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Abstract

During the last ten years, many research results have been referring to a particular type of

cancer-associated fibroblasts associated with poor prognosis, invasiveness, metastasis

and resistance to therapy in multiple cancer types, characterized by a gene expression sig-

nature with prominent presence of genes COL11A1, THBS2 and INHBA. Identifying the

underlying biological mechanisms responsible for their creation may facilitate the discovery

of targets for potential pan-cancer therapeutics. Using a novel computational approach for

single-cell gene expression data analysis identifying the dominant cell populations in a

sequence of samples from patients at various stages, we conclude that these fibroblasts are

produced by a pan-cancer cellular transition originating from a particular type of adipose-

derived stromal cells naturally present in the stromal vascular fraction of normal adipose tis-

sue, having a characteristic gene expression signature. Focusing on a rich pancreatic can-

cer dataset, we provide a detailed description of the continuous modification of the gene

expression profiles of cells as they transition from APOD-expressing adipose-derived stro-

mal cells to COL11A1-expressing cancer-associated fibroblasts, identifying the key genes

that participate in this transition. These results also provide an explanation to the well-

known fact that the adipose microenvironment contributes to cancer progression.

Author summary

Computational analysis of rich gene expression data at the single-cell level from cancer

biopsies can lead to biological discoveries about the nature of the disease. Using a compu-

tational methodology that identifies the gene expression profile of the dominant cell
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population for a particular cell type in the microenvironment of tumors, we observed that

there is a remarkably continuous modification of this profile among patients, correspond-

ing to a cellular transition. Specifically, we found that the starting point of this transition

has a unique characteristic signature corresponding to cells that are naturally residing in

normal adipose tissue. We also found that the endpoint of the transition has another char-

acteristic signature corresponding to a particular type of cancer-associated fibroblasts

with prominent expression of gene COL11A1, which has been found strongly associated

with invasiveness, metastasis and resistance to therapy in multiple cancer types. Our

results provide an explanation to the well-known fact that the adipose tissue contributes

to cancer progression, shedding light on the biological mechanism by which tumor cells

interact with the adipose microenvironment. We provide a detailed description of the

changing profile during the transition, identifying associated genes as potential targets for

pan-cancer therapeutics inhibiting the underlying mechanism.

Introduction

This work investigates, using computational analysis of rich single-cell datasets from many

patients, the nature and origin of a particular type of cancer-associated fibroblasts (CAFs) that

has been found to be strongly associated with invasiveness, metastasis, resistance to therapy,

and poor prognosis, in multiple cancer types. These fibroblasts can be identified by their char-

acteristic signature with prominent presence of collagen COL11A1 and several other co-

expressed genes such as THBS2 and INHBA. There are indications that the generation of those

CAFs is part of a universal biological process in cancer that plays essential roles in cancer pro-

gression. Therefore, the driving vision for this research has been that it may provide testable

hypotheses for the development of pan-cancer therapeutics targeting the biological mecha-

nisms responsible for the creation of those CAFs. As described below, to achieve this task we

used both established techniques for studying the dynamic changes in gene expression of cells

associated with lineages, such as trajectory inference, as well as complementary computational

approaches with novel application in single-cell data analysis. These techniques allowed the

precise identification of the expression profile of the origin of the underlying cellular transition

as a particular cell type of adipose derived stromal/stem cells (ASCs). We also independently

validated the presence of those ASCs as naturally occurring, by applying the same computa-

tional methods in other available datasets of normal adipose tissue. In the remaining part of

this section we provide introductory information about the COL11A1-expressing CAFs,

explain the motivation for our choice of computational methods, and provide evidence for

their advantages and unique capabilities analyzing the particular data sets that we used.

These CAFs were first identified in 2010 [1] by their cancer stage-associated signature. Spe-

cifically, a COL11A1/INHBA/THBS2-expressing gene signature was found to be present only

after a particular staging threshold, different in each cancer type, was reached. For example, it

only appeared in ovarian cancer of at least stage III; in colon cancer of at least stage II; and in

breast cancer of at least invasive stage I (but not in carcinoma in situ). We had observed the

striking consistency of that signature across cancer types, which was obvious at that time from

bulk microarray data. For example, Table 1 shows the top 15 genes ranked in terms of fold

change for three different cancer types (breast [2], ovarian [3], pancreatic [4]) using data pro-

vided in papers published independently. The breast cancer data compare invasive ductal car-

cinoma with ductal carcinoma in situ (supplementary data 3, “up in IDC” of the paper [2]); the

ovarian cancer data compare metastatic tissue in the omentum with primary tumor (Table 2 of
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the paper [3]); and the pancreatic data compare whole tumor tissue with normal pancreatic tis-

sue (Table 1 of the paper [4]). The four genes COL11A1, INHBA, THBS2, COL5A2 appear

among the top 15 in all three sets (P = 6×10−23 by multi-set intersection test [5]). The actual P
value is much lower than that, because, in addition to the above overlap, ten additional genes

(COL10A1, COL1A1, COL5A1, FAP, FBN1, FN1, LOX, MFAP5, POSTN, SULF1) appear

among the top 15 in at least two of the three sets (and are highly ranked in all three sets any-

way). This similarity demonstrates that the signature is well-defined and associated with a uni-

versal biological mechanism in cancer.

We had also found that gene COL11A1 serves as a proxy of the full signature, in the sense

that it is the only gene from which all other genes of the signature are consistently top-ranked

in terms of the correlation of their expression with that of COL11A1. Accordingly, we had

identified a COL11A1-correlated pan-cancer gene signature, listed in table 4 of [1], which we

deposited in the Molecular Signatures Database (MSigDB). We had referred to those CAFs as

MAFs (“metastasis-associated fibroblasts”), because their presence suggests that metastasis is

imminent. To avoid any inaccurate interpretation of the term as implying that such fibroblasts

are markers of metastasis that has occurred already, here we refer to them as “COL11A1-

expressing CAFs.”

Since then, many research results were published connecting one of the genes COL11A1,

INHBA, THBS2 with poor prognosis, invasiveness, metastasis, or resistance to therapy, in vari-

ous cancer types [6–15].

Furthermore, several designated tumor subtypes were identified in individual cancer types

as a result of the presence of those pan-cancer CAFs. For example, the top 15 genes distin-

guishing the ovarian "mesenchymal subtype" according to [16] are POSTN, COL11A1, THBS2,

COL5A2, ASPN, FAP, MMP13, VCAN, LUM, COL10A1, CTSK, COMP, CXCL14, FABP4,

INHBA. Similarly, the 24 characterizing genes of the "activated stroma subtype" of pancreatic

cancer in Fig 2 of [17] are SPARC, COL1A2, COL3A1, POSTN, COL5A2, COL1A1, THBS2,

FN1, COL10A1, COL5A1, SFRP2, CDH11, CTHRC1, PNDC1, SULF1, FAP, LUM, COL11A1,

ITGA11, MMP11, INHBA, VCAN, GREM1, COMP. In both of these examples, these gene lists

Table 1. Top 15 ranked genes in terms of fold change (FC) for three different cancer types revealing the signature of the COL11A1-expressing cancer-associated

fibroblasts. Shown are the rankings, reported by the authors, for breast, ovarian and pancreatic cancers. We eliminated multiple entries of the same gene (keeping the one

that appears first) and dashes. Genes shared in all three cancer types are highlighted in green, while genes appearing twice are highlighted in yellow.

Breast Ovarian Pancreatic

Rank Gene FC Gene FC Gene Log2FC

1 COL11A1 6.5 COL11A1 8.23 INHBA 5.15

2 COL10A1 4.07 COL1A1 5.67 COL10A1 5

3 MFAP5 3.73 TIMP3 5.52 POSTN 4.92

4 LRRC15 3.61 FN1 5.4 SULF1 4.63

5 INHBA 3.44 INHBA 4.94 COL8A1 4.6

6 FBN1 3.43 EFEMP1 4.86 COL11A1 4.4

7 SULF1 3.35 DSPG3 4.36 CTHRC1 4.38

8 GREM1 3.35 COL5A2 4.07 COL1A1 4.12

9 COL5A2 3.22 LOX 4.03 THBS2 3.97

10 LOX 3.22 MFAP5 4.01 HNT 3.9

11 COL5A1 3.08 POSTN 3.97 CSPG2 3.87

12 THBS2 2.99 COL5A1 3.95 WISP1 3.8

13 LAMB1 2.97 THBS2 3.91 FN1 3.69

14 FAP 2.96 FBN1 3.9 COMP 3.53

15 SPOCK 2.91 FAP 3.84 COL5A2 3.38

https://doi.org/10.1371/journal.pcbi.1009228.t001
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are clearly due to the presence of the COL11A1/INHBA/THBS2-expressing CAFs and therefore

these are not cancer-type specific subtype signatures.

To computationally investigate the origin of those CAFs, we reasoned that analysis of rich

datasets from single-cell RNA sequencing (scRNA-seq) provides unique opportunities for

tracking the trajectories of cell differentiation lineages. There are several single-cell trajectory

inference methods [18] performing “trajectory inference analysis,” ordering cells along a tra-

jectory based on similarities in expression patterns.

In particular, we identified one exceptionally rich dataset [19] from pancreatic ductal ade-

nocarcinoma, containing gene expression profiles from 24 tumor samples and 11 normal con-

trol samples. We found that several among the 24 tumor samples contained populations of

cells strongly co-expressing COL11A1, THBS2 and INHBA, while none of the normal samples

contained such cells. We also observed that the prominence of this co-expression signature

varied significantly among the tumor samples, having only hints of their presence in some of

them, suggesting that the corresponding patients were at various stages of the generation of

COL11A1-expressing CAFs. This provides an opportunity to perform additional complemen-

tary computational analysis by comparing the prevalent fibroblastic cell populations across the

tumor samples, and comparing them with those in the normal samples.

Therefore, in this paper we also used attractor analysis (Materials and Methods) in a novel

manner for the analysis of rich scRNA-seq data. The unsupervised attractor algorithm [20]

iteratively finds co-expression signatures converging to “attractor metagenes” pointing to the

core (“heart”) of co-expression. Each attractor metagene is defined by a ranked set of genes

along with scores determining their corresponding strengths within the signature, so the top-

ranked genes are the most representative of the signature. The attractor algorithm has previ-

ously been used successfully for identifying features useful for breast cancer prognosis [21,22].

When applied on single cell data from a sample, it identifies the gene expression profiles of the

dominant cell populations in the sample, and the algorithm is designed to ensure that all the

top-ranked genes are co-expressed in the same cells. The purpose of the attractor algorithm is

not to classify cells into mutually exclusive subsets. Instead, it identifies the genes at the core of

co-expression signatures representing cellular populations from single-cell data, and it pro-

vides information that cannot be deduced with traditional clustering methods (see

Discussion).

When we applied the attractor algorithm separately in each of the normal samples, we iden-

tified a set of nearly identical attractor signatures, corresponding to a type of adipose-derived

stromal/stem cells (ASCs) naturally present in the stromal vascular fraction (SVF) of normal

adipose tissue, expressing a unique characteristic signature containing fibroblastic markers

such as LUM and DCN as well as adipose-related genes, such as APOD, CFD and MGP.

When we applied the algorithm in each of the tumor samples, we found a set of signatures

that were changing in a remarkably continuous manner across the samples, some of them

being very similar to those of the normal samples, while others are similar to the COL11A1-

based signature. This suggests that the signatures undergo a gradual change as the transition

proceeds, starting from the state of the normal ASCs and passing through a continuum of

intermediate states. These results were consistent with those found by applying trajectory

inference analysis, but they provided additional significant information based on their unique

capabilities. Accordingly, this method demonstrated that there is a continuous “ASC to

COL11A1-expressing CAF transition.”

This finding explains the stage association of the COL11A1-expressing signature as result-

ing from the interaction of tumor cells with the adipose microenvironment: Indeed, adipose

tissue is encountered when ovarian cancer cells reach the omentum (stage III); after colon
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cancer has grown outside the colon (stage II); and in breast cancer from the beginning of the

spread (stage I, but not in situ stage 0).

Finally, we validated our results in other cancer types (head and neck, ovarian, lung, breast),

suggesting the pan-cancer nature of the ASC to COL11A1-expressing CAF transition.

Results

ASC to COL11A1-expressing CAF transition identified in pancreatic ductal

adenocarcinoma (PDAC)

The PDAC dataset [19] consists of 57,530 scRNA-seq profiles from 24 PDAC tumor samples

(T1-T24) and 11 normal samples (N1-N11). To find the expression profile of the dominant

fibroblastic population in each sample, we applied the attractor algorithm on the set of identi-

fied mesenchymal cells (Materials and Methods). All samples (11 normal and 23 tumor sam-

ples, excluding sample T20 as it did not contain identified fibroblasts) yielded strong co-

expression signatures involving many genes with big overlap among them. Genes LUM, DCN,

FBLN1, MMP2, SFRP2 and COL1A2 appear in the top 100 genes in at least 33 out of the 34

samples (S1 Table), revealing a strong similarity shared by all those fibroblastic expression pro-

files. This strong overlap is consistent with the continuous transition process, as described

below.

Dominant fibroblastic population in the normal pancreatic samples is adipose-

derived. There is a striking similarity among the attractor profiles (Materials and Methods)

of the eleven normal pancreatic samples, indicating that they represent a stable and normally

occurring cell population. Specifically, there are 12 genes commonly shared among the top 30

genes in the attractors of at least ten of the eleven normal samples (Table 2), of which four

genes are shared among all the samples (P = 3×10−113 by multi-set intersection test [5]). In

addition to fibroblastic markers, there are several strongly expressed adipose-related or stem-

ness-related genes in the list, such as APOD, CXCL12, and DPT, revealing that they are ASCs.

Consistently, Gene Set Enrichment Analysis (GSEA) of these 12 commonly shared genes iden-

tified the most significant enrichment (FDR q value = 2.16 ×10−19) in the “BOQUEST_-

STEM_CELL_UP” dataset of genes upregulated in stromal stem cells from adipose tissue

versus the non-stem counterparts [23].

To investigate the nature of this ASC population, we referred to recent results from single-

cell analysis of general human adipose tissue [24]. We applied the attractor algorithm on the

dataset with the single-cell expression profiles of all 26,350 cells taken from the SVF of normal

adipose tissue from 25 samples, and compared the identified attractor with the “consensus

attractor” (Materials and Methods) of the 11 normal pancreatic samples, which represented

the main state of the normal fibroblastic population (Table 3). There are 14 overlapping genes

between the top 30 gene lists (P = 10−33 by hypergeometric test), and most of the non-

highlighted genes in each column are still ranked highly in the other column. This extreme

similarity of the two gene expression profiles indicates that they correspond to the same natu-

rally occurring cell population. Furthermore, excluding the general fibroblastic markers LUM
and DCN, we found that gene APOD (Apolipoprotein D) has the highest average ranking in

Table 3, and is top-ranked in the independently found SVF fibroblastic population of cluster

VP4 (supplementary file 20) of [24]. Therefore, we selected APOD as the representative marker

for the ASC population.

Establishing the presence of COL11A1-expressing CAFs in PDAC tumor samples.

Because COL11A1 serves as proxy of the full signature [1], a reliable test for determining if a

sample contains the COL11A1-expressing CAFs is to rank all genes in terms of their associa-

tion, measured by mutual information (Materials and Methods), with COL11A1 and see if
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INHBA and THBS2 are top ranked. Indeed, this happens in several tumor samples, as shown

in Table 4 for some of them (T23, T11, T6, T15, T18). For each sample, the shown genes are

co-expressed in the same cells, because of the high correlations in a single-cell dataset.

Dominant fibroblastic populations in the tumor PDAC samples exhibits a continuous

transition from ASCs to COL11A1-expressing CAFs. Based on the selection of APOD as a

representative marker for the ASC population as described previously, we rearranged the

attractors of the PDAC tumor samples in terms of descending order of the rank of APOD
(Table 5) from left to right. There is a remarkable continuity in the shown expression profiles.

The samples at the right side of the table include COL11A1 at increasingly high ranks. The

intermediate tumor samples shown in the middle have cells expressing genes that are top-

ranked in both the lists on the left as well as on the right. In other words, these cells are in a

genuine intermediate state, rather than being a mixture of distinct subtypes (see detailed dis-

cussion in Materials and Methods).

Further demonstration of the continuity of the transition. As an additional confirma-

tion of the continuity of the transition (as opposed to the presence of a mixture of distinct

Table 2. Top 30 genes of the identified attractors for each pancreatic normal sample (N1-N11). 12 commonly shared genes in at least ten of the eleven normal sam-

ples are highlighted.

Rank N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

1 DCN LUM LUM C7 APOD LUM PTGDS C7 DCN MMP2 LUM

2 LUM DCN FBLN1 FBLN5 DPT DCN APOD LUM LUM APOD DCN

3 C7 C7 C7 LUM FBLN5 FBLN1 LUM DCN C7 LUM FBLN1

4 FBLN1 FBLN1 PTGDS DCN PDGFRA ADH1B FBLN1 APOD FBLN1 EFEMP1 SFRP2

5 MGP APOD C1S APOD CXCL12 DPT C7 FBLN1 APOD CTSK CFD

6 C1S MGP DPT PTGDS LUM ABCA8 ADH1B SFRP2 SFRP2 SFRP2 APOD

7 CCDC80 C1S PDGFRA FBLN1 COL6A3 C3 DPT PTGDS SERPINF1 PLTP MGP

8 PTGDS DPT APOD C1R PTGDS APOD COL6A3 CCDC80 PTGDS MGST1 SERPINF1

9 DPT CCDC80 SFRP2 DPT C7 MMP2 EFEMP1 FBLN5 GSN LSP1 CCDC80

10 C1R PTGDS DCN SRPX CCDC80 C1S PDGFRA C1S C1S FBLN1 C3

11 APOD FBLN5 CXCL12 FMO2 CFD C7 CXCL12 CXCL12 SEPP1 SPON2 ADH1B

12 SEPP1 SEPP1 C1R SEPP1 MRC2 PTGDS SCN7A C3 CCDC80 PTGDS PTGDS

13 FBLN5 COL1A2 COL6A3 CXCL12 FGF7 SFRP2 MMP2 CFD DPT SVEP1 C7

14 CXCL12 SFRP2 ADH1B CYR61 SFRP2 FBLN5 MEG3 C1R OLFML3 CXCL12 C1S

15 EFEMP1 SRPX SPON2 SFRP2 MARCKS C1R C1S MGP FBLN5 SCN7A CST3

16 COL1A2 SERPINF1 CFD CLEC11A LRP1 CXCL12 OLFML3 CFH C1R COL6A3 C1R

17 SFRP2 OLFML3 LAMA2 PDGFRA FMO2 CST3 SVEP1 COL6A3 PTN CCDC80 CXCL14

18 ALDH1A1 CST3 C3 NR2F1 NR2F1 MGP DCN SRPX MGP COLEC11 MMP2

19 CFD MEG3 FBLN5 C1S TNXB CCDC80 SFRP2 EFEMP1 ALDH1A1 PDGFRA GPNMB

20 COL6A3 C1R ABCA8 ABCA8 DCN MRC2 MRC2 SEPP1 PDGFRA HBP1 S100A4

21 EMP1 MFAP4 LRP1 CCDC80 LOX COL1A2 FBLN5 PDGFRA COL6A2 CYGB DPT

22 PCOLCE RARRES2 SLIT2 PTN C1R CFD C3 DPT CST3 ARSK MFAP4

23 C3 PCOLCE CFH SERPINF1 IGFBP3 SPRY1 COL1A2 CXCL14 COL6A3 SH3GL1 COL6A2

24 SRPX CFH SRPX SVEP1 HEG1 SMOC2 ABCA8 ADH1B CXCL14 OAF FBLN5

25 SERPINF1 CXCL12 COL1A2 CFD RP11-572C15.6 GSN SRPX NEGR1 C3 BMP1 SMOC2

26 ANXA1 FGF7 BOC LAMB1 F3 COL6A2 ACVRL1 COL6A2 CXCL12 LAMA2 ABCA8

27 CYR61 PDGFRA FSTL1 FTL ADAMTSL3 CFH TIMP2 BOC MMP2 GPC3 FMO2

28 CST3 COL6A3 SVEP1 ANTXR2 STK17B OLFML3 LAMA2 OLFML3 PCOLCE TMEM67 RP11-572C15.6

29 RARRES2 ALDH1A1 ABCA9 COL6A3 EMP1 PDGFRA DAB2 EMP1 IGF1 C1R PCOLCE

30 PDGFRA SPRY1 CYR61 MGP MPZL1 PCOLCE NR2F1 LAMA2 ABCA8 PLXDC1 SEPP1

https://doi.org/10.1371/journal.pcbi.1009228.t002
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fibroblastic subtypes), Fig 1 shows scatter plots for genes APOD and COL11A1, color-coded

for the expression of fibroblastic marker LUM, of the mesenchymal cells in two fibroblast-rich

samples T11 and T23. The presence of cells covering the full range from the upper-left to the

bottom-right sides of the plots, including the intermediate stages in which cells co-express

both markers, demonstrates the presence in each sample of cells representing the continuously

varying transition from ASCs to COL11A1-expressing CAFs.

Table 3. Comparison of the attractors (top 30 genes) identified in the SVF of normal adipose tissue (Dataset 1) and in the normal pancreatic samples (Dataset 2).

Common genes are highlighted in yellow.

Rank Dataset 1 Dataset 2 Rank (cont’d) Dataset 1 Dataset 2

1 DCN LUM 16 FOS PDGFRA

2 LUM DCN 17 MGST1 SRPX

3 APOD FBLN1 18 COL1A2 COL6A3

4 CFD C7 19 COL6A3 ADH1B

5 CXCL14 APOD 20 LAPTM4A CFD

6 MGP PTGDS 21 CXCL12 OLFLM3

7 SERPINF1 SFRP2 22 WISP2 SERPINF1

8 GSN C1S 23 SRPX MMP2

9 GPX3 CCDC80 24 JUN CST3

10 MFAP4 MGP 25 MMP2 SEPP1

11 PLAC9 DPT 26 COL6A2 ABCA8

12 S100A13 CXCL12 27 C1S COL1A2

13 IGFBP6 C1R 28 CCDC80 LAMB1

14 DPT FBLN5 29 EGR1 SVEP1

15 MFAP5 C3 30 PCOLCE MEG3

https://doi.org/10.1371/journal.pcbi.1009228.t003

Table 4. Ranked COL11A1-associated genes in five PDAC samples. MI = Mutual Information.

Rank T23 MI T11 MI T6 MI T15 MI T18 MI

1 COL11A1 1 COL11A1 1 COL11A1 1 COL11A1 1 COL11A1 1

2 COL10A1 0.3603 CTHRC1 0.2434 MFAP5 0.2353 MFAP5 0.3198 MFAP5 0.3408

3 COL12A1 0.3383 MFAP5 0.2357 FNDC1 0.1997 GJB2 0.2583 SUGCT 0.3379

4 COL1A1 0.3187 COL12A1 0.2345 NTM 0.1912 COL10A1 0.2580 COL10A1 0.2899

5 THBS2 0.3167 COL10A1 0.2238 COL8A1 0.1877 INHBA 0.2561 C5orf46 0.2753

6 COL1A2 0.3099 C1QTNF3 0.2155 TWIST1 0.1714 C1QTNF3 0.2514 PPAPDC1A 0.2668

7 COL5A2 0.3003 THBS2 0.2123 COL10A1 0.1619 MATN3 0.2505 NTM 0.2649

8 CTHRC1 0.2854 COL1A2 0.2045 THBS2 0.1559 FNDC1 0.2503 COL8A1 0.2534

9 FN1 0.2781 COL8A1 0.2018 ITGA11 0.1556 COL8A2 0.2411 INHBA 0.2430

10 COL3A1 0.2770 AEBP1 0.2000 PPAPDC1A 0.1305 COL1A1 0.2399 FNDC1 0.2264

11 INHBA 0.2746 LUM 0.1989 DIO2 0.1298 COL12A1 0.2351 COL12A1 0.2194

12 AEBP1 0.2688 COL1A1 0.1985 IGFL2 0.1178 COL8A1 0.2325 IGFL2 0.2153

13 COL5A1 0.2626 FNDC1 0.1963 SUGCT 0.1170 THBS2 0.2292 THBS2 0.2094

14 VCAN 0.2457 SFRP2 0.1955 ADAM12 0.1165 NTM 0.2257 CTHRC1 0.2026

15 MFAP5 0.2449 GJB2 0.1879 C1QTNF3 0.1165 COL1A2 0.2220 SULF1 0.2015

16 MMP11 0.2360 MATN3 0.1817 ITGBL1 0.1109 GREM1 0.2156 COMP 0.1926

17 COL8A1 0.2357 COL3A1 0.1740 GREM1 0.1018 FN1 0.2146 STMN2 0.1926

18 COL6A3 0.2339 INHBA 0.1696 P4HA3 0.1008 IGFL2 0.2141 WNT2 0.1925

19 POSTN 0.2316 DCN 0.1692 INHBA 0.1002 CXCL14 0.2112 MMP11 0.1919

20 MFAP2 0.2275 CTGF 0.1691 COL5A1 0.0983 ITGBL1 0.2048 SPOCK1 0.1878

https://doi.org/10.1371/journal.pcbi.1009228.t004
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To further investigate the continuous transition, we partitioned the 34 pancreatic samples

into three groups. Group 1 includes the eleven normal samples (N1 to N11). For tumor sam-

ples, we divided the rearranged samples in Table 5 into two groups (Group 2 and Group 3).

Group 2 contains all samples to the left of and including T22, so that APOD is ranked before

COL11A1 in the attractors of that Group, representing a relatively earlier stage of this transi-

tion. We then applied the consensus version of the attractor finding algorithm (Materials and

Methods) and identified the signatures representing the main state of the fibroblasts for each

of the above three sample groups (Table 6). Although there are many shared genes, the groups

have distinct gene rankings. Group 1 (normal samples) contains many adipose-related genes,

consistent with Table 2. Group 3 contains, in addition to COL11A1, many among the other

CAF genes, such as THBS2, INHBA, AEBP1, MFAP5 and COL10A1. Group 2 displays an inter-

mediate state, including markers of both ASCs as well as CAFs.

To find potential critical genes at the initiation phase of the cellular transition, we focused

on the first tumor samples (with highest APOD ranking) in Table 5, so we can compare them

with those of the normal ASCs.

We observe that gene SFRP4 stands out, as it appears for the first time remarkably among

the top genes in all the first samples T2, T13, T14, T19, ranked 4th, 6th, 4th 8th, respectively.

This suggests that the Wnt pathway is involved in the initiation of the cellular transition,

because SFRP4 is a Wnt pathway regulator whose expression has been found associated with

various cancer types [25,26]. Interestingly, SFRP4 disappears from the list of the attractors,

indicating that it is downregulated in the final stage of the transition.

It is also known that gene RARRES1 (aka TIG1) plays an important role in regulating the

proliferation and differentiation of ASCs [27]. Consistently, Table 6 reveals that RARRES1

Fig 1. Scatter plots for fibroblast-rich samples for patients (A) T11 and (B) T23. Each dot represents a mesenchymal cell identified in the sample. The x- and y-axis

denote the expression levels of COL11A1 and APOD, respectively. Dots are colored for the expression of fibroblastic marker LUM. The expression unit is the

normalized log-transformed value from the count matrix (Materials and methods).

https://doi.org/10.1371/journal.pcbi.1009228.g001
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appears for the first time in the attractors of the initial tumor samples. Just like SFRP4,

RARRES1 is downregulated in the final stage, related to the fact that it has been suggested as a

tumor suppressor [28,29].

We also performed differential expression (DE) analysis comparing the normal samples

with the first samples (T2, T13, T14, T19) of Table 6 (Materials and Methods; S2 Table). The

results of such DE analysis represent the full population of fibroblasts and not necessarily

reflect the expression changes in the particular cells undergoing the ASC to COL11A1 express-

ing CAF transition. Gene CFD was found to be most downregulated, consistent with the

expected downregulation of adipose-related genes as they differentiate into fibroblasts. Genes

SFRP4 and RARRES1 are upregulated consistent with their appearance in the attractors.

On the other hand, the top upregulated gene is phospholipase A2 group IIA (PLA2G2A),

which is not among the top genes of any attractors we identified, indicating that it is not

expressed by cells undergoing the ASC to COL11A1-expressing CAF transition. It probably

still plays, however, an important related parallel role and many previous studies referred to its

effects on prognosis of multiple cancer types [30–32]. The PLA2G2A protein is a member of a

family of enzymes catalyzing the hydrolysis of phospholipids into free fatty acid. We hypothe-

size that this process leads to fatty acid oxidation, which may facilitate metastatic progression.

Indeed, it has been recognized that fatty acid oxidation is associated with the final COL11A1-

expressing stage of the transition [33]. These results suggest that lipid metabolic reprogram-

ming plays an important role in the metastasis-associated biological mechanism [34], by

potentially providing energy for the metastasizing tumor cells.

Validation with trajectory inference. We independently applied trajectory inference (TI)

analysis on the PDAC fibroblasts by using the Slingshot [35] method in an unsupervised man-

ner. We first performed unsupervised clustering on the identified fibroblasts (Materials and

Methods), resulting in four subgroups X1, X2, X3, X4 (S1A Fig) with the top differentially

expressed genes shown in S1B Fig. One of these clusters (X4) was discarded from further TI

analysis, because it mainly expressed the IL1 CAF marker HAS1 (Hyaluronan Synthase 1),

which is not expressed by either ASCs or COL11A1-expressing CAFs (and does not appear at

Table 6. Top 30 genes of the consensus attractors for three different PDAC sample groups. Group1: normal sam-

ples; Group 3: T11, T21, T23, T9, T16, T17, T8; Group 2: other tumor samples.

Rank Group1 Group2 Group3 Rank (cont’d) Group1 Group2 Group3

1 LUM LUM COL1A1 16 PDGFRA CYP1B1 MMP2

2 DCN SFRP2 COL1A2 17 SRPX FBLN5 DCN

3 FBLN1 APOD COL3A1 18 COL6A3 MEG3 SFRP2

4 C7 SFRP4 FN1 19 ADH1B COL1A1 TMSB10

5 APOD MMP2 COL5A2 20 CFD C3 POSTN

6 PTGDS VCAN COL5A1 21 OLFML3 RARRES1 MXRA5

7 SFRP2 PDGFRA COL6A3 22 SERPINF1 CCDC80 COL6A2

8 C1S FBLN1 COL11A1 23 MMP2 MOXD1 ISLR

9 CCDC80 DCN CTHRC1 24 CST3 PLXDC2 AEBP1

10 MGP EFEMP1 THBS2 25 SEPP1 HTRA3 MEG3

11 DPT CTHRC1 VCAN 26 ABCA8 COL10A1 MFAP5

12 CXCL12 ISLR COL10A1 27 COL1A2 COL8A1 SERPINH1

13 C1R COL6A3 LUM 28 LAMB1 ITGBL1 MMP14

14 FBLN5 COL1A2 SPARC 29 SVEP1 OMD MFAP2

15 C3 CTSK COL12A1 30 MEG3 PTGDS INHBA

https://doi.org/10.1371/journal.pcbi.1009228.t006
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all in S1 Table), and contained only 3% of fibroblasts resulting almost exclusively from patient

T11 (S1C Fig).

As seen from the list of top differentially expressed genes of each cluster, X1 contains CAF

genes top ranked (including MMP11, COL11A1, THBS2, INHBA), X2 has RARRES1 at the top,

and X3 has ASC genes top ranked, including DPT, C7, CXCL12 and CFD. Consistently, S2A

and S2B Fig show the single trajectory path resulting from TI analysis, where X3 is the starting

point and X1 is the end point of the trajectory, while X2 (highly expressing RARRES1), is an

intermediate point, thus validating the continuous ASC to COL11A1-expressing CAF transi-

tion. The orderings of patient groups and sample identity (S2C and S2D Fig) are also consis-

tent with our previous findings based on attractor analysis. S3 Table shows the top 100 genes

with zero P value, ranked by their variances, resulting from pseudotime-based differential

gene expression analysis (Materials and Methods). We can clearly identify as top-ranked sev-

eral ASC genes, as well as CAF genes, while some general fibroblastic markers, such as DCN,

are missing, consistent with the continuity of the ASC to COL11A1-expressing CAF transition.

We then used a generalized additive model (GAM) fit to pseudotime-ordered expression data

to visualize the trend of gene expressions (Fig 2A).

There was a prominent difference between adipose-related genes and COL11A1-associated

genes. The expression of the adipose-related genes steadily fell across the process (Fig 2B),

while the expression of COL11A1-associated genes gradually increased (Fig 2C). There is a sig-

nificant negative correlation between these two groups of genes, e.g., COL11A1 (the last

among those genes to increase its expression) was exclusively overexpressed in the mature

CAFs, which did not express C7. Of particular interest, genes SFRP4 and RARRES1 (Fig 2D)

increased consistently at the beginning and then decreased after reaching a peak, suggesting

that they may play important roles in the differentiation path.

Validation in other cancer types

Next, we validated the ASC to COL11A1-expressing CAF transition in other solid cancer

types. Although we could not find currently available datasets as rich as the PDAC dataset, we

selected those containing a large (at least 100) number of fibroblasts and separately analyzed

each of them, obtaining consistent results. Specifically, we used four scRNA-seq datasets from

head and neck cancer (HNSCC) [36], ovarian cancer[37], lung cancer [38] and breast cancer

[39].

The COL11A1-expressing CAF signature has been confirmed to be a pan-cancer signature

[40–42]. Therefore, the most important validation task would be to confirm the existence of

the APOD/CFD/CXCL12/MGP/PTGDS-expressing ASCs as the starting point of the transition,

and to also confirm that some samples are at an intermediate stage, expressing genes such as

SFRP4, RARRES1 and THBS2, in addition to the core ASC genes, demonstrating that they are

at an intermediate stage of the transition.

Head and neck squamous cell carcinoma. For the HNSCC dataset, the authors of the

paper presenting the data [36] reported that the cancer-associated fibroblasts in the dataset can

be partitioned into two subsets, which they name CAF1 and CAF2. In S5 Table of that paper,

the top three differentially expressed genes of the CAF2 group are CFD, APOD and CXCL12,

while the full gene list for CAF2 presented in the same S5 Table also includes genes MGP, C3,

C7, DPT, PTGDS. This strongly suggests that the partitioning used in the paper was influenced

by the presence of an ASC cell subpopulation, identical, or at least very similar to, those discov-

ered in the PDAC. Similarly, the list of differentially expressed genes for CAF1 in S5

Table includes genes INHBA, THBS2, CTHRC1, POSTN, MMP11, COL5A2, COL12A1, sug-

gesting that the identified CAF1 subpopulation was influenced by the presence of
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differentiated CAFs, which would eventually express COL11A1. Finally, gene RARRES1 also

appears among the list of CAF2 genes, suggesting that it was captured among cells which had

started the process of ASC to COL11A1-expressing CAF transition.

In our independent analysis, we performed clustering identifying 1,026 fibroblasts from all

available cells (S3A Fig; Materials and Methods). There were two fibroblastic clusters (X7 and

X9) expressing CAF associated genes (COL11A1, COL12A1, MMP11, INHBA, THBS2,

COL10A1, COL8A1, FN1) and ASC associated genes (APOD, C7, PTGDS), respectively

(S4 Table), which confirmed the presence of these two populations in HNSCC.

Among the individual patients, we found that the most prominent case is sample

HNSCC28, which contains a rich set of cells undergoing differentiation. Applying the attractor

finding algorithm on the fibroblasts of that sample (S5 Table) resulted in genes LUM, APOD,

COL6A3, PDGFRA, DCN, and CFD being among the top-ranked, revealing that it represents

an ASC population. Furthermore, the presence of genes THBS2, MFAP5 and VCAN in the

same attractor reveals that these cells have already started undergoing the transition.

Ovarian cancer. For the ovarian dataset, the clustering results showed two clusters (X6

and X9) expressing COL11A1-associated genes and ASC-associated genes, respectively

Fig 2. Trajectory analysis of PDAC. A. GAM fit to pseudotime ordered expression data to visualize the trend of gene expressions. B. Expression of adipose-related genes

along the transition lineage. The x axis shows the cell orders and the y axis shows the normalized read count. C. Expression of COL11A1-associated genes along the

transition lineage. D. Expression of RARRES1 and SFRP4 genes along the transition lineage.

https://doi.org/10.1371/journal.pcbi.1009228.g002
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(S3B Fig, S6 Table; Materials and Methods). Among the individual patients, we found that the

ones validating our hypotheses most are HG2F and LG2, both of whose datasets, consistently,

contain cells from the fatty omental tissue. S5 Table includes the corresponding two attractors

identified in the cells of each patient. Among the top ranked genes for HG2F are DCN, LUM,

C1S, C7, and C3, but also RARRES1, suggesting that they represent fibroblasts undergoing the

transition, while the LG2-based attractor contains highly ranked all three genes COL11A1,

INHBA, THBS2.

Lung cancer. The dataset contains a large number (> 50,000) of cells, but we only classi-

fied ~2% (= 1,346) among them as mesenchymal cells, including fibroblasts and pericytes

(Materials and Methods). Among those cells, there were two fibroblastic clusters (X1 and X2)

expressing related genes (COL11A1, COL12A1, MMP11, INHBA, THBS2, COL10A1, COL8A1,

FN1) and ASC related genes (APOD, C7, PTGDS), respectively (S3C Fig, S7 Table). The pres-

ence of the transition is evident by the attractors identified in the mesenchymal cells for

patients 4 and 3 (S5 Table). The former prominently contains genes CFD, PTGDS and C7,

while the latter contains THBS2, COL10A1 and INHBA.

Breast cancer. The size of the breast cancer dataset is small (~1,500 cells in total), and 169

cells among them were classified as mesenchymal (Materials and Methods). By further cluster-

ing these cells, we identified ASCs (X1) and COL11A1-expressing CAFs (X3) (S3D Fig, S8

Table). ASC related genes (APOD, MFAP4, CFD) were identified in X1, while CAF-related

genes (COL10A1, COL11A1, MMP11, INHBA, FN1, THBS2, AEBP1, COL12A1) are among the

top 15 of X3. Patients PT089 and PT039 contain the highest proportions (>50%) of the ASC

and COL11A1-expressing CAF subpopulations, respectively, and we found consistent results

in their attractors (S5 Table), as the former contains C1S, C1R, CXCL12, PTGDS, C3, while the

latter contains THBS2, COL11A1, COL10A1, at top-ranked positions.

Potential therapeutic targets inhibiting the invasiveness-associated

transition

This work provides opportunities for identifying therapeutic targets inhibiting the cellular

transition. For example, targeting of gene MFAP5 was recently found to enhance chemosensi-

tivity in ovarian and pancreatic cancers [43]. Specifically, the author states that “MFAP5 block-

ade suppresses fibrosis through downregulating of fibrosis-related genes such as COL11A1.”

Consistently, we found MFAP5 as one of the most highly associated genes with COL11A1
(Table 4).

As mentioned earlier, genes SFRP4 and RARRES1 are transiently expressed in Group 2 of

Table 6, suggesting that they can be investigated for inhibiting the cellular transition.

Of particular interest as potential drivers are noncoding RNAs due to their typical regula-

tory role. Because the expression of these genes is not accurately captured by scRNA-seq tech-

nology, we did a thorough analysis of the full set of The Cancer Genome Atlas (TCGA) pan-

cancer data. For the RNA sequencing and miRNA sequencing dataset of each cancer type, we

removed the genes in which more than 50% of the samples have zero counts. Then we per-

formed quantile normalization using the limma package [44] (v3.40.6) on log2 transformed

counts. In each of the 33 cancer types, we ranked all protein-coding genes in terms of the asso-

ciation (using the metric of mutual information) of their expression with that of gene

COL11A1. We excluded the 11 cancer types (LGG, SKCM, SARC, LAML, PCPG, GBM, TGCT,

THYM, ACC, UVM, UCS) in which neither THBS2 nor INHBA was among the 50 top-ranked

genes, because of the absence of significant amounts of COL11A1-expressing CAFs in those

samples (1st sheet in S9 Table). In each of the remaining 22 cancer types, we then ranked all

long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in terms of their association
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with COL11A1 (2nd and 3rd sheets in S9 Table). Finally, we did pan-cancer sorting of all

lncRNAs and miRNAs in terms of the median rank of all lncRNAs and miRNAs (4th sheet in

S9 Table).

We found that LINC01614 represents a particularly promising therapeutic target. It had a

perfect score of 1 in the pan-cancer sorting list, being strikingly the top-ranked gene in 14

(BRCA, UCEC, KIRC, HNSC, LUAD, LUAD, LUSC, OV, STAD, ESCA, PAAD, MESO,

DLBC, CHOL) out of the 22 cancer types (2nd sheet in S9 Table). In fact, the association of

LINC01614 was even higher than that of marker protein-coding gene INHBA. The pan-cancer

consensus ranking of protein-coding genes in terms of LINC01614 (5th sheet in S9 Table) cor-

responds precisely to the COL11A1-expressing CAF signature. These rankings, in which

marker genes unique to the original and intermediate stages are missing, indicate that

LINC01614 is involved in the very final stage of the creation of the COL11A1-expressing CAFs.

Therefore, we hypothesize that therapeutics targeting LINC01614 specifically in patients’ CAFs

may inhibit the final metastasis-facilitating stage of the transition.

We also found that the three top-ranked miRNAs were miR-199a-1, miR-199b, miR-199a-
2. The associated miR-214 is also very highly ranked (3rd sheet in S9 Table).

Discussion

Our results indicate that the cancer invasiveness-associated COL11A1-expressing CAFs are

produced as a result of the interaction of tumor cells with the adipose microenvironment.

Therefore, one contribution of our work is that it provides a potential explanation to the well-

known fact that adipose tissue contributes to the development and progression of cancer

[45–47].

Another contribution is that it precisely identifies the ASC population, as evidenced by the

consistent presence of its marker genes among the top-ranked attractor genes in each of the

eleven columns of Table 2. The identification of those particular marker genes (APOD promi-

nent among them) cannot be due to chance, because these were eleven totally independent

unbiased experiments, and also because the attractor algorithm applied on the SVF of normal

adipose tissue in another independent dataset identified precisely the same genes. This finding

could not have been achieved with traditional methods.

There is consensus agreement that CAFs are a promising potential target for optimizing

therapeutic strategies against cancer, but such developments are restricted by our current limi-

tations in our understanding of the origin of CAFs and heterogeneity in CAF function [48].

Therefore, there is an urgent need to enhance our understanding of those matters. Our results

provide clarity on one important particular component (out of several) of the heterogeneous

fibroblast tumor microenvironment. To avoid potential erroneous conclusions after applying

bioinformatics algorithms, single-cell data analysis provides an unprecedented capability to

validate results, including those resulting from the attractor algorithm, by “seeing” individual

cells in color-coded scatter plots, such as the one shown in Fig 1, observing and confirming the

presence or absence of distinct populations characterized by the combined presence of particu-

lar marker genes.

In particular, there are several published papers relying on the application of clustering

algorithms following dimensionality reduction on the particular datasets they use, and con-

cluding that there exist a number of distinct and mutually exclusive CAF subpopulations.

These reported fibroblastic subpopulations occasionally have gene expression profiles that are

conflicting with each other in significant ways among these publications. Examples include the

hC1 and hC0 clusters in [49], the C9 and C10 clusters in [42], the CAF2 and CAF1 clusters in
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[36], the iCAF and myCAF clusters in [50,51] and the iCAF an mCAF clusters in [52]. A

review of such results in pancreatic cancer appears in [53].

As an example of conflicting results, the “iCAFs” identified in [52] have significant differ-

ences from those identified in other papers and are, in fact, identical to the normal ASCs (Fig

3B of [52]) identified in this paper, as evidenced by the list of its differentially expressed genes

(PTGDS, LUM, CFD, FBLN1, APOD, DCN, CXCL14, SFRP2, MMP2, all of which appear in

Table 3, further validating the ASC signature. Therefore, this identified cluster contains mainly

normal cells at the origin of the transition, which should not even be called CAFs.

Similarly, a recent single-cell data analysis [54] identified two clusters “touching” each

other in a UMAP plot (Fig 2A of [54]), C0 and C3, which are precisely the two endpoints of

the ASC to COL11A1-expressing CAF transition. Indeed, as identified in Table S6-1 of [54],

C0 cluster has the marker genes APOD, PTGDS, C7, C3, MGP. . . which the attractor algo-

rithm had identified and validated in this paper. On the other hand, the marker genes of clus-

ter C3 are precisely those of the COL11A1-expressing CAFs, in which all three genes

COL11A1, INHBA and THBS2 are top-ranked (because the metastatic process was already

underway). Importantly, as shown in Fig 2B of [54], the ASC marker genes APOD and

PTGDS (top ranked in C0 and unrelated to CAFs) are significantly expressed even in the

COL11A1-expressing cluster C3 of the paper, providing further evidence of the presence of

intermediate states consistent with the transition–and the separating line between C0 and C3

in the diagram is not generated by any biologically reliable manner, consistent with the

continuity.

On the other hand, our work is consistent with, and complementary to the results of [49]

focusing on the immunotherapy response, in which the presence of the “TGF-beta CAFs” was

inferred by an 11-gene signature consisting of MMP11, COL11A1, C1QTNF3, CTHRC1,

COL12A1, COL10A1, COL5A2, THBS2, AEBP1, LRRC15, ITGA11. This population apparently

represents the COL11A1-expressing CAF endpoint of the transition, and gene LRRC15 was

selected as the representative gene based on the fact that it was found to be the most differen-

tially expressed gene between CAFs and normal tissue fibroblasts in mouse models. Indeed,

LRRC15 is a key member of the COL11A1-expressing CAF signature (Table 4 of [1]) and we

also found that COL11A1 is the highest associated gene to LRRC15 in the Group 3 PDAC

patients.

In our work we used a detailed gene association-based scrutiny of all our results, including

numerous color-coded scatter plots, rather than blindly accepting clustering results. We

believe that this nontraditional computational methodology, when used on rich single-cell

data, represents a paradigm shift in which systems biology alone can be trusted, by itself, for

producing reliable results. We hope that our results will give rise to testable hypotheses that

could eventually lead to the development of pan-cancer therapeutics inhibiting the ASC to

COL11A1-expressing CAF transition.

Materials and methods

Datasets availability

The pancreatic dataset [19] was downloaded from the Genome Sequence Archive with acces-

sion number CRA001160. The four validation datasets of other cancer types are also publicly

available: HNSCC [36] (GSE103322), ovarian [37] (GSE118828), lung cancer [38] (E-MTAB-

6149 and E-MTAB-6653), breast cancer [39] (GSE118389). We excluded samples from lymph

nodes. The numbers of patients included in these datasets are 35 (PDAC), 18 (HNSCC), 9

(ovarian), 5 (lung), and 6 (breast).
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Data processing and cell identification

We selected the Seurat R toolkit [55] for data processing and cell identification. Seurat imple-

ments the entire clustering workflow and has an advantage in speed and scalability to analyze

large datasets [56]. We applied the Seurat (v3.1.4) to process the gene expression matrix and

characterize the cell type identity for each scRNA-seq dataset. The count matrix was normal-

ized and log transformed by using the NormalizeData function. We selected the 2,000 most

variable features and then performed principal component analysis (PCA) followed by apply-

ing an unsupervised graph-based clustering approach. We used default parameter settings in

all the above steps except that the resolution parameter in the FindCluster function is set to 1.0

to increase the granularity of downstream clustering. To identify differentially expressed genes

for each cluster, we used the FindMarkers function. To characterize the identity of mesenchy-

mal cells in each dataset, we made use of the expression of known markers: LUM, DCN,

COL1A1 for fibroblasts, and RGS5, ACTA2, PDGFRB and ADIRF for pericytes.

For the smaller-size datasets (ovarian, breast), we performed clustering once on all cells for

mesenchymal cell identification. For datasets of larger size (PDAC, HNSCC, lung), we applied

‘two-step clustering’ to ensure accuracy: The first step was initial clustering within individual

samples. Then we excluded samples with very few (< 20) detected fibroblasts and pooled the

mesenchymal cells of the remaining samples together for a second clustering, which resulted

in the final set of mesenchymal cells for the dataset. For the PDAC dataset, we included an

additional step to remove low-quality cells, by retaining cells for which at least one of the cor-

responding markers had expression levels� 3.

Mutual information

Mutual information (MI) is a general measure of the association between two random vari-

ables [57]. We used a spline based estimator [58] to estimate MI values and normalized so the

maximum possible value is 1. The MI value is clipped to zero if the Pearson correlation

between the two variables is negative. The details of the estimation method are described in

the paper introducing the attractor algorithm [20]. We used the getMI or getAllMIWz func-

tion implemented in the cafr R package with parameter negateMI = TRUE.

Attractor-based analysis

The attractor algorithm was first proposed for identifying co-expression signatures from bulk

expression values in samples [20]. In this study, we use the attractor algorithm for the first

time for the purpose of scrutinizing cell populations in single-cell data. Compared to conven-

tional single-cell methods, the attractor algorithm features the unique capability of discovering

precise profiles of cell populations, which other methods cannot achieve (see Discussion).

Briefly, the algorithm iteratively finds mutually associated genes from an expression matrix,

converging to the core of the co-expression mechanism. The association measure used is the

normalized mutual information (as described above), which captures the general relationships

(including nonlinear effects) between variables. Using the expression vector corresponding to

a seed gene as input, the algorithm converges to an “attractor” in the form of a list of ranked

genes, together with scores (ranging from 0 to 1) for each of these genes measuring the

strength of the membership of that gene in the signature. It has a characteristic property that

using different “attractee” genes belonging to a co-expression signature as seeds leads to the

identical attractor.

The attractor algorithm had previously been used to find co-expression signatures in bulk

gene expression data, in which case a converged attractor could represent a mixture of contri-

butions from distinct cell subpopulations. When using single-cell data, however, the
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characteristic genes of particular distinct subpopulations will have high expression values only

in the cells from those subpopulations and low values in other cells. These genes will have pair-

wise positive and large correlations, and therefore they will be highly ranked in attractor signa-

tures representing such individual subpopulations. On the other hand, two characteristic

marker genes belonging to two different distinct subpopulations will have reverse-associated

expression values across those cells, which will contribute negatively to the overall correlation

between these two genes. Only if two genes are co-expressed across individual cells will they

appear highly ranked in the same attractor.

For single dataset, we applied the attractor finding algorithm using the findAttractor func-

tion implemented in the cafr (v0.312) R package [20] with the general fibroblastic marker gene

LUM as seed. Identical results in all samples will be found, with very rare exceptions, if other

fibroblastic markers, such as DCN, are used. The exponent (a) was set to different values for

scRNA-seq datasets profiled from different protocols. For the analysis of UMI based (e.g. 10x)

and full-length-based (e.g. Smart-seq2) datasets, we used a = 3 and a = 5, respectively. To find

the consensus attractor for multiple datasets, we applied the consensus version of the attractor

finding algorithm as described in [59]. In the consensus version, the association measures

between genes are evaluated as the weighted median of the corresponding measures taken

from the individual datasets. The weights are proportional to the number of samples included

in each individual dataset in log scale.

Trajectory inference (TI) analysis

We selected the Slingshot [35] method for TI analysis, based on its robustness and suggestions

made by the benchmarking pipeline dynverse [18]. We used the raw counts as input and fol-

lowed the Slingshot lineage analysis workflow (v1.4.0). To begin this process, Slingshot chose

robustly expressed genes if it has at least 10 cells that have at least 1 read for each. After gene fil-

tering, we proceeded to full quantile normalization. Following diffusion map dimensionality

reduction, Gaussian mixture modelling was performed to classify cells, where the number of

clusters in the Mclust function was set to 3 based on the fact that there were three clusters in

our previous Seurat clustering results. The final step of lineage inference analysis used the

slingshot wrapper function in an unsupervised manner. A cluster based minimum spanning

tree was subjected to describe the lineage. After analyzing the global lineage structure, we fitted

a generalized additive model (GAM) for pseudotime and computed P values. Genes were

ranked by P values and variances. After running Slingshot, we identified genes whose expres-

sion values significantly vary over the derived pseudotime by using a GAM, allowing us to

detect non-linear patterns in gene expression.

Statistical analysis

P value evaluation for overlapping genes from different sets. We applied the hypergeo-

metric test for evaluating the significance of genes shared by different sets. If there are two sets

to compare, we used the phyper R function. If there are more than two sets to compare, we

employed the multi-set intersection test [5] by applying the cpsets function implemented in

the SuperExactTest R package. Regarding the background universe size of genes, we used the

total number of genes analyzed in the specific expression matrix. In the case of comparing sets

coming from different studies, we used 20,000 as the universe size.

Differential expression analysis. We used a Wilcoxon Rank Sum test by applying the

FindMarkers function in Seurat to identify the differentially expressed (DE) genes between

fibroblasts of different groups. DE genes with |log fold change| > 0.25 and Bonferroni adjusted
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P value< 0.1 are considered as significant. The positive and negative DE genes are ranked sep-

arately in terms of the absolute values of their log fold-change.

Supporting information

S1 Fig. Overview of the PDAC fibroblasts. A. 6,267 fibroblasts originated from 11 control

pancreases and 23 tumor samples were petitioned into four groups X1-X4. Fractions of the

fibroblasts were: 45%, 38%, 14%, and 3%. B. Table showing the top 20 DE genes for each clus-

ter. C. Bar plots presenting the numbers of cells captured for each cluster.

(TIF)

S2 Fig. Trajectory analysis of 6,075 fibroblasts in PDAC dataset. A. Colors coded for pseu-

dotime changing, red presenting the beginning of differentiation and blue presenting the end.

B. Color-coded trajectory analysis of fibroblasts for annotated three clusters. C. Color-coded

trajectory analysis of fibroblasts for group information. D. Color-coded trajectory analysis of

fibroblasts for sample identity.

(TIF)

S3 Fig. Unsupervised clustering of four datasets from HNSCC, ovarian cancer, lung cancer

and breast cancer. A. t-SNE embedding of the whole HNSCC dataset. B. t-SNE embedding of

the whole ovarian cancer dataset. C. t-SNE embedding of the mesenchymal cells from lung

cancer dataset. D. t-SNE embedding of the mesenchymal cells from breast cancer dataset.

(TIF)

S1 Table. LUM-seeded attractors (top 100 genes) identified in each PDAC sample.

(XLSX)

S2 Table. Differentially expressed genes comparing normal pancreatic samples against

four PDAC samples at the initial phase of the transition.

(XLSX)

S3 Table. Top 100 genes of temporally expressed genes on the pseudotime variable.

(XLSX)

S4 Table. Differentially expressed genes among different clusters of HNSCC dataset.

(XLSX)

S5 Table. LUM-seeded attractors (top 100 genes) from validating samples of other cancer

types.

(XLSX)

S6 Table. Differentially expressed genes among different clusters of ovarian cancer dataset.

(XLSX)

S7 Table. Differentially expressed genes among different clusters of mesenchymal cells

from lung cancer dataset.

(XLSX)

S8 Table. Differentially expressed genes among different clusters of stromal cells from

breast cancer dataset.

(XLSX)

S9 Table. Ranked genes lists in terms of their association (mutual information) with gene

COL11A1 by using the full set of pan-cancer TCGA bulk RNA-seq data.

(XLSX)
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