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Receptors on T and NK cells systematically propagate highly complex signaling cascades 
that direct immune effector functions, leading to protective immunity. While extensive 
studies have delineated hundreds of signaling events that take place upon receptor 
engagement, the precise molecular mechanism that differentially regulates the induction 
or repression of a unique effector function is yet to be fully defined. Such knowledge can 
potentiate the tailoring of signal transductions and transform cancer immunotherapies. 
Targeted manipulations of signaling cascades can augment one effector function such as 
antitumor cytotoxicity while contain the overt generation of pro-inflammatory cytokines 
that contribute to treatment-related toxicity such as “cytokine storm” and “cytokine- 
release syndrome” or lead to autoimmune diseases. Here, we summarize how individual 
signaling molecules or nodes may be optimally targeted to permit selective ablation of 
toxic immune side effects.

Keywords: signaling, NK and T cells, immunotherapy, target molecules, NKG2D

iNTRODUCTiON

Immune responses by NK and T cells control infection and nascent malignancy. Generation of 
optimal immune responses requires efficient lymphocyte differentiation, proliferation, trafficking, 
recognition of target antigens, production of inflammatory cytokines, and lysis of infected and tumor 
cells. Functions of effector lymphocytes must be tightly regulated to prevent generation of uncon-
trolled immune responses. When they become chronic, uncontrolled immune responses can lead 
to autoimmune diseases such as rheumatoid arthritis (1), autoimmune vasculitis (2), or encepha-
lomyelitis (3). Recent advances in utilizing synthetic receptors such as chimeric antigen receptors 
(CARs) have significantly augmented antitumor responses. CAR consist of an antigen-binding 
domain, linked to a primary signaling domain, such as CD3zeta, and often contain a co-stimulation 
domain from CD28 or 4-1BB to enhance NK or T cell activation (4). This enhancement also results 
in a heightened level of inflammatory cytokine and chemokine production. When this inflammatory 
response is acute, it can lead to “tumor lysis syndrome” (TLS), “cytokine storm” (CS), or “cytokine 
release syndrome” (CRS), which result in multi-organ failure leading to life-threatening situations.
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FiGURe 1 | Activating and co-stimulatory receptors in T and NK cells 
and their corresponding ligands. Schematic representation of activating 
receptors on T cells and NK cells. While T cell receptor (TCR) functions as the 
primary receptor on T cells, NKG2D and CD137 function as co-stimulatory 
receptors along with CD28. Whereas, in NK cells, NKG2D, CD137, LY49D, 
NCR1, and 2B4 function as independent activating receptors and a 
cumulative effect of their engagement determines the final outcome of NK 
cell effector functions. The differences in the cytoplasmic domain of these 
receptors contribute to the interaction of various adapter molecules. These 
differences govern the signaling cascade that is engaged downstream of 
these receptors.
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Tumor lysis syndrome represents rapid death of malignant 
cells in patients with bulky tumors and release of cellular contents 
into circulation. This occurs following responsive treatments in 
patients with tumors that are highly proliferative. In addition, TLS 
can also occur spontaneously (5, 6). In most cases, kidney func-
tions of the patients are compromised due to the large volume of 
intracellular contents released into the blood circulation (6, 7).

Cytokine storm also known as hypercytokinemia is the 
uncontrolled production of proinflammatory cytokines largely 
due to viral infections (8). Acute lung injury is the most common 
pathological outcome of CS (9). The cause of CS and the resultant 
elevated cytokine production is primarily has been associated 
with the activation of T cells. The central cause of CS is yet to be 
determined; however, a loss of feedback controls assumed to be 
the basis. CS can result in tissue and organ damage and at chronic 
conditions, can result in death.

Cytokine release syndrome is a complex clinical phenom-
enon characterized by the high activation of immune cells 
and production of proinflammatory cytokines. CRS can occur 
during severe infections, graft-versus-host disease, and after 
treatment with a variety of immunomodulating therapies, 
such as monoclonal antibodies, bispecific antibodies, or CAR 
T cells (10–12). Clinical manifestations of CRS include fever, 
nausea, diarrhea, headaches, confusion, seizure, hypotension, 
tachycardia, tachypenea, rash, liver alterations, and renal failure. 
Hours to days after treatment, patients experience symptoms 
and have elevated amounts of proinflammatory cytokines in 
their serum, which may include IFN-γ, IL-2, TNF-α, MIP-1, 
GM-CSF, IL-6, IL-8, or IL-10 (13, 14). In some cases, the CRS 
appeared in patients 1–4 weeks after infusion of CD19-specific 
CAR T cells at a time when there was a great CAR T cell expan-
sion (15, 16). The outcome of CRS can be life-threatening, and 
there have been a number of patient deaths after treatment with 
novel immunotherapy agents (17). When identified early, CRS 
can be clinically managed, and treatment for CRS is focused on 
anti-cytokine therapies, such as corticosteroids and anti-IL-6R 
mAbs (18, 19). Davila and colleagues have defined five criteria 
for severe CRS, and Lee et  al. describes a grading system and 
treatment algorithm for CRS (20, 21). Currently, numerous NK 
cell-based clinical trials are underway to treat hematological 
and solid tumors (22–36). Pioneering clinical applications have 
been developed using CAR-transduced primary T cells (20, 37). 
However, development of CRS following CAR T cell treatment 
is a major concern (12). Life-threatening CRS is an impediment 
to the clinical utilization and curative efficacy of CAR therapies 
(18). The identification of a unique signaling pathway that 
regulates inflammation may help to reduce toxicity and is of 
high clinical relevance. Therefore, understanding the molecular 
basis of signal transduction and subsequent regulation of effec-
tor functions within lymphocytes has the potential to limit CRS 
mediated by T cells or NK cells transduced with CARs or after 
treatment with other immunotherapeutic agents.

NK cells and cytotoxic T cells utilize multiple components of 
similar signal transduction machineries, but differ in the mode 
they utilize to activate these signaling components. Unique 
clonotypic T cell receptors (TCR) equip T cells with exquisite 
antigen specificity and functions as the most important driver 

of their activation (Figure  1). In contrast, NK cells integrate 
signals from a variety of activating and inhibitory receptors in 
a hierarchical manner to establish an activation state (Figure 1). 
Conserved non-variant receptors expressed on NK cells recog-
nize “induced-self” (NKG2D), pathogen-derived ligands (NCR1), 
or the yet to be defined mechanism that governs “missing-self” 
(38). Additional classes of receptors (CD16, CD244, Ly49s, and 
KIRs) are also important in mediating NK cell effector functions. 
NKG2D and CD137 function as independent activation receptor 
in NK cells while they play an important co-stimulatory role in 
T cells (39).

Two of the most important functions of cytotoxic T cells and 
NK cells are target cell killing and production of pro-inflamma-
tory cytokines. The latter forms a major basis for TLS, CS, and in 
particular CRS. The qualitative differences in the temporal kinet-
ics and duration of cytotoxicity and pro-inflammatory cytokine 
production suggest how these might be differentially regulated 
at the molecular level (40). Here, we summarize membrane 
proximal and intermediate signal transductions that govern NK 
cell or T cell activation and how shared or unique signaling mol-
ecules elicit specific effector functions. Defining these molecular 
regulations will help tailor effector functions of T and NK cells in 
immunotherapeutic strategies.

http://www.frontiersin.org/Immunology/
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FiGURe 2 | Receptor interacting and nucleating signaling molecules that regulate the effector functions. A graphical rendering of membrane proximal 
signaling events and resultant involvement of scaffold proteins, adapter molecules, and second messengers that are critical for eliciting effector functions such as 
cytotoxicity and proinflammatory cytokine production following NKG2D-mediated activation in NK cells.
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MeMBRANe PROXiMAL SiGNALiNG

Src Family Kinases: Lck, Fyn, and Lyn
Tyrosine phosphorylation of substrates by Src-family tyrosine 
kinases represents the first step in NK or T cell activation. Src 
family members are expressed in numerous tissues and play a vital 
role in all hematopoietic cell types. Lck, one of the Src members, 
is central to signal transduction downstream of the TCR and NK 
cell-activating receptors. Following receptor–ligand interaction, 
conformational changes take place in the intracellular domains 
of adapters, such as CD3ζ, that expose ITAMs (Immune Tyrosine 
Activation Motifs) for Lck, which localizes to the site of recep-
tor activation through constitutive/induced interaction with 
co-stimulatory receptors, such as CD4 or CD8 in T cells; CD137 
(4-1BB) or NK1.1 (NKR-P1) in NK cells, via its Cys–X–Cys–Pro 
domain; or an inducible interaction with NKG2D in NK cells 
(41–43). Best-characterized downstream targets of Lck are Syk 
and Zap-70 (Figure 2). Other imputed interactions of Lck include 
possible binding to DAP10 and DAP12 adapter proteins (44), 
and binding to the inhibitory cell surface phosphatase CD45, an 
interaction that may physically sequester CD45 from TCR and its 
downstream signaling events (45, 46).

Lck plays a complex role in NK cell signal transduction. 
Germ-line deletion of Lck results in NK cells with normal devel-
opment and capacity for activation after stimulation with poly 
(I:C) or Interleukin (IL)-2 (47). In contrast, either inhibition or 
knockdown of Lck resulted in significant reductions in NKG2D- 
and CD137-mediated cytotoxicity and cytokine production in 
NK cells (Table  1), but no change in the cytokine production 

mediated by IL-12 and IL-18 stimulation (48). This suggests 
selective utilization of Lck playing a dominant role downstream 
of some, but not all activating receptors.

Fyn is another well-characterized Src family tyrosine kinase 
with a molecular weight of 59  kDa (54). Although the target 
substrates of Lck and Fyn appear redundant, it is evident that they 
play non-overlapping roles (55, 56). For instance, mice deficient 
of Fyn demonstrate minor impairments in T cell development, 
while lack of Lck results in a significant block in their develop-
ment (55). T cells deficient in both Lck and Fyn demonstrate a 
complete block in T cell development (57). NK cells deficient 
in Fyn demonstrate a proliferative defect with only a modest 
enhancement observed with concurrent deficiency of Lck (58). 
Additionally, NK cells also utilize other Src family kinases such as 
Src itself, Lyn, and Fgr, although the relative importance of these 
kinases is uncertain (59–61).

In T cells, Lck has been shown to phosphorylate Fyn (62, 63) 
following ligand-induced TCR–CD4 co-aggregation. Fyn phospho-
rylation by Lck does not require other components of the TCR sign-
aling apparatus, since ectopic expression of Fyn and Lck in NIH 3T3 
fibroblast results in Fyn phosphorylation in a manner dependent on 
Lck kinase activity (63). Like Lck, Fyn subsequently phosphorylates 
Syk family members such as Zap-70 (64). While deficiency of Fyn is 
insufficient to significantly affect downstream TCR signaling events 
such as activation of Zap-70, LAT, and PLC-γ1, concurrent loss of 
Fyn and abrogation of Lck-CD4-TCR complex formation results 
in impaired downstream signals (65). This suggests that function 
of Fyn is largely redundant with that of Lck, but may play a more 
specialized role in facilitating TCR signaling.
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TABLe 1 | Critical signaling molecules that regulate the development, cytotoxicity, or cytokine production from NK cells.

Signaling 
protein

Function Method Development Cytotoxicity inflammatory 
cytokines

Our publication

Lck Membrane proximal 
kinase

siRNA/pharmacological 
inhibitor

Not applicable Reduced Reduced

Fyn Membrane proximal 
kinase

Knockout Unknown Reduced significantly increased Rajasekaran et al. 
(47)

LAT Scaffold protein siRNA Not applicable Reduced Reduced

PLC-γ1 Second messenger 
generation

Knockout and gene 
reconstituion

Partial defect in development Not affected Not affected Regunathan et al. 
(49)

PLC-γ2 Second messenger 
generation

Knockout and gene 
preconstituion

Increased NK precursors, 
Impaired terminal maturation

Significantly 
impaired

Significantly impaired

PI3K-p85α Regulatory subunit 
of PI3K

Knockout Impaired terminal maturation, 
Decreased NK cells

Significantly 
impaired

Significantly impaired Awasthi et al. (50)

PI3K-p110δ Catalytic subunit of 
PI3K

Knockin Impaired terminal maturation, 
decreased NK cells

Significantly 
impaired

Significantly impaired Guo et al. (51)

Rap1a Small GTPase Knockout Not affected Not affected Not affected Awasthi et al. (50)

Rap1b Small GTPase Knockout Not affected Not affected Significantly impaired

Carma1 CARD domain-
containing scaffold

Knockout/CARD domain 
deletion

Not affected Moderately 
impaired

Significantly impaired Rajasekaran et al. 
(48, 52)

Bcl10 CARD domain-
containing scaffold

Knockout Not affected Moderately 
impaired

Significantly impaired Malarkannan et al. 
(53)

TAK1 MAPKKK Conditional knockout Not applicable Moderately 
impaired

Significantly impaired Rajasekaran et al. 
(48, 52)

ADAP Scaffold protein Knockout Unknown Not affected Significantly impaired Rajasekaran et al. 
(48)
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Apart from its role in activation, Fyn may also play a 
 suppressive role in T cells (66) and NK cells (48). For instance, 
activation of Fyn−/− NK cells via NKG2D or CD137 results in 
significantly elevated levels of proinflammatory cytokine and 
chemokine production (Table 1) compared to that of wild type 
(WT) (48), or following Ly49D cross linking (67). Additionally, 
co-culture of WT or Fyn−/− NK cells with target cells such as 
H60- or CD137L-expressing EL4 or RMA/S and YAC1 resulted in 
significantly reduced production of proinflammatory cytokines 
and chemokines in Fyn−/− NK cells (48, 58). These findings indi-
cate a high level of complexity in Src family kinase activation that 
reflects components of redundancy and, perhaps, antagonism in 
lymphocyte activation.

Distinct from Lck and Fyn, the third Src-kinase family mem-
ber Lyn acts predominantly as a negative regulator of lymphocyte 
functions (68). Hyperactivity associated with increased basal 
and inducible PI(3)K activity in Lyn−/− B cells indicates that it 
may impose inhibitory regulation of other Src-family kinases 
(69). Consistent with this observation, Lyn−/− mice develop 
autoimmunity resulting, in part, from hyperactive and increased 
absolute numbers of B and T cells (70). The mechanism underly-
ing these changes results from hypophosphorylation of PAG/Cbp 
(phosphoprotein associated with glycosphingolipid-enriched 
microdomains/Csk-binding protein) and increased activity 
of Fyn (69); however, the direct substrates of Lyn responsible 
for these changes are yet to be determined. Further studies are 
needed to delineate the exact mechanism whereby Lyn regulates 
other signaling molecules.

Pi(3)-Kinase
Activation of Src family kinases in NK cells is crucial for the 
stimulation of multiple downstream signaling events. This 
includes PI(3)-Kinase [PI(3)K] that are comprised of regula-
tory (p85α, p55α, p50α, p85β, and p55γ) and catalytic (p110α, 
p110β, p110γ, and p110δ) subunits that function to generate 
the second messenger phosphoinositol (3,4,5) trisphosphate 
[PI(3,4,5)P3] (71). Absence of regulatory or catalytic subunits of 
PI(3)K significantly impairs the development and functions of 
lymphocytes (50, 51, 72, 73). PI(3)K-p85α requires membrane 
localization for optimal activation, and can be recruited to the 
membrane through multiple mechanisms including binding to 
a YXXM motif present in the cytoplasmic tail of co-stimulatory 
receptors (CD19 and CD28) (74, 75), inhibitory receptors 
(CTLA4), signaling protein (Grb2), or adapter protein (DAP10) 
(76, 77). In addition, CD137 (4-1BB) recruits PI(3)K-p85α via 
an association with Lck and Fyn (48). In T cells, activation of 
PI(3)K and generation of PIP3 is largely driven by ligation of co-
stimulatory receptors, such as CD28 (78). Once localized to the 
inner leaflet of plasma membrane, using their SH3 domains, Lck 
and Fyn can bind to the N-terminal proline-rich region (PRR) 
of the PI(3)K-p85α subunit (79), leading to the phosphorylation 
of the p85 and recruitment of catalytic p110 isoforms (76). Thus, 
Src family kinases, through high-affinity interaction with PI(3)
K-p85α, function as a critical link between an activation receptor 
and generation of PIP3 (56, 76, 79).

Once generated, PIP3 binds and anchors multiple signaling 
molecules to the plasma membrane including Akt permitting 
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its subsequent phosphorylation by phosphoinositide-dependent 
kinase-1 (PDK-1) at Thr308 (Figure 2). PIP3-dependent signaling 
is terminated through the dephosphorylation of PIP3 by lipid 
phosphatase PTEN that produces PI(4,5)P2 (80, 81) or SHIP-1 
that generates PI(3,4)P2 (82) (Figure  2). Though the phospho-
inositides generated by PTEN and SHIP-1 are incapable of bind-
ing to Akt, the reduction in the Ser473 phosphorylation of Akt 
in the bone marrow-derived mast cells obtained from SHIP-1 
knockout mice and a concomitant reduction in its kinase activity 
demonstrate the relevance of these signaling intermediates (83). 
In general, PI(3)K has pro-growth effects in T and NK cells, 
and PTEN has growth suppressive effects such that deletion of 
PTEN from TH1 cells results in increased proliferation and Akt 
phosphorylation when compared with WT cells (84).

In NK cells, activation of PI(3)K is crucial for effector func-
tions (50, 72, 73, 85–87). NK cells that lack p85α− (50) or express-
ing a mutant form of p110δ (p110δD910A) that lack kinase activity 
(51) are impaired in both cytotoxicity and cytokine production 
(Table  1). Moreover, perforin-dependent cryptococcal micro-
bicidal activity of NK cells requires PI(3)K-mediated activation 
of ERK1/2 (88), and cytotoxic granule mobilization in NK cell 
is dependent on the PI(3)K–Rac–PAK–ERK1/2 pathway (89). 
These findings indicate that PI(3)K is a critical proximal signaling 
module responsible for regulating multiple effector functions.

Deletion of PI(3)K subunits leads to hypo-responsive effec-
tor T cells, whereas deletion of E3 ubiquitin ligases that induce 
degradation of p85 subunits are functionally hyper-responsive 
(90, 91). Interestingly, modulation of various subunits of PI(3)
K has variable impacts on different T cell subsets. For instance, 
deletion of p110δ in T cells results in enhanced tumor clearance 
and relative increases in cytotoxic T cell activity, largely because 
any changes in cytotoxic T cells are countered by profound inac-
tivation of immunosuppressive regulatory T cells (92).

The Signalosome: Contribution of  
LAT and SLP-76
Syk family kinases phosphorylate adapter proteins that nucleate 
signal transduction complexes. In T cells, Zap70 phosphorylates 
LAT (Linker of activated T cells) and SLP-76 (SH2 domain-
containing leukocyte protein of 76  kDa) (Figure  2). LAT and 
SLP-76 subsequently serve as a scaffold to bind proteins that 
mediate downstream signals including GADS and Grb2 to LAT, 
and Itk, adhesion and degranulation promoting adapter protein 
(ADAP), Vav1, and PLC-γ1 to SLP-76 (93–97). Despite the lack of 
enzymatic activity, the presence of LAT and SLP-76 are obligatory 
during T cell development, since LAT−/− or SLP-76−/− lack mature 
T cells (98, 99).

Role of LAT in signaling in NK cells is not clearly defined. NK 
cells deficient in LAT alone or LAT and NTAL displayed efficient 
cytotoxicity against all target cell lines (100), but decreased 
capacity to generate IFN-γ following co-culture with some (e.g., 
Rae1β+ B16 cells) but no other (e.g., YAC-1 or RMA/S cells) target 
cells (100). These results suggest that LAT is required (Table 1) 
for signal transduction in NK cells downstream of “induced-
self” receptors, but not receptors that facilitate activation from 
“missing-self” or “non-self.” Similarly, NK cells from LAT−/− mice 

demonstrated normal development and cytotoxicity (98), likely 
because of compensation from other scaffolds including SLP-76 
(Table 1) (101). Therefore, the requirement of LAT is limited to 
the generation of pro-inflammatory cytokines and is not required 
for cytotoxicity. Interestingly, recent data suggest that SLP-76 is 
required for efficient IFN-γ production and cytotoxicity in NK 
cells in a manner independent of LAT (102), indicating that 
T and NK cells exploit these adapter molecules in unique ways to 
coordinate effector functions (Figure 2).

iNTeRMeDiATe SiGNALiNG eveNTS iN 
CYTOTOXiC T AND NK CeLL 
LYMPHOCYTeS

Second Messengers: DAG and iP3
One event crucial to NK and T cell activation is the localization 
and activation of PLC-γ molecules into the adapter scaffold 
complexes (103). LAT, anchored to the plasma membrane, serves 
as a docking site for PLC-γ. While PI(3,4,5)P3 is required for the 
activation of PLC-γ, action of PTEN on the former leads to the 
generation of PI(4,5)P2 permitting the cleavage of membrane-
bound PI(4,5)P2 by PLC-γ into the second messengers diacyl-
glycerol (DAG) and IP3. Whereas DAG, a membrane signaling 
lipid, binds and activates RasGRP1 (a Ras-activating molecule) 
and PKC-θ, soluble IP3 binds to proteins that facilitate calcium 
flux from the endoplasmic reticulum (Figure 2). NK cells and 
T cells utilize different isoforms of PLC-γ in hydrolysis of PIP2; 
T cells primarily utilize PLC-γ1, whereas NK cells predominantly 
utilize PLC-γ2 (49, 104–108). Although these cell-specific dif-
ferences partially result from alterations in protein expression 
levels of individual isoforms (109), overexpression of PLC-γ1 in 
NK cells can only partially compensate for PLC-γ2 deficiency 
in NK cells, for instance, restoring the terminal maturation of 
NK cells, but failing to fully restore impaired cytotoxicity and 
cytokine production (Table  1) (49). Further dissection of the 
defects in NK cell-mediated cytotoxicity in the Plc-γ2−/− NK 
cells revealed that NK cells were capable of forming conjugates 
with target cells and developing Microtubule organizing center 
(MTOC) polarization, but that calcium mobilization and 
resulting signaling events were compromised (108). In T cells, 
in addition to LAT, a unique complex containing SLP-76 and 
the Tec family kinase Itk (IL-2 inducible kinase) are required for 
PLC-γ activation (110). While phosphorylation of at least three 
tyrosines at the N-terminus of SLP-76 by Zap70 appear essential 
for efficient signal transduction, phosphorylation at Y145 appears 
to be most important for recruitment and activation of Itk, and 
the subsequent phosphorylation and activation of PLC-γ1 (111) 
(Figure 2). Mutation of SLP-76 at Y145, in general, phenocopies 
the loss of Itk (112), likely because other Tec family kinases, 
such as Rlk, can only partially compensate for the lack of Itk-
mediated PLC-γ1 activation (113). Thus, apart from binding 
LAT, PLC-γ1 requires interaction with multiple components 
of the signalosome in order to optimally coordinate enzymatic 
activity (94).

Once activated, PLC-γ1 generates IP3 and DAG, allowing 
DAG to bind RasGRP1 to facilitate activation of Ras in T cells 
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FiGURe 3 | Unique amino acid motifs in ADAP scaffold facilitate its interactions with multiple-binding partners. Pictorial depiction of ADAP protein and 
its amino acid sequences (or motifs) that are required to interact with Fyn, Carma1, TAK1, SLP76, and SKAP55. Amino acid sequences within ‘’ are from ADAP with 
the name of the interacting partner listed above or below this sequence.
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(114), along with at least three isoforms of PKC, including PKC-ϵ, 
PKC-ŋ, and PKC-θ (115). Whereas PKC-ϵ and PKC-ŋ serve in a 
redundant manner to recruit PKC-θ to the immune synapse (115, 
116), the role of PKC-θ is obligatory for initiation of downstream 
signaling events such as NF-κB activation. The localization of 
DAG is crucial to its ability to mediate signaling and cytoskeletal 
changes such as dynein-mediated MTOC orientation and T cell 
polarization (116).

Second Messenger to PKC-θ
Apart from binding to DAG, PKC-θ is also regulated by multiple 
other factors. PKC-θ exists as an inactive high-molecular disulfide-
linked complex in naive T cells. During T cell activation, PKC-θ is 
gradually reduced from a 85 kDa inactive form to a 82 kDa active 
form by two major redox regulators, glutathione and thioredoxin 
(117), thus implicating the intracellular redox state as another 
node for PKC-θ regulation. Further, a C2 phosphotyrosine-
binding domain also appears important for optimizing activity 
of PKC-θ (118). In T cells, efficient PKC-θ activity also requires 
phospohorylation downstream of PDK1, a PIP3-regulated kinase, 
either directly through PDK1 or through an intermediary serine/
threonine kinase (119), indicating the role of PI(3)K and thereby 
a requirement for co-stimulatory receptor ligation for optimal 
PKC-θ activation (Figure 2).

Activated PKC-θ is required for efficient in vivo function of 
NK cells, since PKC-θ−/− mice are unable to eliminate tumor 
cells lacking expression of MHC-I, secondary to reduced NK 
cell intra-tumoral migration and decreased NK cell activa-
tion (120). Similarly, PKC-θ−/− NK cells demonstrate reduced 
cytotoxicity after treatment with Toll receptor agonists, such 
as poly I:C (121, 122) and reduced cytokine production after 
stimulation through NK1.1 or Ly49D (123). Though the signal-
ing events responsible for the phenotype of PKC-θ−/− NK cells 
has undergone limited analysis, it appears that sustained Erk1/2 
and Jnk1/2 activation is abrogated, resulting in decreased 
nuclear translocation of AP-1 and NFAT (123). Intriguingly, the 

activation of NF-κB and degradation of IκBα does not appear 
to be impacted by loss of PKC-θ in NK cells (123), in contrast 
to T cells in which loss of PKC-θ results in major defects in 
NFκB signaling (124), leading to abrogation of TCR-induced 
IL-2 production and proliferation (125).

UNiQUe SiGNALiNG THAT ReGULATe 
SeLeCTive eFFeCTOR FUNCTiONS

Our recent work has shown that “ADAP” serves as a node of 
signaling divergence and it could be manipulated to differentially 
limit unique effector responses. ADAP [Fyn-binding protein 
(Fyb)] was first identified in T cells as a 120/130 kDa component 
of the TCR–CD3ζ–p59FynT activation (126). ADAP binds to 
the SH2 domain of Fyn in a specific manner, such that other 
SH2-domain-containing Src family kinases, such as Lck, do not 
(127). Fyb was renamed ADAP in consideration of the specific 
functional defects identified in lymphocytes from mice deficient 
of this protein (128). ADAP utilizes several domains to facilitate 
binding with partner proteins (Figure  3) (129–131) and is 
known to undergo phosphorylation following TCR ligation, an 
event that likely contributes to its protein–protein interactions 
with SLP-76, Nck1, and Nck2 (132). ADAP also binds to the 
monomeric GTPase Rap1, contributing to its localization at the 
plasma membrane (133). Interaction of the SH2 domain of SLP-
76 with ADAP takes place at three specific sites within ADAP, 
permitting oligomerization and the formation of SLP-76-based 
microclusters (134) (Figure 3). ADAP also contains SH3 (hSH3) 
domains that bind to phosphoinositides that likely contribute to 
its role in cellular migration, cytokine production, and integrin 
activation (135).

In NK and effector T cells, ADAP has been shown to play 
important roles in both ITAM-dependent signaling pathways, 
and activation of β1 and β2 integrins such as LFA1 (134 and 147). 
In T cells, loss of ADAP results in a maturation block of double-
positive thymocytes resulting from alterations in both positive and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Rajasekaran et al. Molecular Targets for Safer Immunotherapy

Frontiers in Immunology | www.frontiersin.org May 2016 | Volume 7 | Article 176

negative selection of developing T cells (136). Peripheral T cells 
that manage to emigrate from the thymus are also impaired as 
evidenced by reduced tissue rejection in heart (137) and intestinal 
allografts in ADAP−/− mice (138), and significant amelioration 
of pathology in Experimental Autoimmune Encephalitis (EAE) 
(139). Loss of ADAP in T cells further decreases their prolifera-
tion and cytokine production efficiency in response to limiting 
antigen doses (140). Crucially, ADAP also plays a role in integrin 
activation of T and NK cells (141). Integrins are components 
of cell–cell interactions that are required for extravasation and 
tissue localization of lymphocytes to sites of infection. In resting 
cells, integrins bind weakly to ligands, such as ICAM1, but in 
activated cells, integrins are conformationally altered to bind 
ligands with high affinity. These conformational changes in inte-
grins are due to “inside-out” signaling in contrast to “outside-in” 
signaling transduced by integrins themselves after ligand binding 
(142–144). In T cells, the chemokine receptor CCR7 induces 
activation of the LFA-1 through a mechanism that requires bind-
ing of ADAP, and an additional adapter molecule, SKAP55, to 
LFA-1 (145). Studies using ADAP/SKAP55 chimeric proteins in 
Adap−/− T cells identified distinct roles for ADAP in facilitating 
NF-κB signaling and LFA-1 activation. Expression of a SKAP55/
ADAP chimeric molecule in Adap−/− T cells was sufficient and 
necessary for integrin function and NF-κB activation (146–148), 
whereas expression of a chimeric molecule with a point mutation 
in the PH-domain of SKAP55 permitted restoration of NF-κB 
activation in NK cells but not integrin function (148). It is cur-
rently thought that recruitment of ADAP to LFA1 complexes 
through the PH-domain of SKAP55 restricts the ability of ADAP 
to interact with the CBM signalosome and to activate NF-κB 
signal transduction (148).

Stimulation through TCR and CD28 utilizes ADAP to facilitate 
signaling downstream of the Carma1–Bcl10–Malt1 (CBM) com-
plex, which leads to phosphorylation and degradation of IκBα 
and nuclear translocation of NF-κB (149). While the molecular 
mechanism whereby ADAP regulates the formation of the CBM 
have not been fully elucidated, the essential function of ADAP 
in linking CBM via Carma1 to PKC-θ is well documented (136). 
NF-κB, which is sequestered in the cytosol through binding to 
IκBα, translocates into the nucleus (136). Carma1 and Bcl10 play 
an obligatory role in the nuclear translocation of NF-kB follow-
ing activation of NK cells through NK1.1, Ly49D, NKG2D, and 
CD137 (52, 150). In addition to interactions with Carma1, ADAP 
also recruit TAK1, which facilitates phosphorylation of IKK alpha 
and beta (149), components of NF-κB signaling pathway. In NK 
cells, ADAP contributes to CBM complex formation in response 
to ITAM-containing receptors such as NK1.1, Ly49D, Ly49H, and 
response to activation through NKG2D, NCR1, and CD137 (150).

In contrast to T cells, analyses of NK cell development in 
ADAP−/− mice revealed no significant alterations (151). Recently, 
we (48), and others (102), have extended these initial findings 

to provide a more detailed evaluation of NK cell functions in 
response to a variety of NK cell receptors. While ADAP−/− and WT 
NK cells demonstrated comparable cytotoxicity, we and others 
have observed attenuated cytokine production in ADAP−/− NK 
cells following activation via Ly49D (48, 102), NKG2D, NCR1, 
2B4, and CD137 (4-1BB) (48). Thus, ADAP could act as a diver-
gent point to selectively attenuate cytokine production without 
affecting cytotoxicity in NK cells.

FUTURe PeRSPeCTiveS

Identifying unique signaling myriads of signaling cascades in 
NK and T cells is complex, but improved understanding can 
serve to enhance existing immune-based therapies. For instance, 
new treatments that use genetically engineered lymphocytes to 
target malignancy have had successes in elimination of tumors 
such as refractory B cell malignancies, but have been limited 
by CRS. Targeting ADAP could help to regulate inflammatory 
cytokine production from effector lymphocytes while preserving 
cytotoxicity. Further, studies are also ongoing to test the efficacy 
of several pharmacological PI(3)K inhibitors in regulating tumor 
growth and survival without affecting the function of the immune 
cells. Continued detailed, rigorous study of lymphocyte signaling 
has the potential to unlock additional targets that could permit 
tailored responses for clinical therapy related to chronic autoim-
munity and cancer.
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