual representation of model differences
via a forest plot in Figure 2, which displays the shifts in
PRs for EQI by model type. Though effect shifts of this
size may or may not be important translationally, the
results are important from a methodological perspec-
tive, indicating a need for translating spatial consid-
erations into patient-level analyses, such as through
hierarchical spatial models. Though beyond the scope
of an introduction to spatial regression in the context of
population-level kidney research, Bayesian spatial
modeling is gaining in popularity in the epidemiolog-
ical and clinical realms with the release and expansion
of the “INLA” and “rstan” R packages over the past 10
to 15 years.62-64 Bayesian spatial regressions are
powerful tools that support broad flexibility in
modeling by allowing borrowed strength across
geographic and temporal domains.64

The effect of environmental exposures on CKD
prevalence is beginning to be understood,46-49 and those
environmental factors with less clearly understood re-
lationships with CKD, such as heat exposure, air pollu-
tion, water quality, and other environmental toxins or
exposures, have potential to be clarified more accurately
via spatial models. Environmental exposures are not
only difficult to measure with reasonable certainty but
Kidney International Reports (2024) 9, 807–816
also can vary strongly temporally (e.g., by season or
exposures due to one-time disasters) and across geogra-
phy.65-69 Though not presented in this review, epide-
miological spatiotemporal models70,71 would also be
useful to examine relationships between geographically
and temporally referenced environmental exposures and
patient-level kidney disease outcomes. Integration of
spatial and temporal structure into analysis of patient
data is typically completed via hierarchal modeling,72-74

which are methods that have been used previously in
the epidemiological kidney literature but remain
rare.20,21 Spatial autoregressive (i.e., SLM and SEM
models) and GWR models can both be extended to
include hierarchical structure for patient data accom-
odation.75,76 Hierarchical spatial modeling in epidemio-
logical kidney research is a clear next step to begin
providing clinical and translational science–oriented
evidence that accounts for patient residence and other
geographically referenced variables.

GWQPR modeling and local coefficient mapping
contributed novel findings and improved the predic-
tive accuracy of our case-study results, displaying that
modeled relationships between environmental quality
and CKD burden vary across U.S. counties. These local
models have seldom been applied in epidemiological
kidney research13,19; however, they have potential to
serve as a powerful translational public health tool to
identify subregional areas where further study can be
targeted to reduce disease burden. We found that the
association between EQI and CKD prevalence increases
moving from eastern to western U.S. counties; how-
ever, this result should be interpreted only from an
exploratory perspective due to the fact that
813
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significance testing was not possible. Considering that
these results are model-adjusted, they are more robust
than simple mapped comparisons, further suggesting
the utility of local spatial modeling. Going forward,
these methods could also be applied to improve un-
derstanding of factors driving the identified geographic
variations in kidney disease outcomes, including out-
comes after transplantation outcomes across space.12

Our case-study had several limitations, including its
cross-sectional ecological nature (lack of patient-level
data) and lack of adjustment for demographic factors.
Considering these limitations, care should be taken in
directly translating our results in a causal framework.
Instead, our results should be used as an exhibition of
how global and local spatial modeling can be utilized to
approach population-level kidney research in new ways.
Broad integration of spatial or spatiotemporal data
structures into modeling of kidney conditions or out-
comes could have strong impacts on translational public
health as well as clinical and translational science in the
field by clarifying predictor-outcome relationships with
improved accuracy and informing local targeting of
funds, programs, and interventions. As both consumers
and investigators of research with geospatial exposures
and population health research aims, we should care-
fully evaluate studies with potential opportunities for
methodological improvement and strive to integrate
rigorous spatial methods to improve our understanding
of complex data that is meaningful to prospective pa-
tient care and health care policy.
DISCLOSURE

RBB is supported in part by National Institutes of Health

Award Number T32CA094186. SM receives grant funding

from Kidney Transplant Collaborative and the National

Institutes of Health; and personal fees from Kidney

International Reports and Health Services Advisory

Group outside of the submitted work. SM also reports

consultancy for Sanofi, HSAG; patents or royalties at

Columbia University; advisory or leadership role as

Deputy Editor of Kidney International Reports (ISN), Chair

of UNOS Data advisory committee, Member of ASN

Quality committee, and National Faculty Chair of

ETCLCJDS. JDS declared no competing interests.

SUPPLEMENTARY MATERIAL

Supplementary File (PDF)

Types of Spatial Regressions.

Case Study Supplementary Methods.

Figure S1. Contour map of the exponentiated partial effects

of spatial coordinates (x, y) on CKD prevalence via thin

plate spline tensor product smooth.

Supplementary Reference.
814
REFERENCES

1. Clarke KC, McLafferty SL, Tempalski BJ. On epidemiology

and geographic information systems: a review and discus-

sion of future directions. Emerg Infect Dis. 1996;2:85–92.

https://doi.org/10.3201/eid0202.960202

2. Sahar L, Foster SL, Sherman RL, et al. GIScience and cancer:

state of the art and trends for cancer surveillance and

epidemiology. Cancer. 2019;125:2544–2560. https://doi.org/

10.1002/cncr.32052

3. Jia P, Cheng X, Xue H, Wang Y. Applications of geographic

information systems (GIS) data and methods in obesity-

related research. Obes Rev. 2017;18:400–411. https://doi.org/

10.1111/obr.12495

4. Cuadros DF, Li J, Musuka G, Awad SF. Spatial epidemiology

of diabetes: methods and insights.World J Diabetes. 2021;12:

1042–1056. https://doi.org/10.4239/wjd.v12.i7.1042

5. Tabb LP, Ortiz A, Judd S, Cushman M, McClure LA. Exploring

the spatial patterning in racial differences in cardiovascular

health between blacks and whites across the United States:

the REGARDS study. J Am Heart Assoc. 2020;9:e016556.

https://doi.org/10.1161/JAHA.120.016556

6. Openshaw S, Charlton M, Craft AW, Birch JM. Investigation of

leukaemia clusters by use of a geographical analysis machine.

Lancet. 1988;331:272–273. https://doi.org/10.1016/S0140-6736

(88)90352-2

7. Brody JG, Aschengrau A, McKelvey W, Rudel RA, Swartz CH,

Kennedy T. Breast cancer risk and historical exposure to

pesticides from wide-area applications assessed with GIS.

Environ Health Perspect. 2004;112:889–897. https://doi.org/10.

1289/ehp.6845

8. Turnbull BW, Iwano EJ, Burnett WS, Howe HL, Clark LC.

Monitoring for clusters of disease: application to leukemia

incidence in upstate New York. Am J Epidemiol. 1990;132(suppl

1):136–143. https://doi.org/10.1093/oxfordjournals.aje.a115775

9. Lian M, Struthers J, Schootman M. Comparing GIS-Based

Measures in Access to Mammography and Their Validity in

Predicting Neighborhood Risk of Late-Stage Breast Cancer.

Published Online 2012.

10. Poulstrup A, Hansen HL. Use of GIS and exposure modeling

as tools in a study of cancer incidence in a population

exposed to airborne dioxin. Environ Health Perspect.

2004;112:1032–1036. https://doi.org/10.1289/ehp.6739

11. Bowe B, Xie Y, Xian H, Lian M, Al-Aly Z. Geographic variation

and US county characteristics associated with rapid kidney

function decline. Kidney Int Rep. 2017;2:5–17. https://doi.org/

10.1016/j.ekir.2016.08.016

12. Buchalter RB, Huml AM, Poggio ED, Schold JD. Geographic

hot spots of kidney transplant candidates wait-listed post-

dialysis. Clin Transpl. Published online September 14, 2022.

2022;36:e14821. https://doi.org/10.1111/ctr.14821

13. VanDervort DR, López DL, Orantes CM, Rodríguez DS. Spatial

distribution of unspecified chronic kidney disease in el Salva-

dor by crop area cultivated and ambient temperature.MEDICC

Rev. 2014;16:31–38. https://doi.org/10.37757/MR2014.V16.N2.6

14. Hansson E, Mansourian A, Farnaghi M, Petzold M,

Jakobsson K. An ecological study of chronic kidney disease

in five Mesoamerican countries: associations with crop and

heat. BMC Public Health. 2021;21:840. https://doi.org/10.1186/

s12889-021-10822-9
Kidney International Reports (2024) 9, 807–816

https://doi.org/10.1016/j.ekir.2024.01.017
https://doi.org/10.3201/eid0202.960202
https://doi.org/10.1002/cncr.32052
https://doi.org/10.1002/cncr.32052
https://doi.org/10.1111/obr.12495
https://doi.org/10.1111/obr.12495
https://doi.org/10.4239/wjd.v12.i7.1042
https://doi.org/10.1161/JAHA.120.016556
https://doi.org/10.1016/S0140-6736(88)90352-2
https://doi.org/10.1016/S0140-6736(88)90352-2
https://doi.org/10.1289/ehp.6845
https://doi.org/10.1289/ehp.6845
https://doi.org/10.1093/oxfordjournals.aje.a115775
https://doi.org/10.1289/ehp.6739
https://doi.org/10.1016/j.ekir.2016.08.016
https://doi.org/10.1016/j.ekir.2016.08.016
https://doi.org/10.1111/ctr.14821
https://doi.org/10.37757/MR2014.V16.N2.6
https://doi.org/10.1186/s12889-021-10822-9
https://doi.org/10.1186/s12889-021-10822-9


RB Buchalter et al.: Geospatial Modeling Methods in Kidney Research REVIEW
15. Cao Y, Stewart K, Kalil R. Geographic patterns of end-stage

renal disease and kidney transplants in the Midwestern

United States. Appl Geogr. 2016;71:133–143. https://doi.org/

10.1016/j.apgeog.2016.05.001

16. Mohan S, Mutell R, Patzer RE, Holt J, Cohen D, McClellan W.

Kidney transplantation and the intensity of poverty in the

contiguous United States. Transplantation. 2014;98:640–645.

https://doi.org/10.1097/TP.0000000000000125

17. Soret S, McCleary KJ, Wiafe SA, Rivers PA, Montgomery SB.

Access to kidney transplantation in California: a geographic

information systems (GIS) assessment. Accessed January 8,

2024. https://proceedings.esri.com/library/userconf/health01/

papers/hc01_p04a/hc01_p04a.html

18. Cannon RM, Anderson DJ, MacLennan P, et al. Perpetuating

disparity: failure of the kidney transplant system to provide

the most kidney transplants to communities with the greatest

need. Ann Surg. 2022;276:597–604. https://doi.org/10.1097/

SLA.0000000000005585

19. Chan TC, Fan IC, Liu MSY, Su MD, Chiang PH. Addressing

health disparities in chronic kidney disease. Int J Environ Res

Public Health. 2014;11:12848–12865. https://doi.org/10.3390/

ijerph111212848

20. Kürüm E, Nguyen DV, Banerjee S, Li Y, Rhee CM, Şentürk D.
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