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INTRODUCTION

As tumors develop in the central nervous system, gliomas 
are categorized by the World Health Organization (WHO) 
into four grades based on their histopathological characteris-
tics, with the WHO Grade II and III gliomas being regarded 
as low-grade gliomas (LGG) [1]. Apart from a long-term 

history of ionizing radiation, the risk factors leading to LGG 
are not thoroughly comprehended [2]. LGG proliferates and 
progresses in a variety of ways, and survival status is not sat-
isfactory [3,4]. Patients with the WHO II and III gliomas 
have a median overall survival period of 78.1  months and 
37.6 months, respectively [5].

Notwithstanding the recent advancements in diagnostic 
and treatment procedures, LGG can deteriorate into high-
grade glioma in certain individuals, resulting in decreased 
treatment responses and a worse prognosis. It has been 
generally accepted that immunotherapy acts to improve the 
prognosis of certain patients with malignant tumors; however, 
identifying the people who benefit from immunotherapy is a 
critical yet challenging task. Therefore, developing and vali-
dating new prognostic signatures to better predict the clinical 
outcomes and immunotherapy of patients with LGG are still 
urgently required.

Cell death, consisting of apoptosis, necrosis, ferroptosis, 
parthanatos, oxeiptosis, oncosis, pyroptosis, and autophagy, 
exerts a considerable function in the pathogenesis and pro-
gression of cancer [6,7]. Of note, ferroptosis and pyroptosis 
have become a hot topic in recent years. Ferroptosis, named 
by Dr.  Brent R. Stockwell in 2012, is an iron-dependent cell 
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ABSTRACT

Accumulating evidence reveals that ferroptosis and pyroptosis play pivotal roles in tumorigenesis of low-grade glioma (LGG). In this research, 
we aimed to classify molecular subtypes and further identify and verify a novel multigene signature in LGG on the basis of ferroptosis- and 
pyroptosis-related genes (FPRGs). Raw sequencing data and corresponding clinical data of LGG samples retrieved from The Cancer Genome 
Atlas and Chinese Glioma Genome Atlas databases were obtained for the training and validation datasets. Non-negative matrix factorization 
(NMF) clustering defined by FPRGs associated with prognosis was performed to classify molecular subtypes of LGG patients. Least absolute 
shrinkage and selection operator-support vector machine-random forest analysis was carried out to develop a FPRG signature to predict the 
survival and benefit of immunotherapy of LGG patients. NMF clustering defined by FPRGs with prognostic values acted to categorize LGG 
patients into two molecular subtypes with different prognosis, clinical traits, and immune microenvironments. A six-FPRG prognostic signa-
ture was constructed, accompanied by the optimal p-value. The AUC values of our signature exhibited great prognostic performances. Our 
signature was superior to other four well-recognized signatures in predicting the survival probability of LGG patients. Immune characteristics, 
tumor mutation profile, tumor stemness indices, MGMT methylation, and immunotherapy response biomarkers showed significant differ-
ences between high- and low-risk populations. Finally, a nomogram was created for quantitative prediction of the survival probability of LGG 
patients, with the AUC values of the nomogram being 0.916, 0.888, and 0.836 for 1-, 3-, and 5-year survival, sequentially. Overall, the FPRG 
signature may function as an effective indicator for the prognosis prediction and immunotherapy response of LGG patients.
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from TCGA, which served as the derivation cohort (529 LGG 
samples, 56,753 genes). In addition, mRNA data and matched 
clinical data on LGG were retrieved from the CGGA data-
base, which served as the validation cohort (625  samples, 
23,271 genes). For further analysis, all data retrieved from 
the CGGA and TCGA repositories were transformed into 
log2(x+1) form.

To assure that the genes used for constructing the panel 
are the shared genes in both derivation and validation cohorts, 
the “intersect” function in R was applied to intersect all genes 
from the two cohorts, and 17,818 genes were preserved. The 
“ComBat” function in the “sva” R package was utilized to batch 
normalize the data on gene expression profiles from the two 
cohorts.

Thirty-three pyroptosis-related genes and 259 ferropto-
sis-related genes were identified from the literature. After 
deleting the two ferroptosis and pyroptosis shared genes 
(GPX4 and IL6), we actually acquired 290 well-recognized 
FPRGs. Subsequently, we combined these 290 genes with 
their corresponding expression profiles in TCGA and CGGA 
cohorts, and only 260 genes were preserved with complete 
expression values for further analysis (TCGA: Supplementary 
Table S1 and CGGA: Supplementary Table S2).

NMF clustering identification of molecular subtypes

To decrease the dimensions of NMF clustering, univariate 
Cox regression analysis was applied to determine the genes 
that had prognostic values in both derivation and validation 
cohorts. Only prognosis-related genes closely related to ferro-
ptosis and pyroptosis were preserved to serve as the dimen-
sions and parameters of NMF clustering.

The “NMF” package in R was applied to cluster the LGG 
samples predicated on the expression profile of FPRGs with 
prognostic values, with the adjusted number of clusters as 
2–10. The standard “brunet” option was selected, and 100 
iterations were performed. The most appropriate clustering 
number was determined based on the NMF rank surveys and 
discrimination between different cluster subtypes.

Comparison of the clinical outcomes, clinical traits, 
and tumor immune microenvironment between 
different molecular subtypes

Kaplan–Meier analyses including progression-free sur-
vival (PFS) and overall survival (OS) were applied to evaluate 
the prognostic performances of clusters. The fisher test was 
employed to the compositional differences of clinical traits 
between different subtypes. The “estimate” package in R was 
employed to compute the ImmuneScore, StromalScore, 
EstimateScore, and tumor purity of each LGG sample, and 
the “ggpubr” package in R was used to visualize this result. The 

regulatory death mode caused by the accumulation of lipid 
peroxidation products and reactive oxygen species [8]. 
Researchers have found that the proliferation of glioma cells 
can be suppressed through activating ferroptosis [9]. In 2021, 
Wan et al. and Zheng et al. revealed that ferroptosis served as 
a new prognostic biomarker of LGG patients [10,11]. Besides, 
pyroptosis has been known as a pro-inflammatory type of 
modulated cell death that relies on the enzymatic activity of 
inflammatory proteases belonging to the cysteine-dependent 
aspartate-specific proteases family (caspases) [12].

The modulation of pyroptosis intermediated by caspase 1 
in glioma cells might inhibit cell proliferation and migration, 
suggesting a potential new therapy for glioma interventions. 
However, as of today, the prognostic performances of pyro-
ptosis in LGG have not been clearly discussed and the com-
prehensive effect of ferroptosis and pyroptosis in LGG has 
not yet been evaluated systematically. For this reason, more 
insight into ferroptosis and pyroptosis in LGG is still required 
to provide an in-depth comprehension.

In this research, we examined ferroptosis-  and pyropto-
sis-related genes (FPRGs). We utilized DNA methylation, 
gene expression levels, and clinical data from the Chinese 
Glioma Genome Atlas (CGGA) and The Cancer Genome 
Atlas (TCGA) databases to conduct a complete bioinformat-
ics analysis. After identifying FPRGs with prognostic values, 
we conducted non-negative matrix factorization (NMF) clus-
tering to categorize LGG patients into completely different 
molecular subtypes with significantly different prognoses, 
clinical traits, and immune microenvironments.

Machine learning further filters the optimal model based 
on the FPRGs with prognostic values. Subsequently, we 
constructed and validated a risk score system of LGG with 
the optimal prognostic performance based on the TCGA 
and CGGA cohorts. In addition, immune cell infiltration, 
immune checkpoint gene expression, immune subtype 
identification, tumor mutation profile, tumor stemness indi-
ces, O6-methylguanine DNA methyltransferase (MGMT) 
methylation, and immunotherapy response biomarkers 
were analyzed between the low-  and high-risk cohorts to 
examine the possible mechanisms and pathways associ-
ated with FPRGs, laying the groundwork for determining 
the beneficiaries of immunotherapy. Our findings illus-
trated that a novel FPRG signature may serve as an effective 
marker for the survival and immunotherapy response in 
patients with LGG.

MATERIALS AND METHODS

Data collection and processing

The fragments per kilobase of transcript per million 
mapped read values for LGG RNA-Seq data were acquired 
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“ggpubr” packages in R were utilized to calculate the C-indices 
of the above signatures.

Clinical characteristics, immune characteristics, and 
tumor stem characteristics in low- and high-risk 
populations

To examine the relationship between the FPRG prog-
nostic signature and clinicopathological traits, fisher tests 
were applied to show the distribution differences of histo-
logical type, gender, survival status, age, cancer status, and 
grade between the low-  and high-risk populations. The 
“ESTIMATE” R package was utilized to assess the discrepancy 
in the immune characteristics between low-  and high-risk 
populations (predicated on the StromalScore, ImmuneScore, 
EstimateScore, and tumor purity) utilizing the transcriptome 
data. At the same time, on the basis of the FPRG signature, 
the XCELL, CIBERSORT, MCPCOUNTER, QUANTISEQ, 
CIBERSORT-ABS, and TIMER algorithms were compared 
to evaluate cell immune responses or cellular components 
between low- and high-risk populations.

A heatmap was used to detect changes in immune 
response with varied algorithms. The discrepancy in the ICGs 
expression levels between low- and high-risk populations was 
also explored. Only the immune cells and ICGs with signifi-
cant statistical differences were displayed. In 2018, Thorsson’s 
article published in the “Immunity” journal [13] detected six 
immune subtypes (wound healing (C1), IFN-γ dominant 
(C2), inflammatory (C3), lymphocyte depleted (C4), immu-
nologically quiet (C5), and TGF-b dominant (C6)) for more 
than 10,000 tumors across 33 cancer types of TCGA. To com-
prehensively explore the different immune features, we then 
investigated the discrepancy in immune subtypes between 
low-  and high-risk populations with the aid of the findings 
provided by Thorsson et al.

In 2018, Melta’s article published in the “Cell” journal [14] 
applied one-class logistic regression (OCLR) machine learn-
ing method and extracted epigenetic and transcriptomic 
feature sets from non-transformed pluripotent stem cells as 
well as their differentiated progeny. OCLR-based epigenetic 
and transcriptomic signatures were utilized with regard to all 
pan-cancer 33 TCGA cohorts to calculate the DNA stemness 
scores (DNAss) and RNA stemness scores (RNAss). We also 
intensively explored the correlation between DNAss/RNAss, 
and risk score calculated by FPRG signature.

Tumor mutation profile, immunotherapy response 
prediction, and MGMT methylation in low- and 
high-risk populations

The mutation profile of each LGG sample was acquired 
from TCGA platform and the number of non-synonymous 

CIBERSORT algorithm was utilized to analyze the infiltration 
composition of 22 immune cells in each LGG sample. The “wil-
cox.test” function in R was then implemented to investigate 
the discrepancy in the immune cell infiltration and common 
immune checkpoint genes (ICGs, Supplementary Table  S3) 
expression between different subtypes, and only results with 
statistical differences were displayed. Subsequently, we inten-
sively investigated the association between these immune 
checkpoints and clinical outcomes of LGG patients.

Identification of the risk signature with the optimal 
multigene combination based on machine learning

To eliminate collinearity and classification error, the “glm-
net” and “e1071” packages in R were utilized to carry out the 
least absolute shrinkage and selection operator (LASSO) 
and support vector machine (SVM) analysis of FPRGs with 
prognostic values, respectively. Subsequently, the “random-
ForestSRC” package in R was employed to conduct random 
survival forest analysis to determine the optimal prognostic 
signature combination with the aid of the risk scores of each 
LGG patient (risk score = ∑k=1

n expk*βk, βk is the gene coeffi-
cient of previous univariate Cox regression analysis). The best 
gene combination or the final signature was screened utilizing 
the log-rank p values by Kaplan–Meier (KM) analysis.

The samples were then stratified into low-  and high-risk 
LGG populations according to the median risk scores in the 
derivation cohort. Survival analysis including OS and PFS by 
the Kaplan–Meier method was performed to estimate the 
prognostic performance of the prognostic signature in the 
derivation cohort. Receiver operating characteristic (ROC) 
curves were charted to validate the diagnostic values antic-
ipating 1-, 3-, and 5-year survival rates based on the survival 
ROC package in R. t-distributed stochastic neighbor embed-
ding (t-SNE) and principal component analysis (PCA) were 
performed to explore the distribution of different subgroups.

Furthermore, the predictive ability of our FPRG prognos-
tic signature was compared with other four well-recognized 
prognostic signatures (an autophagy-related prognostic signa-
ture developed by Guo et al., an immune-related prognostic 
signature developed by Zhang et al., a RNA methylation-re-
lated prognostic signature constructed by Zheng et al., a fer-
roptosis-related prognostic signature developed by Liu et al.). 
All of the genes needed to create Guo’s, Zhang’s, Zheng’s, and 
Liu’s prognostic signatures were acquired. For further analysis, 
the gene expression profiles, as well as the matched clinical 
data, were preserved. Then, the “limma,” “survival,” “survminer,” 
and “timeROC” packages in R were utilized to estimate the 
predictive performance of our FPRG signature, Zheng’s sig-
nature, Guo’s signature, Liu’s signature, and Zhang’s signa-
ture. Subsequently, the “survival,” “survcomp,” “ggplot2,” and 
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mutations was counted utilizing the “perl” language. The 
aggregate number of somatic gene coding errors, deletion 
errors, gene insertion errors, and base substitutions identified 
per million bases was described as the tumor mutation bur-
den (TMB). The differences in TMB between the low-  and 
high-risk populations were computed, and the criteria for sta-
tistical significance were designated as p < 0.05. The associa-
tion between TMB and the risk score computed by our FPRG 
signature was investigated utilizing the Spearman correlation 
coefficient. The LGG driver genes were then identified using 
the R package “maftools,” and the state of the topmost 20 genes 
with the highest frequency of mutation in the low- and high-
risk populations was investigated further. We also explored 
the discrepancy in the clinical outcomes between different 
TMB scores and FPRG risk scores through K-M log-rank test.

Although TMB appears to be a reliable immune check-
point blockade (ICB) response biomarker, its computation 
across multiple groups and platforms remains uncertain for 
the tumor mutation assessment results could be intervened by 
various sample types, experimental platforms, and computa-
tional mutation callers. Thus, we subsequently applied tumor 
immune dysfunction and exclusion (TIDE) database (http://
tide.dfci.harvard.edu/) to predict immunotherapy response. 
TIDE, an online prediction tool, assists oncologists in pre-
dicting if a patient will respond to ICB treatment based on 
numerous biomarkers. These important biomarkers of immu-
notherapy consist of (1) IFNG average expression of interfer-
on-gamma response signature, (2) CD274 gene expression 
value of PD-L1, (3) CD8 gene expression average of CD8A and 
CD8B, (4) exclusion and MDSC enrichment scores premised 
on the gene expression signatures of myeloid-derived suppres-
sor cell and T-cell exclusion, and (5) T-cell-inflamed signature 
(Merck18). The “chisq.test” package in R was employed to 
compare the discrepancy in the composition of immunother-
apy response between high-  and low-risk populations. The 
“wilcox.test” platform in R was also utilized to compare the 
discrepancy in above immunotherapy response biomarkers 
between high- and low-risk populations.

It has been accepted that O6-methylguanine-DNA meth-
yltransferase (MGMT) promoter methylation status and 
corresponding expression levels played a critical function in 
the development, chemotherapy, and prognosis of glioma 
patients. Thus, we intensively investigated the association of 
MGMT and FPRG signature. The raw DNA methylation data 
were downloaded from TCGA database through the “gdc-cli-
ent.exe” software. MGMT gene expression and methylation 
status were extracted from transcriptomic data and meth-
ylation data, respectively. The “stat_compare_means” pack-
age in R was employed to compare the MGMT expression 
and methylation status between low-  and high-risk popula-
tions. The “cor.test” function in R was applied to explore the 

correlation between MGMT expression, MGMT status, and 
FPRG risk score.

Independent prognostic performance of the FPRG 
signature and nomogram plot establishment

Multivariate and univariate Cox regression analyses based 
on risk scores and the clinicopathological traits identified in 
TCGA cohort (i.e., histological type, gender, age, cancer sta-
tus, and grade) were implemented to confirm if the FPRG 
signature can function as an independent prognostic index. 
Subsequently, independent prognostic indices were chosen to 
plot a nomogram utilizing the “rms” module in R. In addition, 
we plotted a calibration curve to evaluate the degree of fitting 
between the actual and survival probabilities estimated by the 
nomogram.

Validation of the prognostic performance of our 
FPRG signature in the CGGA cohort

According to the calculation formula and median risk 
score provided in TCGA cohort, we computed the risk score 
of each LGG sample within the CGGA cohort and then cat-
egorized these samples into low-  and high-risk subgroups. 
To verify the prognostic performance of our FPRG signature, 
ROC curve and KM survival analysis were carried out. The 
t-SNE and PCA analyses were also performed to display the 
distributions of LGG samples in high- and low-risk subgroups.

Likewise, fisher tests were applied to analyze the correlation 
between our FPRG signature and clinical traits in the CGGA 
cohort. Similar algorithms including XCELL, CIBERSORT, 
MCPCOUNTER, QUANTISEQ, CIBERSORT-ABS, and 
TIMER were also employed to explore the discrepancy in the 
immune features between low-  and high-risk populations. 
Finally, the expressions of ICGs in different risk populations 
were investigated as previously described. All statistical analy-
ses in this paper were performed based on the R and perl lan-
guages (*: p < 0.05, **: p < 0.01, and ***: p < 0.001).

RESULTS

Data acquisition and processing

Figure  1 depicts the flowchart for this research. LGG 
RNA-Seq data with clinical data were acquired from TCGA 
(529 LGG samples, 56,753 genes) as a training dataset and 
from CGGA (625 samples, 23,271 genes) as a validation data-
set. Thirty-three pyroptosis-related genes and 259 ferropto-
sis-related genes were obtained based on the literature. Two 
hundred and ninety well-recognized FPRGs were obtained 
after deleting two ferroptosis and pyroptosis shared genes. 
Two hundred and sixty FPRGs with complete expression 
values both in the CGGA and TCGA cohorts were included 
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in the following analysis. One hundred and fifteen FPRGs in 
the TCGA cohort and 140 FPRGs in the CGGA cohort were 
selected from the 260 FPRGs respectively through univariate 
cox regression analysis and false discovery rate adjustment 
(Figure  2A and B). Finally, 87 FPRGs with prognostic values 
were obtained after taking an intersection between the 115 
prognostic FPRGs from TCGA cohort and the 140 prognostic 
FPRGs from the CGGA cohort (Figure 2C).

NMF clustering identification of molecular typing 
based on the shared FPRGs with prognostic values

The optimal clustering number of 2 is selected using the 
NMF algorithm on the basis of the cophenetic, dispersion, 
and silhouette indicators (Supplementary Figures  1 and 
2, Figure  3A). The results of the following Kaplan–Meier 

analyses indicate that samples in cluster 2 (C2) are with bet-
ter OS and PFS (Figure 3B and C). As shown in Figure 3D, 
the analysis about the compositional differences of clinical 
traits suggests that there are more astrocytoma samples in 
C1 and more oligodendroglioma samples in C2 (p = 8.9e-14). 
What’s more, there are more dead patients (p = 0.00031), 
old patients (>41  years old) (p = 0.0017), and patients with 
Grade 3 (p = 5.7e-12) in C1 compared with C2. In addition, 
TME components are estimated in C1 and C2, respectively, 
and the results in Figure  4A indicate that ImmuneScore, 
StromalScore, and EstimateScore are higher, but tumor 
purity is worse in C1. Of note, these scores have a positive 
correlation with the ratio of stromal components, immune 
components, as well as the total number of both compo-
nents, implying that an increase in the scores contributed to 

FIGURE 1. The workflow of the current study.
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FIGURE 2. Identification of prognostic ferroptosis and pyroptosis-related genes (FPRGs). (A) One hundred and fifteen FPRGs with 
prognostic values in TCGA dataset; (B) 140FPRGs with prognostic values in the CGGA dataset; and (C) Venn diagram to identify 
87 FPRGs with prognostic values in LGG.
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an increase in the proportion of the matched components 
in the TME.

The CIBERSORT algorithmic technique was utilized to 
investigate the bulk gene expression profiles and thus deduce 
the percentages of 22 subsets of tumor-infiltrating immune 
cells in different subtypes (Figure 4B). C1 subtype features an 
increased infiltration of CD8+ T cells and macrophages; how-
ever, the C2 subtype is characterized by an increased infiltra-
tion of resting memory CD4+ T cells and activated mast cells 
(Figure  4C). Furthermore, the expression levels of all statis-
tically different immune checkpoints genes are higher in C1 
(Figure 4D). For further survival analysis about these involved 
immune checkpoints, low expression levels of the 28 immune 
checkpoints genes in total (B2M, CD40, CD40LG, CD44, 
CD48, CD70, CD80, CD86, CD160, CD200R1, CD274, CD276, 
PDCD1LG2, LGALS9, LAIR1, CTLA4, LAG3, IDO1, HAVCR2, 
ICOS, ICOSLG, LDHA, PDCD1, PTPRC, PVR, TNFRSF4, 
TNFSF14, and TNFRSF14) are connected with better survival 
probability (Figure 5).

Identification and validation of FPRGs-based 
prognostic signature

After acquiring 87 prognostic FPRGs, we also performed 
the LASSO algorithm to obtain a set of 32 FPRGs (Figure 6A 
and B) and the SVM-RFE algorithm to choose a set of 70 FPRGs 
(Figure 6C and D). Following the intersection of the FPRGs fil-
tered out through the LASSO and SVM-RFE algorithms, 28 

candidate FPRGs were found to perform random survival for-
ests variable hunting algorithm to screen the genes further. Then, 
a novel FPRGs-based signature is identified because it has a rela-
tively big (−log10) p-value and risk score can be calculated as fol-
lows: Risk score = 4.076546692 * expression of SP1+5.52020087 
* expression of G6PD+4.745710231 * expression of ELAVL1+ 
6.270251432 * expression of NNMT+7.63382202936543 * 
expression of ARNTL+6.38387421227295 * expression of 
CASP6 (Figure 6E-G). Subsequently, samples in training cohort 
are categorized into low- and high-risk subgroups according to 
the median risk score of 89.24308 (Figure 7A, Supplementary 
Table S4).

The survival status and risk scores distributions suggest 
that patients with high-risk scores were more likely to die 
(Figure 7B). t-SNE and PCA were then utilized to determine 
the overall distribution of LGG patients in low- and high-risk 
populations. The patients within the two groups can be effec-
tively differentiated (Figure  7C and D). The levels of the six 
FPRGs expressions in our signature are shown by a heatmap 
in Figure 7E, which is harmonized with the values in the cal-
culation equation (Figure 7E). The following survival analysis 
illustrated that patients with high-risk scores had worse OS 
and PFS (all p < 0.001) (Figure  7F-G). In addition, the ROC 
curves were utilized to verify the diagnostic values. The AUC 
values of the ROC curves are 0.843, 0.827, and 0.765 for 1-, 
3-, and 5-year survival (Figure  7H). Notably, compared with 
another four well-recognized prognostic signatures, our 

FIGURE 3. Non-negative matrix factorization clustering identification two molecular subtypes with significantly different prognosis 
and clinical characteristics. (A) The optimal clustering number of 2; (B and C) Kaplan–Meier analyses (OS and PFS) as regards 
two molecular subtypes; and (D) Pie charts illustrating the Chi-squared test of clinicopathologic factors between two molecular 
subtypes.
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signature shows a superior probability for survival prediction. 
The C-index of our signature is 0.822, while the C-indexes of 
Guo’s signature, Zhang’s signature, Liu’s signature, and Zheng’s 
signature are 0.798, 0.769, 0.788, and 0.773, respectively 
(Supplementary Figure 3).

Clinical characteristics, immune characteristics, 
and tumor stem characteristics in low- and high-
risk populations

As illustrated in Figure  8A, the low-risk population pos-
sessed a higher proportion of oligodendroglioma samples 
and a lower proportion of astrocytoma samples, while the 
opposite was the case for the high-risk subgroup. In addition, 
there are more female, dead patients, with tumor patients, and 
G3 patients in the high-risk subgroup (all p < 0.05).

To investigate the specific function of FPRGs in TME, 
ESTIMATE algorithm was employed to assess the associa-
tion of tumor purity, immune purity, stromal purity, and FPRG 

scores. Our results revealed that high-risk populations exhib-
ited enhanced levels of ImmuneScore, StromalScore, and 
EstimateScore, but showed attenuated levels of tumor purity 
(Figure 8B).

To further explore the abundance of immunocyte infil-
trating in the tumor microenvironment (TME), a variety of 
algorithms were applied to estimate the percentage of the 
immune cell infiltrate in high- and low-risk LGG populations. 
As depicted in Figure 8C, the high-risk population showed an 
enhanced proportion of B cells based on TIMER and XCELL 
algorithms; however, the proportion of plasma cells was con-
siderably lower in the high-risk population than that in the 
low-risk population based on CIBERSORT, CIBERSORT-
ABS, and XCELL algorithms. Although T cell shows a lower 
proportion collectively based on MCPCOUNTER, various 
types of T cell show a wide variety of expression patterns. 
CD4+ T cells have a higher proportion in the high-risk popula-
tion-based on TIMER. Among them, naive CD4+ T cells have 

FIGURE 4. Systematic analysis of TME scores and immune cell infiltration in two molecular subtypes. (A) Comparison of TME 
components; (B) the proportions of 22 subsets of tumor-infiltrating immune cells in different subtypes; (C) discrepancy analysis 
of tumor-infiltrating immune cells in different subtypes; and (D) differential expression analysis of 47 immune checkpoints genes 
between two molecular subtypes.

DC
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FIGURE 5. Kaplan–Meier analysis of 28 immune checkpoint genes. B2M, CD40, CD40LG, CD44, CD48, CD70, CD80, CD86, 
CD160, CD200R1, CD274, CD276, PDCD1LG2, LGALS9, LAIR1, LAG3, HAVCR2, IDO1, CTLA4, ICOS, ICOSLG, LDHA, PDCD1, 
PTPRC, PVR, TNFRSF4, TNFSF14, and TNFRSF14 were prognostic relevant in LGG.
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a lower proportion, and resting memory CD4+ T cells have a 
higher proportion based on CIBERSORT and CIBERSORT-
ABS. T  helper 2 (Th2) cells have a higher proportion in the 
high-risk subgroup based on XCELL. T-cell regulatory (Treg) 
has a higher proportion in the high-risk subgroup based on 
QUANTISEQ. Follicular helper T cell (Tfh) has a lower pro-
portion in the high-risk subgroup based on CIBERSORT. As 
for macrophage, it shows a higher proportion in the high-
risk population premised on TIMER and MCPCOUNTER. 
Notably, both M1 macrophage and M2 macrophage are 
more in the high-risk population compared with the low-risk 
population on the basis of CIBERSORT, CIBERSORT-ABS, 
QUANTISEQ, and XCELL. In addition, myeloid dendritic 
cells have a higher proportion in the high-risk subgroup based 
on TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, 

and XCELL, and plasmacytoid dendritic cells also show a 
higher proportion based on XCELL.

Increased immune cell infiltration may be the compen-
satory result of a low local immune response. As shown in 
Figure  8D, high-risk LGG populations exhibited enhanced 
expression of ICGs (all p < 0.05, Wilcox.test). Higher expres-
sion of ICGs acted to attenuate efficient anti-cancer immune 
responses, thereby inducing the migration of immunocytes into 
the TME to enhance compensatory response. Subsequently, 
the discrepancy of immune subtypes in Figure 8E suggests that 
all the LGG patients in TCGA cohort are only connected with 
C3, C4, and C5 immune subtypes. Compared with the low-risk 
subgroup, high-risk LGG populations consist of a higher pro-
portion of C3 and C4 immune subtypes and a lower propor-
tion of C5 immune subtypes (p = 0.001, chisq.test).

FIGURE 6. Machine learning identification of the optimal prognostic signature. (A and B) Identification of 32 FPRGs through the 
LASSO algorithm; (C and D) identification of 70 FPRGs through the SVM-RFE algorithm; (E) acquisition of 28 candidate FPRGs 
after intersecting LASSO and SVM-RFE algorithms; and (F and G) construction of a six-FPRG signature through random survival 
forests variable hunting algorithm.
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Considering its vital prognostic and clinical value, we evalu-
ated the correlation between TMB and risk score, and the 
outcomes suggested that TMB was considerably elevated in 
the high-risk subgroup (p = 4.4e-13; Figure  9A). Moreover, 
Spearman correlation analysis illustrated that risk score has a 
moderately positive correlation with TMB (R = 0.36, p <2.2e-
16; Figure 9B). Furthermore, we examined the changes in LGG 
driver genes across low- and high-risk subgroups. Driver genes 
with a high change frequency are shown in Figure 9C and D, 
such as IDH1, TP53, ATRX, CIC, and FUBP1. Of note, IDH1, 
CIC, and FUBP1 mutation frequency is higher in the low-risk 
subgroup; however, TP53 and ATRX mutation frequency is 
higher in the high-risk subgroup.

Patients with low TMB scores had a better chance of sur-
viving than those with high TMB values (Figure 9E). To fur-
ther distinguish the synergistic or antagonistic ability of the 
TMB and FPRG scores to predict survival, we classified the 

Tumor stem cell score is not only correlated with immune 
infiltration and immune checkpoints but also reveals the 
occurrence pattern of intratumor heterogeneity. An in-depth 
examination of tumor stem cell score aids in strengthening our 
understanding of the tumor immune microenvironment and 
developing new targeting drugs associated with ICB therapy. 
Thus, the correlation analysis was performed to explore whether 
our FPRG signature was correlated with tumor stemness index, 
and the findings indicated that the risk score had a positive cor-
relation with DNAss (R = 0.5, p < 2.2e−16) and negatively cor-
related with RNAss (R = –0.46, p < 2.2e−16) (Figure 8F).

Tumor mutation profile, immunotherapy response 
prediction, and MGMT methylation in high- and 
low-risk populations

TMB was recently deemed as a novel prognostic biomarker 
that is closely associated with the response to immunotherapy. 

FIGURE 7. Evaluation of the prognostic value of risk score in the training cohort. (A and B) Distribution of risk score and patient 
survival time and status of LGG patients (A: the green and pink dots represent the low- and high-risk samples respectively; B: the 
green and pink dots represent the alive and dead samples respectively) ; (C and D) PCA and t-SNE analysis illustrated an excellent 
clustering performance of the six-gene-based risk score; (E) heatmap of the expression levels of six FERGs involved in the signa-
ture in the cohort; and (F and G) survival curve of training cohort; (H) ROC curves of training cohort.

C

H

B

GD

F

A

E



Wang, et al.: Ferroptosis and pyroptosis in low-grade glioma

Bosn J Basic Med Sci.  2022;22(5):728-750 739 www.bjbms.org

patients based on these two scores and carried out survival 
analysis. Those with low TMB and FPRG scores had the best 
prognoses, whereas patients with high TMB and FPRG scores 
had the worst prognoses (Figure  9F). These findings imply 
that the mutational burden may be linked to immunotherapy 
response, thereby providing a novel perspective on check-
point blockade treatment.

As depicted in Figure  9G, considerable differences 
were found in the results of immunotherapy response 

between low-  and high-risk populations. Specifically, 
high-risk LGG populations have higher scores of IFNG, 
CD274, CD8, and Merck18, and all of them are positive 
biomarkers for ICB therapy (Figure 9H). Besides, high-risk 
LGG populations have lower scores of T-cell exclusion 
signature and MDSC, which are negative biomarkers of 
ICB response (Figure 9H). Overall, the results of immuno-
therapy response prediction are consistent with those of 
TMB. That is to say, the FPRG score that we developed can 

FIGURE 8. Clinical characteristics, immune characteristics, and tumor stem characteristics in the training cohort. (A) Pie charts 
illustrating the Chi-squared test of clinicopathologic features between low- and high-risk subgroups; (B) comparing TME compo-
nents between low- and high-risk subgroups; (C) the landscape of the distribution of immune cell infiltration in the training cohort; 
(D) the expression levels of ICGs in the training cohort; (E) heatmap and table showing the distribution of immune subtypes (C3, 
C4, and C5) between low- and high-risk subgroups; and (F) the correlation analysis between tumor stemness index and risk score.
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effectively anticipate the response to immunotherapy and 
high-risk LGG patients have a higher likelihood of benefit-
ing from ICB therapy.

Growing numbers of studies uncovered that the methyl-
ation status of MGMT gene promoter is the key factor that 
determines the MGMT expression, and can influence the 
efficacy of chemotherapy as well as the prognosis of glioma 
patients. Thus, we further intensively investigated the poten-
tial association of MGMT and FPRG signature. Our results 

showed that compared with the low-risk subgroup, high-

risk populations are accompanied by a higher MGMT gene 

expression and a lower MGMT methylation level (Figure 10A 

and B). We also found that there is a slightly positive cor-

relation between risk score (R = 0.11, p = 0.017) and MGMT 

expression, and a moderately negative correlation between 

risk score and MGMT methylation (R = –0.37, p < 2.2e-16) 

(Figure 10C and D).

FIGURE 9. TMB analysis and immunotherapy response prediction in the training cohort. (A) TMB difference between high- and 
low-risk subgroups; (B) correlation analysis between risk score and mutation load; (C and D) OncoPrint of frequently mutated 
genes in high- and low-risk subgroups; (E) Kaplan–Meier curve of OS for patients represented by the samples classified by risk 
score; (F) Kaplan–Meier curve of OS for patients represented by the samples classified by both the risk score and TMB score; (G) 
the discrepancy of immunotherapy response in low- and high-risk subgroups; and (H) immunotherapy response prediction in the 
training cohort.
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Independent prognostic performance of our FPRG 
signature and nomogram plot establishment

To identify whether our FPRG signature was an indepen-
dent prognostic factor for OS, multivariate and univariate 
Cox regression analyses comprising tumor type, gender, age, 
cancer status, grade, and FPRG score were performed. The 
results showed that tumor type, age, cancer status, grade, and 
FPRG score could serve as an independent prognostic index 
(Table 1). Subsequently, a nomogram plot involving the above 
independent prognostic indicators was plotted for quanti-
tatively predicting the survival probability of LGG patients 
(Figure 11A). Then, the predictive performance of the nomo-
gram plot was validated utilizing calibration curves. The find-
ings illustrated that the nomogram-predicted survival proba-
bilities were consistent with the actual ones (Figure 11B). The 
AUC values of the ROC curves were 0.916, 0.888, and 0.836, 
respectively, which suggest a great prognostic performance of 
the nomogram (Figure 11C).

Validation of the prognostic performance of our 
FPRG signature in CGGA cohort

To highlight the robustness of our FPRG signature estab-
lished from the TCGA cohort (i.e., training dataset), the 
patients from the CGGA cohort (i.e., validation dataset) were 
also categorized into low-  and high-risk subgroups by the 
median value calculated with the same equation as that from 
the TCGA cohort (Figure 12A, Supplementary Table S5). On 
the whole, the results in the validation cohort are consistent 
with those in the training dataset. The patients with high-risk 
scores have a higher likelihood of dying and have a shorter 
survival time (Figure 12B). Similar to the results acquired from 
the training dataset, LGG patients can also be distinguished 
clearly through PCA and t-SNE analysis in the validation data-
set (Figure 12C and D). The levels of the six FPRGs expressions 
in our signature are also consistent with the values in the cal-
culation equation, as shown by the heatmap (Figure 12E). The 
findings from the survival analysis also suggested that patients 
in the high-risk subgroup exhibited poorer survival probabil-
ity (Figure 12F). In the CGGA cohort, the AUC values of our 
FPRG signature were 0.669, 0.733, and 0.737 for 1-, 3-, and 
5-year survival probability (Figure 12G).

Subsequently, the differences in the clinical characteris-
tics between low- and high-risk populations are illustrated in 
Figure 13A. Thus, it is evident that the high-risk populations 
consist of more dead, more recurrent, and more G3 patients. 
These were just consistent with previous results that high-
risk LGG patients were accompanied by worse progno-
ses. Likewise, high-risk populations in the CGGA cohort 
showed increased levels of EstimateScore, ImmuneScore, 
and StromalScore, and a decreased level of tumor purity 

(Figure  13B). The abundance of immunocyte infiltration in 
low- and high-risk populations is also depicted in Figure 13C. 
Similarly, high-risk populations showed an enhanced infil-
tration of B cells, CD4+ T cells, Th2 cells, Treg cells, macro-
phages, and myeloid dendritic cells. In addition to these, the 
discrepancy in the expression of ICGs between low- and high-
risk populations demonstrated the same trends. Contrasted 
with low-risk populations, high-risk populations exhibited 
an enhanced expression of ICGs, which might be responsible 
for a likely compensatory increase in immune cell infiltration 
(Figure 13D).

DISCUSSION

LGG has been identified as a group of primary brain 
tumors that progress from supporting glial cells. With unclear 
pathogenesis and unsatisfied therapeutic effects, in-depth 
mechanisms of LGG are supposed to be intensively investi-
gated. Interestingly, ferroptosis and pyroptosis, as new forms 
of cell death, may have the potential to offer a novel strategy 
for the treatment of tumors. Hence, we aimed to classify 
molecular subtypes and further identify and verify a novel 
multigene signature to anticipate the prognosis and immuno-
therapy response of LGG patients based on FPRGs.

With sequencing data and corresponding clinical data 
of LGG samples from the TCGA as well as the CGGA 
databases, 87 FPRGs with prognostic values were identified 
for NMF clustering and signature construction. First, we 
obtained two molecular subtypes with significantly different 

FIGURE 10. MGMT expression and methylation status in the 
training cohort. (A) The discrepancy of MGMT expression level 
between high- and low-risk subgroups; (B) the discrepancy 
of MGMT methylation status between high- and low-risk sub-
groups; (C) the correlation between MGMT expression level 
and risk score; and (D) the correlation between MGMT methyl-
ation status and risk score.

DC

BA



Wang, et al.: Ferroptosis and pyroptosis in low-grade glioma

Bosn J Basic Med Sci.  2022;22(5):728-750 742 www.bjbms.org

FIGURE 11. Creation and verification of the risk score-based nomogram plot. (A) A nomogram of LGG was used to predict 1-year, 
3-year, and 5-year survival rates; (B) calibration curves for accuracy validation of the nomogram; and (C) the AUC values of the 
ROC curves for improved evaluation of the prognostic ability of the nomogram. 

prognoses, clinical traits, and immune microenvironment. 
The subtype with a worse prognosis is composed of more 
dead patients, old patients, and G3 patients. The TME is an 
intricate assembly of the tumor, immune, stromal, and extra-
cellular components  [15], so ImmuneScore, StromalScore, 
and EstimateScore were calculated to infer the stromal 
and immune components of each patient. The elevated 
StromalScore and ImmuneScore are associated with larger 
respective components in the TME. The results indicated 
that high-risk LGG patients may have greater immune abun-
dance. A growing number of research reports have demon-
strated that metabolic alterations may influence TME, partic-
ularly immune cells [16-18]. TME components are critical for 
the onset and progression of cancers. The targeting of TME 
remodeling might offer a prospective treatment approach to 
suppress tumor progression. Numerous research reports have 
shown that the immunological microenvironment has an 
impact on the biological activity of tumors [19-21]. Thus, the 
immune cells in different subtypes are displayed visually. The 
infiltration level of CD8+ T cells and macrophages was higher 

in the C1 subtype, whereas that of CD4+ T cells and activated 
mast cells was higher in the C2 subtype. Furthermore, the 
increased expression of a total of 28 immune checkpoint 
genes shows a relationship with a poor survival prognosis, 
which indicates that these populations may benefit from 
treatment with immune checkpoint inhibitors.

Then, a novel FPRG signature, involving specificity protein 
1 (SP1), glucose-6-phosphate dehydrogenase (G6PD), nicotin-
amide N-methyltransferase (NNMT), ELAV-like RNA-binding 
protein 1 (ELAVL1), Aryl hydrocarbon receptor nuclear trans-
locator like (ARNTL), and Caspase-6 (CASP6), was created 
and verified to anticipate the survival and benefit with immu-
notherapy, which contributes to the differentiation of patients 
into high-  and low-risk subgroups in the training cohort and 
validation cohort, respectively. In the two cohorts, patients in 
the high-risk subgroup had a poorer prognosis, greater immune 
abundance resided in the high-risk subgroup and increased 
ICGs expression existed in the high-risk subgroup. It is note-
worthy that our signature has a satisfactory diagnostic value and 
is superior to another four signatures for survival prediction.

TABLE 1. Univariate and multivariate Cox regression analysis determined the independent prognostic performance of our risk 
score

Univariate HR HR.95L HR.95H p-value Multivariate HR HR.95L HR.95H p-value
aType 0.720495 0.561649 0.924265 0.009888 aType 0.762885 0.590221 0.986061 0.038717
bGender 0.912138 0.594411 1.399697 0.673813 bGender 1.148051 0.735335 1.79241 0.543569
cAge 4.376072 2.722401 7.034235 1.09E-09 cAge 3.521851 2.075635 5.975729 3.06E-06
dCancer_status 39.2837 5.466809 282.2869 0.000264 dCancer_status 27.25615 3.770115 197.049 0.001057
eGrade 3.694602 2.280463 5.985662 1.10E-07 eGrade 1.833914 1.024756 3.281992 0.04112
fRiskScore 1.037412 1.029453 1.045432 8.98E-21 friskScore 1.022558 1.013157 1.032046 2.21E-06

aType: Astrocytoma, oligoastrocytoma, oligodendroglioma; bgender: Female, male; cage: ≤41, >41; dcancer_status: Tumor free, with tumor; 
egrade: G2, G3; frisk score: Risk score=7.63382202936543 * expression of ARNTL+6.270251432 * expression of NNMT+5.52020087 * 
expression of G6PD+6.38387421227295 * expression of CASP6+4.076546692 * expression of SP1+4.745710231 * expression of ELAVL1
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There are a total of six genes included in the signature to 
be utilized for risk score calculating. The overexpression of 
transcription factor SP1 has been identified in diverse can-
cers, such as the brain (glioma), lung, pancreatic, and gastric 
[22-25]. In glioma, Sp1 is upregulated and enhances MMP-2-
mediated cell invasion, which indicates a decreased survival 
[24]. G6PD performs a significant function in the synthesis 
of ribose and the reduction of equivalent nicotinamide ade-
nine dinucleotide phosphate through the pentose phosphate 
pathway. Increasing the levels of G6PD mRNA expression 
levels facilitates the prediction of poor clinical outcomes 
in cancer patients, such as higher resistance to medication, 
migration, or proliferation of tumor cells [26]. ELAVL1 is one 
of the best-studied regulators of cytoplasmic mRNA fate [27]. 

Connected with the upregulation of LINC00336, it performs 
a vital function in lung cancer [28]. In addition, the pathogen-
esis of bladder cancer is promoted by recruiting ELAVL1 to 
stabilize target mRNAs [29]. What’s more, IGF2BP3/ELAVL1 
complex leads to prolonged half-lives of cancer-related mRNA 
molecules and increased expression of the target genes [30].

The overexpression of NNMT has been found in diverse 
human cancers. NNMT is known to impair the methylation 
potential of cancer cells by exhausting methyl units from 
S-adenosyl methionine to form the stable metabolic product 
1-methylnicotinamide [31]. As an independent risk factor, 
elevated stromal NNMT expression in CRC further suggests 
the dismal survival outcomes in patients in the initial stages 
of CRC (Stage I and II) as well as the patients undergoing 

FIGURE 12. Validation of the prognostic value of risk score in the validation cohort. (A) Group division in the validation cohort (the 
green and pink dots represent the low- and high-risk samples respectively); (B) patients in the high-risk group had an increased 
incidence of death (the green and pink dots represent the alive and dead samples respectively); (C and D) PCA and t-SNE analysis 
demonstrated an excel-lent clustering performance of the six-gene-based risk score; (E) heatmap of the expression levels of six 
FPRGs involved in the signature in the validation cohort; (F) survival curve in CGGA cohort; and (G) ROC curves in CGGA cohort.
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FIGURE 13. Clinical characteristics and immune characteristics in the validation cohort. (A) Compositional differences analysis of 
clinical traits between low- and high-risk subgroups; (B) comparison of TME components between low- and high-risk subgroups; 
(C) the landscape of the distribution of immune cell infiltration in the validation cohort; and (D) the expression levels of ICGs in 
the validation cohort.
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chemotherapy [32]. ARNTL2, with an impact on metastatic 
capacity in vivo and clonal growth in cell culture, is capable 
of making lung adenocarcinoma metastatic self-sufficiency 
through an Arntl2-driven secretome [33]. It also plays a role in 
the survival prediction of pancreatic cancer [34]. The expres-
sion of ARNTL2 is elevated in a highly proliferative colon can-
cer cell line and in colorectal cancer and has been found to be 
associated with tumor aggressiveness and invasiveness  [35]. 
Caspase-6 is a major modulator of host defense inflam-
masome activation and innate immunity [36]. Notably, Casp6 
modulates the activation and the differentiation of B cells into 
plasma cells through the alteration of cell cycle entry [37].

The immune cells within TME perform a vital function in 
tumorigenesis. It is well-recognized that these tumor-related 
immune cells might have tumor-promoting or tumor-antag-
onizing roles. Research report has shown that although the 
tumor-antagonizing immune cells in TME seem to target 
and destroy cancer cells in the initial stages of tumorigene-
sis, these cancer cells ultimately evade immunological sur-
veillance [38]. In subsequent in-depth exploration about the 
abundance of immunocyte infiltration, some cancer-promot-
ing immune cells, including Th2 [39,40], Treg [41], M2 mac-
rophage [42], and pDC [43], are upregulated in the high-risk 
subgroup, despite some anti-tumor immune cells are also had 
higher proportions, such as B cell [44], M1 macrophage [45], 
mDC  [46,47], and Tfh [48,49]. To perform its function of 
anti-tumor, plasma cells showed lower proportions after large 
consumption in the high-risk subgroup. Simultaneously, naïve 
CD4+ T cells transfer to T-cell memory due to exposure to 
antigen [50]. Indeed, naïve CD4+ T cells decreased and T-cell 
memory increased in the high-risk subgroup. In addition, can-
cer cells have been found to possess the capacity of activating 
various immune checkpoint pathways that contain immuno-
suppressive functions [51]. Thus, cancer-promoting immune 
cells with statistically different expression levels and the ICGs 
with increasing expression levels in high-risk subgroup are 
expected to act as potential efficient therapeutic targets.

MGMT, also referred to as O6-methylguanine-DNA 
methyltransferase, is a DNA repair enzyme that assumes a 
crucial function in chemoresistance to alkylating agents, and 
the level of MGMT expression has a positive correlation 
with the degree of malignancy [52-54]. According to some 
researches, methylation of isolated regions of the CpG island 
of MGMT is associated with the silencing of the MGMT 
gene [55]. In this study, the upregulation of MGMT expression 
and downregulation of MGMT methylation in the high-risk 
subgroup indicate a poor prognosis.

TMB, together with PD-L1 expression, has been illustrated 
as a beneficial biomarker for the selection of ICB in several types 
of cancer [56]. In this study, an increase of TMB in the high-risk 
subgroup is also associated with an unsatisfied prognosis. Then, 

the top three genes (IDH1, TP53, and ATRX) with the high fre-
quency of mutation were identified as driver genes of LGG. It 
is reported that LGG patients with IDH mutations and 1p/19q 
codeletions had the best prognosis [3]. TP53 mutations (94%) 
and ATRX inactivation (86%) were found in nearly all LGG 
patients with IDH mutations and no 1p/19q codeletion [3]. In 
addition, ATRX alteration strongly intersected with TP53 muta-
tion (p < 0.0001) and IDH1/2 (p < 0.0001) in specimens in all 
WHO grades [57]. In the high-risk subgroup, higher mutation 
rates of IDH, TP53, and ATRX imply a potential correlation 
between the three genes and the collective alteration of these 
three genes might lead to developing a new therapeutic target. 
As a consequence, all these potential mechanisms that resulted 
in poor prognosis are supposed to apply to clinical treatment.

Significant statistical difference was observed for TIDE-
derived immunotherapy response prediction between 
high-  and low-risk LGG populations. Of note, our results 
uncovered that all patients in the high-risk subgroup might 
benefit from immunotherapy and only part of patients in the 
low-risk subgroup might adopt to immunotherapy. Besides, it 
has been reported that IFNG, CD274, CD8, and Merck18 are 
positive biomarkers of immunotherapy, while T-cell exclusion 
signature and MDSC are negative biomarkers of immuno-
therapy [58,59]. It is noteworthy that upregulation of positive 
immunotherapy response biomarkers (IFNG, CD274, CD8, 
and Merck18) and downregulation of negative biomarkers 
(T-cell exclusion signature and MDSC) in the high-risk sub-
group provided an essential grounding for immunotherapy 
response prediction.

In addition, tumor type, age, cancer status, grade, and risk 
score were demonstrated to be capable of acting as indepen-
dent prognostic indicators. Then, a nomogram plot involving 
the above independent prognostic indicators was plotted 
for quantitatively predicting the survival probability of LGG 
patients. As for the validation of the nomogram, the AUC val-
ues of the ROC curves were satisfied, which suggests a great 
prognostic ability of the nomogram.

The present study has several limitations. First, the FPRG-
based signature was created and verified based on retrospec-
tive data from TCGA and CGGA databases. Further large-
scale prospective clinical studies are required to evaluate its 
effectiveness and practicability. Besides, more well-designed 
basic research experiments are warranted to highlight the cru-
cial role of ferroptosis and pyroptosis in the occurrence and 
development of LGG.

CONCLUSION

The present research suggests that the 6-FPRG-related 
signature may serve as an effective indicator to anticipate the 
prognosis and immunotherapy response of LGG patients.
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SUPPLEMENTARY FIGURE 2. Consensus map of non-negative matrix factorization clustering.
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SUPPLEMENTARY FIGURE 3. Comparative analysis. (A) The C-indices of our, Guo’s, Zhang’s, Liu’s, and Zheng’s signatures; (B-C) 
ROC curves and survival analysis of our signature; (D-G) ROC curves of Guo’s, Zhang’s, Liu’s, and Zheng’s signatures; and (H-K) 
survival analysis of Guo’s, Zhang’s, Liu’s, and Zheng’s signatures.
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