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Realizing the smallest nitrogen loss is a challenge in the nitrate reduction process.
Dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation play crucial
roles in nitrogen retention. In this study, the effects of the carbon source, C/N ratio,
pH, and dissolved oxygen on the multiple nitrate reduction pathways conducted by
Pseudomonas putida Y-9 are explored. Strain Y-9 efficiently removed nitrate (up to
89.79%) with glucose as the sole carbon source, and the nitrogen loss in this system
was 15.43%. The total nitrogen decrease and ammonium accumulation at a C/N ratio
of 9 were lower than that at 12 and higher than that at 15, respectively (P < 0.05).
Besides, neutral and alkaline conditions (pH 7–9) favored nitrate reduction. Largest
nitrate removal (81.78%) and minimum nitrogen loss (10.63%) were observed at pH 7.
The nitrate removal and ammonium production efficiencies of strain Y-9 increased due
to an increased shaking speed. The expression patterns of nirBD (the gene that controls
nitrate assimilation and DNRA) in strain Y-9 were similar to ammonium patterns of the
tested incubation conditions. In summary, the following conditions facilitated nitrate
assimilation and DNRA by strain Y-9, while reducing the denitrification: glucose as the
carbon source, a C/N ratio of 9, a pH of 7, and a shaking speed of 150 rpm. Under
these conditions, nitrate removal was substantial, and nitrogen loss from the system
was minimal.

Keywords: Pseudomonas putida Y-9, nitrate reduction, carbon source, C/N ratios, pH, dissolved oxygen, nirBD
expression

HIGHLIGHTS

The roles of DNRA and assimilatory reduction during NO3
− removal and nitrogen conservation

in soils have been insufficiently examined. Moreover, the effects of environmental factors on the
NO3

− reduction process when the three NO3
− reduction pathways (denitrification, DNRA, and

assimilation) coexist remain unclear. In this study, the effect of the carbon source, C/N ratio,
pH, and dissolved oxygen on ammonium accumulation and the expression of nirBD in strain
Y-9 are explored during the nitrate reduction processes. The following conditions facilitated
nitrate assimilation and DNRA by strain Y-9 while simultaneously reducing denitrification:
glucose as the carbon source, a C/N ratio of 9, a pH of 7, and a shaking speed of 150 rpm.
Under these conditions, nitrate removal was substantial, and nitrogen loss from the system was
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minimal. These findings provide theoretical support for
technical studies of nitrate removal and nitrogen retention
in soils.

INTRODUCTION

Large amounts of industrial fertilizers are often applied to
crops to increase crop yields. This leads to the considerable
accumulation of nitrate (NO3

−) in the soil (Kraft et al., 2014).
NO3

−, a mobile anion, is prone to loss by denitrification or runoff
into surface waters, and this not only decreases the efficiency of
nitrogen fertilizers but also has various passive environmental
impacts including water eutrophication and greenhouse gas
(nitrous oxide, N2O) emissions (Beeckman et al., 2018; Li et al.,
2018; Sánchez and Minamisawa, 2019; Xia et al., 2020). The
ammonium (NH4

+), produced by the dissimilatory reduction of
NO3

− to NH4
+ (DNRA) via microorganismal respiration, can

be adsorbed by soil colloids and then utilized by crops (Song
et al., 2014; Zhang et al., 2015; Pandey et al., 2019). Similarly,
the microbial assimilatory reduction of NO3

− can reduce NO3
−

to NH4
+ via NO2

− catalyzed by the relative reductase. Then,
the NH4

+ is incorporated into biomolecules and used by the
bacterium. After death, the microorganisms release the NH4

+

via mineralization for plant use (Shao et al., 2011; Wang et al.,
2020). It is clear that DNRA and NO3

− assimilation ease the
accumulation of NO3

− in agricultural soils and improve the
efficiency of nitrogen fertilizers. These processes reduce the risk
of NO3

− loss and mitigate the adverse effects of nitrogen fertilizer
use. Several recent studies have investigated the role of DNRA
in soil nitrogen conservation in farmlands (Shan et al., 2016;
Friedl et al., 2018). Yet, the important role of assimilatory NO3

−

reduction in NO3
− removal and nitrogen conservation in soils

has been comparatively neglected.
Several environmental factors, including the C/N ratio,

oxygen concentration, carbon source, affect enzyme activity in
microorganisms by controlling the expression of relevant genes
(e.g., amoA, hao, narG, and nirK) and thus impacting nitrogen
cycles (Szukics et al., 2010; Ke et al., 2013; Caranto and Lancaster,
2017; Yu et al., 2019). Thus, we speculated that soil NO3

−

removal could be maximized and soil nitrogen loss could be
minimized by adjusting certain external environmental factors
to enhance NO3

− assimilation and DNRA while decreasing
denitrification. Typically, higher C/N ratios favor DNRA over
denitrification (Kraft et al., 2014; Yoon et al., 2015; Van den Berg
et al., 2016; Putz et al., 2018). Some studies have reported that
glucose addition improved the NO3

− assimilation capacity of the
soil (Recous et al., 1990; Romero et al., 2015). However, the effects
of environmental factors on the NO3

− reduction process when
the three NO3

− reduction pathways coexist are unclear.
Pseudomonas putidaY-9 performs NO3

− assimilation, DNRA,
and denitrification under aerobic conditions simultaneously.
The gene nirBD has been shown to control the assimilation
and DNRA process (Huang et al., 2020). In this study, we
investigate the effects of the carbon source, C/N ratio, pH, and
dissolved oxygen (DO) on the accumulation of ammonium in
the medium and the expression of nirBD in strain Y-9 during

the nitrate reduction process. This study focuses on adjusting
the environmental factor parameters to enhance the DNRA
and NO3

− assimilation of strain Y-9. The results will provide
theoretical support for technical research on NO3

− removal and
nitrogen retention in soil.

MATERIALS AND METHODS

Microorganisms and the Culture Media
P. putida Y-9 (Genbank No. KP410740), which performs
NO3

− assimilation, denitrification, and DNRA under
aerobic conditions simultaneously (Huang et al., 2020), was
used in this study.

A denitrification medium (DM) was used to assess the
nitrate reduction abilities of strain Y-9. The DM (per liter,
pH = 7.2) contained 7.0 g K2HPO4, 3.0 g KH2PO4, 5.13 g
CH3COONa, 0.10 g MgSO4 · 7H2O, 0.72 g KNO3, and 0.05 g
FeSO4 · 7H2O. Luria-Bertani (LB) medium used for bacterial
enrichment contained 10 g NaCl, 10 g tryptone, and 5 g yeast
extract per liter (per liter, pH 7.0–7.2). All of the mediums were
autoclaved for 30 min at 121◦C.

Effects of the Different Factors on
Nitrate Reduction
The preserved strain Y-9 bacteria were activated in the LB
medium at 150 rpm and 15◦C for 36 h. Cells in the logarithmic
growth phase were inoculated into a DM medium to assess
the effects of the carbon source, C/N ratio, pH, and DO on
Y-9–driven NO3

− reduction (Li et al., 2019; Yan et al., 2021).
In the carbon source experiments, one of the three carbon

sources (sodium acetate, glucose, or sodium citrate) was added to
100 mL of DM medium. The C/N ratio, pH, and shaking speed
were kept constant at 15, 7, and 150 rpm, respectively. In the
C/N ratio experiments, 100 mL aliquots of the DM medium were
amended with glucose to yield C/N ratios of 3, 6, 9, 12, or 15.
The pH and shaking speed were kept constant at 7 and 150 rpm,
respectively. In the pH experiments, the initial pH was adjusted
using NaOH and HCl to 4, 6, 7, 8, or 9. The carbon source was
glucose, and the C/N ratio and shaking speed were held constant
at 9 and 150 rpm, respectively. To determine the effects of DO on
NO3

− reduction, the shaking speed was set to 0, 50, 100, 150, or
180 rpm according to previous studies (Ren et al., 2014; Lei et al.,
2019; Chen et al., 2021; Yan et al., 2021). The carbon source was
glucose, and the C/N ratio and pH were kept constant at 9 and 7,
respectively. The cultures were incubated at 15◦C for 4 d. All of
the above experiments were performed in triplicate. Samples were
taken every day from each system. The optical density at 600 nm
(OD600), NH4

+, NO3
−, and total nitrogen (TN) were measured

for each sample.

Kinetic Analysis of Nitrate Degradation
The modified Compertz model was used to describe
the kinetics analysis of nitrate degradation by strain
Y-9 (Chen et al., 2016). The kinetic equation was
y = y0(1− exp(− exp( eRm

y0
(t0 − t)1))), where y is the NO3

−
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concentration at different incubation times (mg/L); y0 is the
initial concentration of NO3

− (mg/L), Rm is the maximum
conversion rate (mg/L/h), t0 is the lag time (h), t is the reaction
time (h), and e is the mathematical constant.

Expression of nirBD in Strain Y-9
Total RNA was extracted from strain Y-9 after 4
d of incubation under various conditions using a
Trizol extraction kit (Invitrogen, United States),
following the manufacturer’s instructions. The specific
primers B1/B2 (F: CGCAACCATCTGCTCGTGT; R:
CTGGCGGGTGTAGGAAAAGT) were designed based on
the nirBD gene sequence (GenBank, MK561362). These primers
were used to amplify the nirBD gene from the isolates. The
16S rRNA gene was used as an internal standard, as structural
rRNA is present in cells at reasonably constant levels under
normal growth conditions (Edwards and Saunders, 2010).
The 16S rRNA gene was amplified using the forward primer
GAACGCTAATACCGCATACGTCC and the reverse primer
ATCATCCTCTCAGACCAGTTAC. The total RNA was reverse-
transcribed using the RevertAid first-strand cDNA synthesis kit

following the manufacturer’s instructions. Real-time quantitative
PCRs were performed using the SYBR R© Premix Ex TaqTM II.
Each real-time PCR was performed in triplicate. The PCR cycling
conditions were as follows: initial denaturation at 95◦C for 30 s;
38 cycles of 95◦C for 15 s, 60◦C for 30 s, and 72◦C for 30 s; 1 cycle
of 95◦C for 15 s; and, finally, stepwise temperature increases from
55◦C to 95◦C to generate the melting curve. Standard curves
were established using a dilution series of pMD19-T vectors
containing the target gene.

Analytical Methods
The OD600 was determined based on the absorbance at 600 nm,
which was measured using a spectrophotometer. The contents
of the different forms of nitrogen were determined as described
by Huang et al. (2019). TN was measured in the suspension. The
concentration of NH4

+, NO3
−, and NO2

− was measured in the
supernatant, which was obtained by centrifuging each sample at
8,000 rpm for 5 min. Three replicates were analyzed per sample,
and the results are presented as means ± the standard deviation
of the mean (SD). The TN and NO3

− removal efficiencies were
calculated as follows:RV = (T1 − T2)/T1 × 100 %, where Rv

FIGURE 1 | Effects of carbon type on the OD600 (A), NO3
− concentration (B), NH4

+ concentration (C), and TN concentration (D) in the Pseudomonas putida Y-9
culture.
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is the removal efficiency of TN or NO3
− (%), and T1 and T2

are the initial and final concentrations of TN or NO3
− in the

system, respectively.

Statistical Analyses
One-way analyses of variance (ANOVAs), followed by Duncan’s
Multiple Range Tests were performed using SPSS 22, and the
differences among means were considered statistically significant
at P < 0.05. Graphs were drawn using Origin 8.6 and
GraphPad Prism 6.

RESULTS AND DISCUSSION

Effects of the Carbon Source on Nitrate
Reduction
A carbon source is typically essential for the growth of
heterotrophic microorganisms, and it acts as an electron donor
for nitrogen cycling (Sun et al., 2016). In this study, strain
Y-9 grew vigorously and reached the stationary cell growth
phase after 2 d when sodium acetate, glucose, or sodium citrate
was used as the sole carbon source (Figure 1A). Moreover,
sodium acetate, glucose, and sodium citrate were suitable
carbon sources for NO3

− removal, with removal efficiencies
of 74.75, 89.79, and 100%, respectively, at 4 d (Figure 1B).
These results were consistent with those of Guo et al. (2016),
who reported that sodium acetate, glucose, and sodium citrate
enhanced the NO3

− removal capacity of Enterobacter cloacae
strain HNR. Furthermore, the nitrate degradation rate followed
the modified Compertz model (R2 > 0.90), and the maximum
NO3

− conversion rates were 1.60, 4.92, and 44.35 mg/L/h in
media containing sodium acetate, glucose, and sodium citrate,
respectively (Table 1).

Previous results have shown that strain Y-9 performs DNRA
and nitrate assimilation under aerobic conditions (Huang et al.,
2020). Based on the duration of cultivation (4 d), the detectable
NH4

+ in the supernatant might have resulted from DNRA and
nitrate assimilation followed by mineralization (Figure 1C). It is
worth noting that after 3 d of cultivation, when all the cells were
in the stationary phase, the detectable NH4

+ began to decrease in
the glucose-containing system. However, it continued to increase
in the media containing sodium acetate and sodium citrate. These
results demonstrated that NO3

− reduction by strain Y-9 differed
when glucose was the sole carbon source compared to the other
two carbon sources.

The TN decreases in our system were due to the denitrification
activities of strain Y-9, and nirBD in strain Y-9 controls DNRA
and nitrate assimilation (Huang et al., 2020). The TN in the media
supplemented with different carbon sources tended to decrease
(Figure 1D). The maximum TN decrease (60.27 mg/L) was found
in the sodium citrate-containing medium, and the minimum TN
decrease occurred (22.77 mg/L) in the glucose medium. This was
in accordance with data from Yang et al. (2012) who reported
that Pseudomonas stutzeri D6 most effectively removed TN when
sodium citrate was the carbon source. Moreover, the nirBD
expression level in strain Y-9 peaked when glucose was the carbon
source (Figure 2). These findings demonstrated that glucose

addition promoted DNRA and nitrate assimilation, effectively
removing most of the NO3

− from the system (up to 89.79%)
while inhibiting denitrification (i.e., the total nitrogen lost from
the system was 22.77 mg/L).

Effects of the C/N Ratio on Nitrate
Reduction
The effects of the C/N ratio on the nitrate reduction conducted
by strain Y-9 were further studied. Strain Y-9 growth improved as

TABLE 1 | Kinetic parameters and final removal efficiency for the degradation of
nitrate by strain Y-9 under different environmental conditions.

Environmental
factor

Rm

(mg/L/h)
t0(h) R2 The last nitrate removal

efficiency (%)

Carbon
sources

Sodium acetate 1.6 20.97 0.94 74.14

Glucose 4.92 23.99 0.97 89.79

Sodium citrate 44.35 23.82 1 100

C/N 3 0.44 9.35 0.69 30.46

6 0.58 −21.1 0.64 54

9 1.91 5.17 0.9 81.78

12 5.44 16.99 0.99 100

15 3 11.68 0.97 89.79

pH 4 −1.63 −3177.13−3.21 4.99

6 0.8 −7.7 0.74 58.27

7 2.05 4.87 0.90 81.78

8 1.91 10.99 0.87 80.57

9 1.5 6.04 0.87 79.14

Shaking
speed

0 1.33 38.7 0.97 69.9

50 1.03 6.756 0.93 71.47

100 1.41 3.4 0.83 71.18

150 1.90 3.17 0.89 81.78

180 1.68 26.96 0.93 76.17

In C/N, pH and shaking speed, glucose was chosen as carbon source.

FIGURE 2 | Quantitative measurement of the nirBD expression in
Pseudomonas putida Y-9 cultured with different carbon sources for 4 d. The
values are expressed as the number of copies/1010 copies of 16S rRNA. The
different lowercase letters above the bars indicate significant differences
among treatments (P < 0.05).
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the C/N ratio increased (Figure 3A). This result was consistent
with previous studies (Kim et al., 2008; Liu et al., 2016), that
the growth of P. putida AD-21 and Marinobacter strain NNA5
increased as the relative proportion of carbon increased in the
medium. This might have been because electron transfer slowed
when carbon concentrations were low, providing insufficient
energy for microbial growth (Kim et al., 2008; Zhao et al., 2018).
Greater than 80% of the NO3

− was removed at C/N ratios of
9–15. However, the removal efficiency of NO3

− did not exceed
30.46 and 54.00% when the C/N ratio was 3 and 6, respectively
(Figure 3B). Furthermore, nitrate degradation rates at C/N ratios
of 9–15 were consistent with the predictions of the modified
Compertz model (R2 > 0.90), and the NO3

− conversion rate was
maximum at a C/N ratio of 12 (Table 1).

The decrease of TN in this system generally mirrored the
change in NO3

− (Figure 3D). The reduction in TN at the
extremely high C/N ratio of 15 was lower than the reduction
in TN at a C/N ratio of 12, suggesting that a C/N ratio

of 12 was optimal for denitrification. Our results indicated
that the influences of C/N ratios on Y-9-driven denitrification
agreed with many previous studies. They showed that extremely
low or high carbon concentrations suppressed microorganismal
denitrification (Kim et al., 2008; Guo et al., 2016; Zhao et al.,
2018). NH4

+ concentration in the supernatant initially increased
and then decreased during NO3

− reduction (Figure 3C),
consistent with our carbon source analysis (Figure 1C). When the
C/N ratio was 9, strain Y-9 removed most of the NO3

− (removal
efficiency 81.78%) via DNRA and NO3

− assimilation (nirBD in
strain Y-9 was most strongly expressed (Figure 4)). Notably, the
denitrification performance of strain Y-9 at a C/N ratio of 9 was
significantly weaker than that at a C/N ratio of 12 (P < 0.05).

Effects of the Initial pH on Nitrate
Reduction
The impacts of the initial pH on the nitrate reduction
performance of strain Y-9 are shown in Figure 5. At an

FIGURE 3 | Effects of the C/N ratio on the OD600 (A), NO3
− concentration (B), NH4

+ concentration (C), and TN concentration (D) in the Pseudomonas putida Y-9
culture with glucose as the sole carbon source.

Frontiers in Microbiology | www.frontiersin.org 5 December 2021 | Volume 12 | Article 764241

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-764241 December 7, 2021 Time: 15:26 # 6

Huang et al. Nitrate Reduction in P. putida Y-9

FIGURE 4 | Quantitative measurement of the nirBD expression in
Pseudomonas putida Y-9 cultured with different C/N ratios (with glucose as
the sole carbon source) for 4 d. The values are expressed as the number of
copies/1010 copies of 16S rRNA. The different lowercase letters above the
bars indicate significant differences among treatments (P < 0.05).

initial pH of 4, the bacterial density did not noticeably
increase, and NO3

− reduction was minimal throughout the
experiment (Figures 5A,B), suggesting that an overly acidic

environment was detrimental to these bacteria. However, in
the pH range 7–9, strain growth and NO3

− removal were
significantly improved (P < 0.05) (Figures 5A,B). These results
are in agreement with the general finding that neutral or
alkaline environments are beneficial for bacteria growth and
bacterium-driven NO3

− removal (Li et al., 2017; Rout et al.,
2017). The NO3

− removal efficiency was significantly positively
correlated with the growth of strain Y-9 (P < 0.01) (Figure 5),
indicating that pH might control the NO3

− removal efficiency
by influencing the growth of strain Y-9. However, this possibility
requires further study. The TN concentration in the suspension
decreased as the initial pH increased, and the TN decreased by
35.01 mg/L at pH 9 (Figure 5D). This indicated that alkaline
environments favored the denitrification in strain Y-9 under
aerobic conditions.

After 3 d of culture, a negligible amount of NH4
+ was

detected at pH 4. However, the accumulation of NH4
+ at

pH 7–9 was higher than 5.0 mg/L (Figure 5C). At the end
of the experiment, the nirBD expression level in strain Y-9
at pH 7–9 was better than at pH 4 or 6 (Figure 6). These
results showed that the initial pH affected the expression
of nirBD in strain Y-9, and this might influence NH4

+

production from DNRA and NO3
− assimilation as well

FIGURE 5 | Effects of pH on the OD600 (A), NO3
− concentration (B), NH4

+ concentration (C), and TN concentration (D) in the Pseudomonas putida Y-9 culture
with glucose as the carbon source.
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FIGURE 6 | Quantitative measurement of the nirBD expression in
Pseudomonas putida Y-9 cultured in different initial pH mediums (with glucose
as the sole carbon source) for 4 d. The values are expressed as the number of
copies/1010 copies of 16S rRNA. The different lowercase letters above the
bars indicate significant differences among treatments (P < 0.05).

as its subsequent mineralization (Huang et al., 2020). The
results of previous studies on the effects of pH on NO3

−

reduction by soil microorganisms are widely contradictory

(Nägele and Conrad, 1990; Stevens et al., 1998). Here, strain
Y-9 effectively performed NO3

− assimilation, DNRA, and
denitrification at pH 7–9. This finding was inconsistent with
a previous study (Yoon et al., 2015) that suggested that a low
pH was more favorable for denitrification, while a high pH
promoted the production of NH4

+ via DNRA. This discrepancy
indicated that the effects of pH on the microbial nitrogen cycle
were complex and required further study. Our results suggested
that a neutral pH was most favorable for NO3

− removal and
nitrogen retention.

Effects of Dissolved Oxygen on Nitrate
Reduction
Strain Y-9 growth and NO3

− reduction increased gradually
as the shaking speed increased (Figures 7A,B). Changes in
the NO3

− degradation rates at various rotating speeds were
consistent with the predictions of the modified Compertz
model (R2 > 0.80), and the NO3

− conversion rate achieved
its maximum at 150 rpm (Table 1). These results suggested
that increasingly aerobic conditions improved strain growth
and NO3

− reduction. TN decreased gradually throughout
the incubation process, irrespective of the DO concentration.

FIGURE 7 | Effects of shaking speed on the OD600 (A), NO3
− concentration (B), NH4

+ concentration (C), and TN concentration (D) in the Pseudomonas putida Y-9
culture with glucose as the sole carbon source.
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However, TN decreased at low shaking speeds (≤50 rpm)
was significantly greater than those at high shaking speeds
(≥100 rpm) (P < 0.05). The decrease in the TN at the
end of the experiment reached the maximum (34.58 mg/L)
at a shaking speed of 50 rpm (Figure 7D). These results
suggested that the denitrification performance of strain Y-9
first increased and then decreased as the DO concentration
increased. This finding was consistent with the results of
Zhao et al. (2018); Rout et al. (2017), and Huang and Tseng
(2001). Previous studies demonstrated that the denitrification
performance remained stable as long as the DO concentration
remained within a fixed range. Nevertheless, the denitrification
enzyme activity levels improved noticeably when the DO
concentration decreased below a threshold value (Song et al.,
2011). For strain Y-9, 50 rpm might be the threshold DO value
that affects denitrification enzymes, although this possibility
requires further testing.

The quantitative PCR amplification results indicated that
the expression of nirBD increased with an increase in the
shaking speed (Figure 8). These results, in conjunction with
the NO3

− reduction performance of strain Y-9 (Huang et al.,
2020), indicated that high DO concentrations stimulated
the expression of nirBD in strain Y-9, promoting NO3

−

assimilation as well as DNRA, and thus releasing more
NH4

+ into the supernatant (Figure 7C). Consistent with
this, Yang et al. (2012) and Zhao et al. (2018) found that
NH4

+ production increased with the DO content during NO3
− reduction by P. stutzeri D6 and P. stutzeri strain XL-
2. Variance analyses indicated that the amounts of NO3

−

removal from the culture media and NH4
+ accumulated in

the culture media at high shaking speeds (≥100 rpm) differed
obviously from those at low rotation speeds (≤50 rpm)
(P < 0.05). These results indicated that good aeration
effectively promoted NO3

− removal and NH4
+ production by

strain Y-9.

FIGURE 8 | Quantitative measurement of the nirBD expression in
Pseudomonas putida Y-9 cultured at different shaking speeds (with glucose
as the sole carbon source) for 4 d. The values are expressed as the number of
copies/1010 copies of 16S rRNA. The different lowercase letters above the
bars indicate significant differences among treatments (P < 0.05).

The heavy application of chemical nitrogen fertilizers leads
to an accumulation of highly mobile nitrate in upland soils
and significantly increases the risk of nitrogen loss (Lin et al.,
2020; Vidal et al., 2020). Therefore, it is essential to control
NO3

− concentrations in soil. The nitrogen cycle conducted
by microorganisms plays a critical role in regulating nitrate
concentrations in soil, compared to artificially limiting the
application of ammonium and nitrate fertilizers (Shao et al., 2011;
Song et al., 2014; Zhang et al., 2015; Pandey et al., 2019; Wang
et al., 2020). Denitrification effectively removes excess NO3

−

from soil systems but leads to nitrogen losses in the form of
nitrogen gas or the greenhouse gas N2O (Stein and Klotz, 2016).
For example, Putz et al. (2018) showed that approximately 70–
78% of all N2O originated from denitrification in annual cereal
soils. Both the DNRA and NO3

− assimilation processes can
decrease soil NO3

− concentration and facilitate soil nitrogen
conservation by reducing NO3

− to NH4
+ via NO2

− (Kuypers
et al., 2018; Wang et al., 2020). Thus, to pursue the minimum loss
of nitrogen and maximize nitrogen fertilizer efficiency, strategies
that strengthen DNRA as well as NO3

− assimilation while
weakening denitrification in surface soils should be pursued.
Previously, we found that strain Y-9 performs simultaneous
nitrate assimilation, DNRA, and denitrification under aerobic
conditions. It has also been clarified that the gene, nirBD,
controls NO3

− assimilation and DNRA process in strain Y-
9 (Huang et al., 2020). In this study, we further explored the
environmental factors that affect the nitrate removal pathways
of strain Y-9. Our results provide a theoretical reference for
technical studies of nitrate removal and nitrogen conservation
in farmland soils.

CONCLUSION

Four common external environmental conditions (carbon
source, C/N ratio, pH, and dissolved oxygen) affected the
nitrate reduction performance of strain Y-9. A high initial pH
enhanced nitrate assimilation, denitrification, and the DNRA of
strain Y-9.

The optimal conditions for the nitrate assimilation and the
DNRA of strain Y-9 were glucose as the carbon source, C/N 9,
pH 7.0, and 150 rpm. Under these conditions, the nitrogen loss
from the system was the smallest.
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