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Abstract

Optimal defense theory (ODT) predicts that the within-plant quantitative allocation of defenses is not random, but driven by
the potential relative contribution of particular plant tissues to overall fitness. These predictions have been poorly tested on
long-lived woody plants. We explored the allocation of constitutive and methyl-jasmonate (MJ) inducible chemical defenses
in six half-sib families of Pinus radiata juveniles. Specifically, we studied the quantitative allocation of resin and
polyphenolics (the two major secondary chemicals in pine trees) to tissues with contrasting fitness value (stem phloem,
stem xylem and needles) across three parts of the plants (basal, middle and apical upper part), using nitrogen concentration
as a proxy of tissue value. Concentration of nitrogen in the phloem, xylem and needles was found to be greater higher up
the plant. As predicted by the ODT, the same pattern was found for the concentration of non-volatile resin in the stem.
However, in leaf tissues the concentrations of both resin and total phenolics were greater towards the base of the plant.
Two weeks after MJ application, the concentrations of nitrogen in the phloem, resin in the stem and total phenolics in the
needles increased by roughly 25% compared with the control plants, inducibility was similar across all plant parts, and
families differed in the inducibility of resin compounds in the stem. In contrast, no significant changes were observed either
for phenolics in the stems, or for resin in the needles after MJ application. Concentration of resin in the phloem was double
that in the xylem and MJ-inducible, with inducibility being greater towards the base of the stem. In contrast, resin in the
xylem was not MJ-inducible and increased in concentration higher up the plant. The pattern of inducibility by MJ-signaling
in juvenile P. radiata is tissue, chemical-defense and plant-part specific, and is genetically variable.
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Introduction

Distribution of anti-herbivore defenses within a plant is

expected not to be homogeneous. With chemical defenses in

particular, different compounds could be present at different

concentrations in different plant parts and tissues. Optimal

Defense Theory (ODT) was originally developed to explain the

distribution of chemical and morphological defenses within a plant

[1,2]. The basic assumption of ODT is that defenses are costly to

produce and thus could trade-off with other plant functions, such

as growth and/or reproduction [3]. Because defenses are costly,

ODT predicts that plants would have the highest levels of

chemical defenses in those tissues or organs that have the highest

value in terms of fitness and/or those tissues that are more

frequently attacked by herbivores [4]. For example, young

growing tissues (e.g. upper meristematic and leaf tissues) have

been suggested to be more valuable to plant fitness than old tissues

(e.g. tissues in lower parts of the plant) and often they have been

shown to have greater concentrations of chemical defenses [5–8].

Similarly, reproductive tissues such as flowers and fruits, which are

not so easy to replace as vegetative tissues, frequently have greater

chemical defenses against herbivory [9–11]. Thus, a basic

prediction of ODT is that defensive function should be distributed

in a heterogeneous pattern across plant tissues and plant parts

differing in value, cost or risk of attack. This prediction has been

tested and frequently confirmed in annual and herbaceous plants

[6,8,12–14], in seaweeds [15,16] and even in lichens [17], but few

studies have examined it’s veracity for long-lived woody plants

[18], with life history determinants greatly different to those of

annual and herbaceous plants.

Most of the studies evaluating the differential allocation of

chemical defenses within plant tissues have either considered only

the preformed (constitutive) defenses, or have not differentiated

between constitutive and herbivore-inducible defensive mecha-

nisms. As most plant defenses are plastic traits, inducible after

attack or in the presence of herbivore cues, inducibility of chemical

defenses could also differ depending on plant part and tissue.

Induced defenses are cost saving strategies, in which the costs of

the production of defenses are materialized only when needed, i.e.

after an attack [19,20]. It could thus be expected that in order to
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invest resources efficiently, the inducibility of chemical defenses

might vary across plant parts or tissues, depending on the fitness

value and the costs of production of every given tissue, and also on

the predictability and risk of attack and expected herbivore

loadings [10,16,21,22].

In this paper, we hypothesize that, according to the predictions

of the ODT, allocation patterns of constitutive and induced

quantitative chemical defenses in pine trees would differ among

plant parts and tissues. A pattern of differential allocation would be

particularly beneficial during the early stages of the pine tree life,

when resources are scarce and herbivory could have extreme

consequences in terms of survival, and thus of fitness [23]. For this

purpose we performed a greenhouse experiment with two-year-old

juveniles of Pinus radiata D. Don. belonging to six half-sib families.

We mimicked herbivore-induced responses using methyl jasmo-

nate (MJ), a phytohormone that elicits defensive responses similar

to those induced by herbivore wounding in conifer trees (e.g. [24–

26]). We examined the strategy of constitutive and induced

allocation of the two major quantitative chemical defenses of

conifers, oleoresin and polyphenolics [27], to three tissues with

contrasting fitness value (stem phloem, stem xylem and needles)

across three parts of the plants (basal, middle and apical upper

part). We used N concentration as a proxy of value of the same

tissues and plant parts, according to Traw & Feeny [7] and McCall

& Fordyce [8]. We hypothesize that young growing apical tissues

should be the better defended targets during the juvenile stages of

a fast-growing sun-demanding pine tree. In addition, a differential

effort would be expected between xylem and phloem, as the latter

is the first protective barrier against stem borers and the main

target for wounding insects.

Materials and Methods

Ethics Statement
The research did not involve measurements on humans or

animals. No specific permissions were required for our field work.

The plant material used for this study was only sampled at a very

limited scale and therefore had negligible effects on broader

ecosystem functioning. The location is not privately-owned or

protected in any way. The field studies did not involve endangered

or protected species.

Experimental design
We conducted a greenhouse experiment following a random-

ized split-plot design replicated in six blocks, with MJ-induction of

defensive responses (two levels: MJ-treatment and control) as the

whole factor, and genetic entries (six open-pollinated half-sib

families, known mother trees) as the split factor, in order to

account for possible genetic variation and interactions. In total,

there were 72 pine juveniles, corresponding to 6 blocks 62 MJ

treatments 66 genetic entries.

Plant material, greenhouse conditions and MJ-induction
The plant material consisted of open-pollinated families from 6

maternal plus trees selected for superior growth and form in

mature plantations of P. radiata in Galicia (NW Spain). In April

2006, seeds were individually sown in 2 L pots filled with peat and

perlite (1:1 v:v), fertilized with 12 g of a slow release fertilizer

(MulticoteH N:P:K 15:15:15), and grown in an isolated glass

greenhouse with controlled light (minimum 12 h per day), and

temperature (10uC night, 25uC day) and daily watering.

In July 2008, approximately two years after sowing (plant height

61.3561.89 cm), half of the plants were treated with a solution of

80 mM MJ (ref #39270-7, Sigma-Aldrich, St. Louis, MO, US) in

deionised water with ethanol 2.5% (v:v). The remaining plants

were treated only with the carrier solution, acting as a control.

Each plant received 5.260.8 ml of solution applied to the foliage

with a handheld sprayer to runoff. Dose and concentration of MJ

solution were determined based on plant size and previous

experience with pine juveniles [28]. To avoid cross-contamination,

treatments were applied in separate greenhouse chambers and

plants remained in those separate spaces for 48 h to allow drying.

Sampling and measurements
On August 2008, two weeks after MJ application, pines were

harvested and transported to the lab in ice coolers. Then, the

whole stem was immediately cut into 3 parts of the same length

(basal, middle and apical upper part). Length and diameter of each

part were measured, and a fresh 10 cm-long piece of the stem and

a subsample of needles (approximately 4 g) of each plant across the

three above-described parts were sampled, weighed, immediately

frozen and preserved at 230uC for analysis of resin. A fresh 2 cm-

long piece of the stem and a subsample of needles (approximately

2 g) of the basal, middle and apical upper parts were also weighed,

oven-dried (45uC to constant weight) and then manually ground in

a mortar with liquid nitrogen for analyses of total phenolic

compounds. In a subsample of two randomly selected pine families

in four blocks (N = 16 plants), an additional fresh 5 cm-long piece

of the stem across the three above-described parts was sampled,

weighed, carefully separated into phloem and xylem with a scalpel,

immediately frozen and preserved at 230uC for analysis of resin in

the phloem and xylem. In a subsample of two randomly selected

pine families in four blocks (N = 16 plants), an additional fresh 2

cm-long piece of the stem (separated into phloem and xylem) and a

subsample of needles (approximately 1 g.) across the three above-

described parts were sampled, oven dried for 72 h at 65uC to

constant weight, finely ground and stored for the analysis of N

content. Due to sample loss, N concentration in the xylem was

analyzed only in one pine family in four blocks (sample size N = 8

plants).

Chemical analysis
Total phenolics were extracted and analyzed as described in

Sampedro et al. [29]. Briefly, phenolics were extracted from

300 mg of plant tissue with aqueous methanol (1:1 vol:vol) in an

ultrasonic bath for 15 min, followed by centrifugation and

subsequent dilution of the methanolic extract. Total phenolic

content was determined colorimetrically by the Folin-Ciocalteu

assay in a Biorad 650 microplate reader (Bio-Rad Laboratories,

Philadelphia, PA, USA) at 740 nm, quantified with a standard

curve of tannic acid and expressed as mg tannic acid equivalents

g21 dry mass of plant tissue.

Concentration of resin was estimated gravimetrically as

described in Sampedro et al. [29], and expressed as mg of non-

volatile resin g21 stem dried weight (d.w.). Briefly, plant material

was transferred into preweighed tubes, resin was extracted with

3 ml of hexane (15 min at 20uC in an ultrasonic bath and then for

24 h at room temperature), the extract was filtered (Whatman

GF/D, Whatman Int. Ltd, Maidstone, Kent, UK) into preweighed

tubes, and the whole extraction step repeated again in new tubes.

The solvent in the tubes was evaporated to dryness and the mass of

the non-volatile resin residue was determined at the nearest

0.0001 g. Estimates of resin content using this simple procedure

were found to correlate well with diterpene content (r = 0.9214;

P = 0.0001; N = 20) as determined by gas chromatography [29].

Total N was determined with a CN-2000 macro elemental

analyzer (LECO Corporation, St. Joseph, MI, USA) at the central
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facilities of Universidade de Vigo, Spain (http://webs.uvigo.es/

cactiweb/).

Statistical analyses
The effects of design factors were analyzed with a repeated

measures mixed model with restricted maximum likelihood using

the PROC-MIXED procedure of the SAS System. Methyl

jasmonate induction (MJ), family (G), plant part (P), block (B),

and the interactions between MJ, G and P were considered fixed

factors. The B6MJ interaction was considered a random factor in

order to analyze the main factor MJ in the split-plot design with

the appropriate error term [30]. Plant part and the corresponding

interactions were considered as within-subject factors. Equality of

residual variance across treatments was tested in all cases, but

significant deviations were not found. When main effects were

significant differences between MJ vs control treatments and

among plant parts were tested for significance using the LSMEAN

statement. Data are shown as means 6 standard error of the mean

(s.e.m.).

Results

Allocation of secondary chemicals significantly differed among

the plant parts (Table 1): resin concentration in the stem tissues

was greater towards the top of the plant (Fig. 1a), whereas in leaf

tissues resin and phenolics content were both greater towards the

base of the plant (Fig. 1b, 1d). Stem phenolic concentrations were

low relative to needles and did not show significant changes across

different parts of the stem (Table 1, Fig. 1c). Application of MJ

significantly affected the concentrations of resin in the stem and

total phenolics in the needles (Table 1), but not those of resin in the

needles and total phenolics in the stems (Table 1; Fig. 1b, 1c).

Specifically, MJ-induced concentrations of stem resin and needle

total phenolics were 25% and 30% greater, respectively, than

those in control plants (Fig. 1a, 1d). Interestingly, inducibility of

total phenolics and resin compounds did not differ among plant

parts (non-significant MJ6part interaction, Table 1).

In our experiment we used a reduced sample of families, and we

did not find significant differences between families in the overall

concentration of defenses across parts and tissues. However,

significant differences between families were found in terms of the

inducibility of resin in the stem (although not of total phenolics)

(MJ6G; P,0.05; Table 1), that was consistent with the significant

three-way interaction (MJ6G6P, Table 1), indicating differences

among families in the inducibility of resin across the different parts

of the stem. We observed some differences between families in

terms of inducibility of resin in the upper part of the stem, and in

the case of one interacting family in the basal part, but no

corresponding differences in the middle part of the stem (data not

shown).

We observed that concentration of resin in the xylem was

markedly greater towards the top of the plant (Table 2; Fig. 2b),

while on the other hand resin concentration in the phloem, which

was much greater than that in the xylem, did not show significant

changes across different plant parts (Table 2; Fig. 2a). Application

of MJ did not significantly affect overall concentration of resin in

the xylem (Table 2). However MJ increased significantly the

phloem resin concentration in the basal and middle parts of the

stem, but not in the upper part (MJ6part significant interaction;

Table 2; Fig. 2a).

Finally, we also found that the concentration of N in the

phloem, xylem and needles increased higher up the plant (Table 3;

Fig. 3a, 3b, 3c). Application of MJ significantly affected N

concentration in the phloem, prompting a 25% increase with

respect to control plants two weeks after treatment application

(Table 3; Fig. 3a), This increase in overall concentration was

accompanied by changes in their allocation pattern, as revealed by

the significant MJ6part interaction (Table 3). Specifically, the rise

of N concentration was significantly greater in the apical upper

part (Fig. 3a). MJ application did not affect N concentration of

needles and xylem tissues (Table 3; Fig. 3b, 3c).

Discussion

Our results show the existence of a marked gradient of

quantitative allocation of chemical defenses within juvenile pines,

with different patterns for phenolics and resin in stems and needles

between the basal, middle and upper pine parts. Specifically, the

apical upper part of the stem was better defended with resin

compounds than the basal and middle sections, whereas the

concentration of total phenolics and resin in the needles was

greater in the basal part of the plants. Our results also showed a

marked gradient of N allocation within the plant tissues (phloem,

xylem and needles), with increasing concentrations observed

higher up the plant. Nitrogen availability is an important

constraint on seedling growth of fast-growing species and there

is considerable literature reporting greater N concentrations in the

young and growing tissues of the uppermost plant parts, (e.g. [31]),

and as such N concentration is a useful proxy for determining

plant tissue value [7,8]. Other authors have assessed tissue fitness

value by removing different plant tissues and measuring the impact

on subsequent plant fitness [6,12]. However, although removal of

needles without apparent defensive responses have been used

elsewhere, we think that removal of plant tissues in pine trees could

induce herbivory signaling and provoke defensive responses,

potentially leading to dramatic changes in the plant sink-source

balance, carbon allocation and growth patterns [32–34]. This is of

particular relevance given that our aim is to study constitutive and

induced defenses, and could well lead to confounding results.

The ODT postulates that the allocation to defenses within a

plant will be highest in those tissues with greatest value to the plant

[1,2]. Fitting with this prediction, we found that the distribution of

resin along the pine stem was greater in the upper and younger

growing meristematic tissues, which were precisely those that had

greater N concentration. However, concentration of chemical

defenses in the needles (both resin and phenolics) was greater in

the basal part of the plants. One explanation for this pattern arises

from the fact that N allocation among the leaves is optimized with

respect to photosynthetic production [35]. Plant resources for

growth are obtained from middle and basal photosynthesizing

leaves (sources) and are translocated to upper newly growing

tissues (sink) [36]. Thus, one-year-old needles in the lower part of

the plant may support the majority of a pine’s photosynthetic

capacity and in consequence need to be better defended than

newly growing needles. Another possible explanation for these

results could be the ontogeny delay in needles, whereby the young

needles in the apical part may simply not have yet had enough

time to accumulate as high levels of defensive chemicals as in lower

needles. The fitness value of different plant parts change over

space and time and thus defense allocation is also predicted to

change during ontogeny [6,37–39]. Further studies should address

differential allocation of defenses in older stages of the pine tree

life.

The second prediction of ODT is that the allocation to defenses

within a plant will be highest in those tissues with greatest risk of

attack from consumers. The juveniles of P. radiata support a diverse

array of enemies, including root pathogens, aphids, bark beetles,

weevils, borers, caterpillars, and moths [40,41]. We lack data

Allocation of Chemical Defences in Pine Trees
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about the predictability and risk of attack by those insects and

pathogens, and their effects on P. radiata survival or fitness in its

reduced natural range. However, even though it is difficult to

estimate the risk of attack, in other pine species it is known that the

survival of young pines is seriously threatened when the lower part

of the stem is subjected to herbivory by phloem chewers such as

Figure 1. Allocation of constitutive and induced chemical defenses across different pine parts. Concentration of non-volatile resin in (a)
the stem and (b) the needles, and total phenolics in (c) the stem and (d) the needles across three parts of the plants (basal, middle and apical upper
part) in control (constitutive, white bars) and methyl-jasmonate (MJ) induced (black bars) P. radiata juveniles. Plants were destructively sampled 15
days after application of MJ. Bars are means 6 s.e.m. (N = 36). Asterisks indicate significant differences within each plant part due to MJ-induction at
P,0.05 (*), P,0.01 (**) and P,0.001 (***).
doi:10.1371/journal.pone.0034006.g001

Table 1. Allocation of constitutive and induced chemical defenses across different pine parts.

Stem Needles

resin phenolics resin phenolics

DF1 (n,d) F P F P F P F P

MJ-induction 1, 5 41.32 0.001 2.21 0.197 0.27 0.626 22.10 0.005

Genotype (G) 5, 50 1.29 0.283 0.45 0.811 0.44 0.811 1.34 0.262

MJ6G 5, 50 2.41 0.049 0.53 0.752 1.68 0.156 1.85 0.120

Plant part (P) 2, 115 129.22 ,0.001 1.72 0.184 26.93 ,0.001 42.29 ,0.001

MJ6P 2, 115 1.50 0.227 0.81 0.449 0.92 0.402 0.87 0.420

G6P 10, 115 1.44 0.171 0.83 0.600 1.21 0.291 1.09 0.373

MJ6G6P 10, 115 2.96 0.002 0.92 0.517 0.59 0.822 0.95 0.492

1DF = degrees of freedom (numerator, denominator).
Summary of the repeated measures mixed model for constitutive and methyl-jasmonate (MJ) induced allocation of chemical defenses (non-volatile resin and total
phenolics) to two tissues (stem and needles) across three parts of the plants (basal, middle and apical upper part) in six P. radiata open-pollinated families. Significant P
values (P,0.05) are typed in bold.
doi:10.1371/journal.pone.0034006.t001
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the large pine weevil Hylobius abietis, an occasional but problematic

pest for European conifer forests. This insect causes massive

mortalities due to intense wounding at the basal part of the stem,

frequently producing stem girdling that cuts the sap flow and

consequently leads to plant death [e.g. 42]. This idea seems to

agree with the greater inducibility of phloem resin observed in the

lower part of the stem of our pine trees (Fig. 2a). Considering the

strong induced resin production observed soon after herbivory by

this insect in other pine species [43], future research should

address what defenses are effective against each of the pine’s

natural enemies and the allocation patterns of pine defenses in

response to particular biotic challenges.

Our results also showed that the concentrations of non-volatile

resin in the stem and total phenolics in the needles were responsive

to MJ-induction, but conversely concentrations of phenolics in the

stem and resin in the needles were unresponsive. The increases in

concentration of chemical defenses are consistent with the role of

MJ in signaling defensive responses that have been extensively

studied in young conifer trees (e.g., [24,26,28,29,44]). For

example, Sampedro et al. [29] observed that exogenous

application of MJ heavily increased the concentration of resin in

the stem and total phenolics in the needles of P. pinaster juveniles.

That stem and needles should differ in their responses to MJ

application also agrees with previous studies that observed no

changes or only minor alterations in needle terpenoids in young

conifer trees when compared with other tissues of the same plants,

such as stem wood and roots [25,45,46]. We also observed that the

increase in N concentration in the phloem was greater in the

apical upper part of the plant. Changes in the allocation pattern of

N over the height of the plant after real herbivory or herbivory

signaling have been reported elsewhere [e.g. 47]. In particular, our

results entirely agree with those found by Moreira et al. [48], who

observed that simulating herbivory by MJ application increased

the phosphorus and nitrogen concentrations in the shoots while

maintaining or reducing those in the roots of P. pinaster juveniles,

suggesting an active reallocation of nutrients to aboveground parts

after herbivory signaling.

We found that the inducibility of resin in the phloem differed

across plant parts, whereas this effect was not seen when

considering the whole stem resin content, or with phenolics in

the needles (no interactive effects). So, our results apparently

provide little support to the ODT prediction that plant parts that

have high tissue value and are most frequently attacked should

have high constitutive levels of defense and low inducibility, and

vice-versa [6,10]. This ODT prediction is based fundamentally on

the trade-off commonly found between constitutive and induced

defenses [10,49]; namely that when the investment in constitutive

defenses of a plant increases, inducibility is expected to decrease,

and vice-versa. However, it is noted that the studies that led to this

Figure 2. Allocation of constitutive and induced non-volatile resin across different pine parts. Non-volatile resin concentration in (a) the
phloem and (b) the xylem across three parts of the plants (basal, middle and apical upper part) in control (constitutive, white bars) and methyl
jasmonate (MJ) induced (black bars) P. radiata juveniles. Plants were destructively sampled 15 days after application of MJ. Bars are means 6 s.e.m.
(N = 8). Asterisks indicate significant differences within each plant part due to MJ-induction at P,0.05 (*) and P,0.01 (**).
doi:10.1371/journal.pone.0034006.g002

Table 2. Allocation of constitutive and induced non-volatile
resin across different pine parts.

Phloem resin Xylem resin

DF1 (n,d) F P F P

MJ-
induction

1,3 5.60 0.099 2.63 0.203

Genotype
(G)

1,6 2.92 0.139 0.10 0.763

MJ6G 1,6 0.13 0.732 0.71 0.431

Plant part
(P)

2,24 0.38 0.688 20.18 ,0.001

MJ6P 2,24 5.12 0.014 2.08 0.147

G6P 2,24 1.84 0.181 0.49 0.616

MJ6G6P 2,24 1.13 0.341 0.04 0.960

1DF = degrees of freedom (numerator, denominator).
Summary of the repeated measures mixed model for constitutive and methyl-
jasmonate (MJ) induced allocation of non-volatile resin to two tissues (phloem
and xylem) across three parts of the plants (basal, middle and apical upper part)
in two P. radiata open-pollinated families. Significant P values (P,0.05) are
typed in bold.
doi:10.1371/journal.pone.0034006.t002
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prediction were conducted on herbaceous plants in grasslands

[6,10], that can strongly differ from long-lived woody plants in

terms of their defensive strategies. In fact, other studies with woody

species have also produced apparently contradictory results,

perhaps because there is relatively little information available

regarding inducibility of different chemical compounds in

neighboring plant tissues. For instance, Tomlin et al. [50] found

that following simulated weevil wounding, volatile terpenes and

diterpene resin acids in the xylem of white spruce leaders markedly

increased in the upper parts while decreasing in the lower region

of the leader, but they found no significant changes in the

concentration of those compounds in the upper and lower bark

[50]. In other words, although they found that the pattern of resin

allocation differed among susceptible and resistant lineages, they

did not find the upper leader of spruce trees, the target tissue for

weevils, having high constitutive levels and low inducibility, as the

ODT would predict. It is likely that unrecognized genetic variation

in defensive strategies of allocation among tissues, chemical and

plant parts can explain the observed phenotypic variation, as

recognized elsewhere [29,46]. In addition, valuable plant parts

may be also protected by other kinds of chemical defense

(defensive proteins, volatile terpenes, alkaloids…) that were not

measured in this study, and furthermore differential inducibility

across plant parts could occur at the level of specific chemical

compounds. Indeed studies about predictions of the ODT should

probably consider a multivariate space of chemical defenses,

including induced indirect defenses [51,52] and nutrient induced

resource reallocation, as well as other factors such as the indirect

costs involved in the balance between costs and benefits, taking

into account that genetic variation in most of those traits in

increasingly recognized.

In summary, our results showed a marked pattern of

quantitative chemical defense allocation along the pine juveniles

(between upper apical and basal parts) and among different plant

tissues (needles and stem). This fact could reflect differences in

tissue value and risk of attack, although it could also reflect other

non-adaptive causes such as ageing tissues or ontogenetic

constraints. In accordance with ODT predictions, we found that

Figure 3. Allocation of constitutive and induced concentration of nitrogen across different pine parts. Nitrogen concentration in (a) the
phloem, (b) the xylem and (c) the needles across three parts of the plants (basal, middle and apical upper part) in control (constitutive, white bars)
and methyl jasmonate (MJ) induced (black bars) P. radiata juveniles. Plants were destructively sampled 15 days after application of MJ. Bars are means
6 s.e.m. (N = 12 for phloem and needle tissues and N = 6 for xylem tissue). Asterisks indicate significant differences within each plant part due to MJ-
induction at P,0.05 (*), P,0.01 (**) and P,0.001 (***).
doi:10.1371/journal.pone.0034006.g003

Table 3. Allocation of constitutive and induced concentration of nitrogen across different pine parts.

Phloem nitrogen Needle nitrogen Xylem nitrogen

DF1 (n,d) F P F P DF1 (n,d) F P

MJ-induction 1,3 16.83 0.031 2.83 0.191 1,3 0.30 0.624

Genotype (G) 1,6 6.48 0.044 1.11 0.333

MJ6G 1,6 1.19 0.318 0.17 0.692

Plant part (P) 2,24 66.04 ,0.001 11.18 ,0.001 2,12 25.48 ,0.001

MJ6P 2,24 6.57 0.005 0.07 0.936 2,12 0.17 0.849

G6P 2,24 0.64 0.536 1.30 0.290

MJ6G6P 2,24 2.34 0.117 0.53 0.596

1DF = degrees of freedom (numerator, denominator).
Summary of the repeated measures mixed model for constitutive and methyl-jasmonate (MJ) induced nitrogen concentration in three tissues (phloem, xylem and
needles) across three parts the plants (basal, middle and apical upper part). Sample size was N = 12 except for xylem, that was N = 6 due to sample loss, resulting in only
one genetic entry analyzed. Significant P values (P,0.05) are typed in bold.
doi:10.1371/journal.pone.0034006.t003
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upper stem tissues had the highest tissue value (highest levels of

nitrogen) and thus were more defended with resin compounds

than lower sections. Contrary to ODT predictions, however, we

found that needle tissues had better developed chemical defenses

(both resin and phenolic compounds) in the basal parts of the

plant, despite their lower tissue value (low N concentration). We

found greater inducibility of phloem resin in the lower part of the

stem, and, even though some genetic variation in inducibility was

found, the inducibility of other chemical defenses in response to

jasmonate signaling did not differ among plant parts or tissues.
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phosphorus availability and herbivore-derived induction as sources of pheno-
typic variation of leaf volatile terpenes in a pine species. J Exp Bot 61:

4437–4447.
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