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Abstract

Diatoms are unicellular photosynthetic algae known to secrete organic matter that fuels sec-

ondary production in the ocean, though our knowledge of how their physiology impacts the

composition of dissolved organic matter remains limited. Like all photosynthetic organisms,

their use of light for energy and reducing power creates the challenge of avoiding cellular

damage. To better understand the interplay between redox balance and organic matter

secretion, we reconstructed a genome-scale metabolic model of Thalassiosira pseudonana

strain CCMP 1335, a model for diatom molecular biology and physiology, with a 60-year his-

tory of studies. The model simulates the metabolic activities of 1,432 genes via a network of

2,792 metabolites produced through 6,079 reactions distributed across six subcellular com-

partments. Growth was simulated under different steady-state light conditions (5–200 μmol

photons m-2 s-1) and in a batch culture progressing from exponential growth to nitrate-limita-

tion and nitrogen-starvation. We used the model to examine the dissipation of reductants

generated through light-dependent processes and found that when available, nitrate assimi-

lation is an important means of dissipating reductants in the plastid; under nitrate-limiting

conditions, sulfate assimilation plays a similar role. The use of either nitrate or sulfate uptake

to balance redox reactions leads to the secretion of distinct organic nitrogen and sulfur com-

pounds. Such compounds can be accessed by bacteria in the surface ocean. The model of

the diatom Thalassiosira pseudonana provides a mechanistic explanation for the production

of ecologically and climatologically relevant compounds that may serve as the basis for intri-

cate, cross-kingdom microbial networks. Diatom metabolism has an important influence on

global biogeochemistry; metabolic models of marine microorganisms link genes to ecosys-

tems and may be key to integrating molecular data with models of ocean biogeochemistry.

Introduction

Diatoms are unicellular photosynthetic eukaryotes derived from a secondary endosymbiotic

event when a heterotrophic eukaryote engulfed a red algal cell and acquired a plastid [1]. They
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Editor: Vona Méléder, Universite de Nantes,

FRANCE

Received: November 5, 2020

Accepted: March 3, 2021

Published: March 24, 2021

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All genome-scale

metabolic models are available from the BioModels

database (accession number(s)

MODEL2010230001, MODEL2010230002,

MODEL2010230003.) All other relevant data are

within the manuscript and its Supporting

information files.

Funding: This work was supported by Gordon and

Betty Moore Foundation grant GBMF3776 awarded

to E.V.A (https://www.moore.org/). The funders

had no role in study design, data collection and

https://orcid.org/0000-0001-9903-745X
https://orcid.org/0000-0001-7865-5101
https://doi.org/10.1371/journal.pone.0241960
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241960&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241960&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241960&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241960&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241960&domain=pdf&date_stamp=2021-03-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241960&domain=pdf&date_stamp=2021-03-24
https://doi.org/10.1371/journal.pone.0241960
https://doi.org/10.1371/journal.pone.0241960
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.moore.org/


appeared in the fossil record*180 million years ago [2] and are distinguished from other pho-

tosynthetic organisms by their distinct combination of metabolic pathways, including the pres-

ence of a complete urea cycle, and their ability to precipitate silica to form their cell wall and to

synthesize chitin [3]. It is a special challenge of systems biology to understand how this unique

combination of interlocking pathways has allowed diatoms to thrive in the dynamic conditions

of oceanic ecosystems.

A central requirement for photosynthetic organisms is the dissipation of excess reductants,

particularly when nutrient availability limits growth (Fig 1). Light energy drives linear electron

flow from water split at photosystem II (PSII) to PSI, generating reducing power (NADPH)

and a proton gradient across the thylakoid membrane that drives ATP synthase. An ATP/

NADPH ratio of 1.5 is required for CO2 reduction by the Calvin-Benson-Bassham cycle [4].

Linear electron flow alone has an ATP/NADPH ratio of *1.28 [5]. If not somehow mitigated,

the resulting imbalance would cause the plastid to become over-reduced, damage the thylakoid

membranes and cause photoinhibition [6]. In plants, NADPH-consuming pathways and alter-

native electron pathways that produce ATP without generating NADPH help balance redox

reactions in the chloroplast [7,8]. Alternative electron fluxes include cyclic electron flow (CEF)

around PSI, and water-to-water cycles where electrons from water oxidation at PSII are re-

routed to an oxidation pathway—the Mehler reaction, chlororespiration, or photorespiration

[9]. Diatoms are instead thought to preferentially regulate the ATP/NADPH ratio via energetic

coupling between plastids and mitochondria [10], by which reduced metabolites are shuttled

from the plastid to fuel ATP generation in the mitochondria.

Nitrate and sulfate assimilation are also involved in dissipating reducing equivalents in plas-

tids as many enzymes involved in these processes are plastid-targeted (Fig 1). Nitrite reductase

consumes 3 NADPH to reduce nitrite to ammonia, and the GS-GOGAT cycle (glutamine

synthase—glutamine oxoglutarate aminotransferase) utilizes 2 reduced ferredoxin and 1 ATP

to assimilate ammonia. During sulfate assimilation, sulfate is converted to APS (adenosine-5’-

phosphosulfate) and either APS reductase or PAPS (3’-phosphoadenosine-5’-phosphosulfate)

reductase utilizes a reduced thioredoxin to produce sulfite, consuming the equivalent of 2 ATP

and 1 NADPH. Sulfite reductase consumes 6 reduced ferredoxin to produce sulfide for cyste-

ine. A sulfurtransferase consumes 1 NADPH to produce L-cysteate from PAPS. Reductants

are not consumed by the synthesis of sulfolipids from sulfite. Phosphate is assimilated by ATP

synthase in the plastid and in the mitochondria. There is no evidence that diatoms can reduce

phosphate to phosphite or phosphonate [11].

Metabolite production, secretion, or storage can also help balance redox reactions or dissi-

pate energy [12], particularly when biomass production is otherwise inhibited. Phytoplankton

adjust their biomass composition in response to nutrient limitation [13,14], elevated CO2 [15],

low irradiance [16], and interactions with bacteria [17]. Diatoms also secrete more dissolved

organic carbon in conditions of high light intensity [18], more dissolved organic nitrogen at

suboptimal temperatures [19], and more exopolysaccharides (EPS) during nutrient limitation

[20,21].

Here we created a mechanistic model of metabolism for the diatom Thalassiosira pseudo-
nana CCMP 1335 to evaluate the interplay between redox balance, altered biomass composi-

tion, and organic matter secretion. We distilled all available physiological and molecular data

from the literature to construct the metabolic network, to create biomass objective functions,

to calculate ATP maintenance costs, and to add appropriate constraints to major fluxes. The

model iTps1432 includes the first mechanistic model of electron transfer by fucoxanthin chlo-

rophyll a/c binding proteins (FCPs); it is also the first metabolic model to include silicate frus-

tule formation and a hypothetical pathway for the biosynthesis of 2,3-dihydroxypropane-

1-sulfonate (DHPS), a novel diatom osmolyte [22]. To simulate growth under a range of
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different light and nutrient conditions, we used Flux Balance Analysis (FBA) to calculate fluxes

through the metabolic network given a set of constraints and an objective function to optimize

[23]. We used biomass composition and photosynthetic production rate measurements from

chemostats maintained under three different light levels [24] to construct light-dependent bio-

mass objective function, constrain growth, photosynthesis, and respiration to calculate ATP

maintenance costs and simulate metabolic fluxes under a range of irradiances. We found that

cyclic electron flow could be an important sink for electrons at the light levels tested (5–

200 μmol photons m-2 s-1), even though it is known to be a relatively minor component of

alternative electron flow at higher light levels [10]. Nitrate reduction is also an important

Fig 1. Diagram illustrating the principle reactions involved in generating ATP and balancing the ATP/NADPH ratio in diatom plastids. Black

shapes: enzymatic complexes, gray bars: plastidial or mitochondrial membranes, dashed lines: grouping of plastidial and mitochondrial reactions,

green: reactions that produce NAD(P)H equivalents, red: reactions that consume NAD(P)H equivalents, blue: ATP producing and consuming

reactions. Abbreviations: L-glutamate (glu__L), L-glutamine (gln__L), 2-phosphoglycolate (2pglyc), glycolate (glyclt), glyoxylate (glx), glycine (gly), L-

serine (ser__L), L-malate (mal__L), fumarate (fum), succinate (succ), dehydroascborbate (dhascb), L-ascorbate (ascb__L), oxidized glutathione

disulfide (gthox), reduced glutathione (gthrd), reduced ferredoxin (Fd), reduced thioredoxin (Trx), plastoquinone (PQ), plastoquinol (PQH2), NADH

ubiquinone oxidoreductase (NADHOR), ATP synthase (ATPS). Number symbols indicate reaction references in the text including: cyclic electron flow

(CEF,❶), nitrate assimilation (❷), sulfate assimilation (❸), ribulose-1,5-bisphosphate oxygenase (RUBISO,❹), the Mehler reaction (❺), energetic

coupling between the plastid and the mitochondria (❻), plastid terminal oxidase (PTOX,➐), alternative oxidase (AOX,❽), cytochrome c oxidase

(CYOO,❾).

https://doi.org/10.1371/journal.pone.0241960.g001

PLOS ONE Diatom genome-scale metabolic model

PLOS ONE | https://doi.org/10.1371/journal.pone.0241960 March 24, 2021 3 / 35

https://doi.org/10.1371/journal.pone.0241960.g001
https://doi.org/10.1371/journal.pone.0241960


electron sink under these conditions. Next, we simulated growth in a nitrate-limited batch cul-

ture with dynamic Flux Balance Analysis (dFBA) using experimental biomass composition

and PSII flux measurements from Liefer, et al. [25,26]. We found that sulfate reduction takes

over the role of nitrate under these conditions. When biomass production is inhibited due to

nutrient limitation, redox imbalances can be corrected by the excretion of organic carbon and

sulfur compounds.

Materials and methods

Network reconstruction and curation

A genome-scale metabolic model of Thalassiosira pseudonana CCMP 1335 was generated

using iLB1027_lipid (the model of Phaeodactylum tricornutum CCAP 1055/1, [27]) as a start-

ing point, based on similarities between the two diatoms. The T. pseudonana nuclear proteome

was acquired from a dataset produced by Gruber, et al. [28], in which previous open reading

frames (ORFs) were improved by ensuring that each gene starts with ‘ATG’, encodes an unin-

terrupted reading frame that ends in a stop codon, is less than 10 kb in length, and has EST

support. The ORFs used in a T. pseudonana network reconstruction for BioCyc (including

plastid and mitochondrial proteomes) were retrieved as well [29]; these proteins were re-anno-

tated in 2012 using the JGI annotation pipeline for eukaryotes [30]. The P. tricornutum chro-

mosomal proteome was downloaded from EnsemblProtists (ASM15095v2), the plastid and

mitochondrial proteomes were downloaded from NCBI (acc no.: NC_008588.1, HQ840789.1).

The authors of iLB1027_lipid provided a gene ID conversion table that we used to update the

gene IDs in the published model. OrthoMCL [31] was used with the default 50% match and

1e-5 E-value cut-offs to identify gene orthologs of P. tricornutum and the two sets of T. pseudo-
nana ORFs. A network of T. pseudonana reactions was generated by retaining reactions in

iLB1027_lipid that contained gene orthologs from T. pseudonana and deleting reactions with

no gene ortholog, except for spontaneous reactions. Protein localization predictions were per-

formed on both T. pseudonana ORF sets (see Subcellular Protein Localization, below). BiGG

IDs [32] were used for reactions and metabolites in the T. pseudonana network, and these

were assigned to one of six different compartments: cytosol (‘c’), mitochondria (‘m’), peroxi-

some (‘x’), plastid (‘h’), thylakoid lumen (‘u’), or endoplasmic reticulum (‘r’).

We implemented the guidelines from an established genome-scale reconstruction protocol

[33] to refine the T. pseudonana model. All genes from Gruber, et al. [28] with orthologs in the

reconstruction, all genes assigned to a reaction in BioCyc [29], and all T. pseudonana genes

without an ortholog in P. tricornutum were annotated with InterProScan [34] and those anno-

tations were used to verify gene-protein-reaction associations, and to detect missing genes,

reactions, and pathways in the model. We used KEGG [35] and BioCyc [29] databases to aid

in model curation and to make comparisons between organisms. The literature on T. pseudo-
nana was examined for experimental evidence for the existence of different reactions and for

protein localization data (see references and notes in S1 Dataset). When experimental protein

localization data was available, it superseded the subcellular localization prediction. For each

reaction, mass and charge balance were verified and links to external databases were added for

each reaction and metabolite. TransportDB 2.0 [36] was used to generate a list of transporter

gene annotations; transport reactions were added to the model in cases where the database

included associated substrates with the annotation. Extracellular transport reactions were also

added in cases where there is experimental evidence that a substrate is excreted or utilized by

T. pseudonana or other diatoms (see references and notes in S1 Dataset).

Dead-end metabolites are metabolites present only in blocked reactions; blocked reactions

cannot carry flux due to reactions missing in the network and dead-end metabolites cannot be
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produced by the model. These reactions were identified with the flux analysis module in

COBRApy and the gapfilling module was used to identify gaps in the network [37]. Gaps were

filled if a gene for the missing reaction could be identified, if there is physiological evidence

that the reaction exists, if the majority of the pathway was otherwise present in the model, or if

the reaction was required to produce biomass. In T. pseudonana, we first checked whether the

reaction was present in another compartment and if there was any evidence that the subcellu-

lar localization prediction was too stringent (e.g., a low confidence prediction may be more

likely based on the localization of other reactions in the pathway), if there is the possibility of

dual-targeting, or if a different gene with the correct localization for the reaction could be

identified. Occasionally, the JGI ORFs (rather than the ORFs from the Gruber proteome [28])

provided the missing gene for a reaction, or a more likely subcellular localization prediction. If

there was no evidence that a protein in the model was incorrectly targeted, then transport reac-

tions between compartments were added to connect the network. To identify and remove

energy-generating cycles (EGC), we followed the method proposed by Fritzemeier, et al. [38],

by using the GlobalFit algorithm [39] to suggest the minimum number of changes required to

remove an EGC. The algorithm found that the reaction transporting water between the cytosol

and the mitochondria (‘H2Ot_m: h2o_c < = > h2o_m’) and the ITP-apyrase reaction

(‘ITPA_c: h_c + idp_c + pi_c—> h2o_c + itp_c’) created energy-generating cycles. EGCs were

removed by setting the lower bound of H2Ot_m to zero and by setting the upper bound of

ITPA_c to zero.

Broddrick, et al. [40] published a list of twenty-nine modifications to the P. tricornutum
model in 2019. We evaluated whether these modifications should also apply to iTps1432 and

adapted our model accordingly (S3 Dataset). iTps1432 is available in SBML format as S1–S3

Files and has been deposited in the BioModels database (acc no.: MODEL2010230001-3).

Subcellular protein localization

The protein localization pipeline developed by Levering, et al. [27] was updated for the T. pseu-
donana analysis (https://github.com/hmvantol/localization_pipeline). For plastid targeting

predictions, TargetP [41] was replaced with ASAFind [28], a plastid proteome prediction tool

developed for diatoms and other algae with plastids derived from a secondary endosymbiosis.

All T. pseudonana proteins were used as input for SignalP 4.1 [42], TargetP 1.1 [41], HECTAR

1.3 [43], Mitoprot II 1.101 [44], ASAFind 1.1.7 [28], predictNLS 1.3 [45], and scanProsite [46].

PredictNLS, a tool for predicting nucleus targeted proteins, was run in batch mode using a

script that re-implements predictNLS 1.3 in Python (https://github.com/peterjc/pico_galaxy/

tree/master/tools/predictnls). ScanProsite was run to search for two peroxisomal targeting sig-

nals “[SAC]-[KRH]-[LM]>” and “S-S-L>” [47] and the PROSITE pattern PS00342 describing

microbody C-terminal targeting signals, as well as the endoplasmic reticulum (ER) targeting

signal “[KD]-[DE]-E-L>” [41,48] and the PROSITE pattern PS00014 describing other endo-

plasmic reticulum targeting sequences. All other programs were run with default settings. ER-

targeted proteins were defined as ‘Not plastid, SignalP positive’ or ‘Plastid, low confidence’ by

ASAFind and contained an ER-targeting signal identified by scanProsite. Plastid-targeted pro-

teins include those identified by ASAFind as ‘Plastid, high confidence’ or ‘Plastid, low confi-

dence’ with no recognized ER targeting signal. Mitochondria targeted proteins are SignalP

negative and predictNLS negative and match one of the following criteria: (A) have a Mitoprot

II score> 0.9, (B) have a Mitoprot II score > 0.8 and are mitochondria targeted according to

HECTAR or have a mitochondrial targeting peptide according to TargetP, or (C) are predicted

to be mitochondria targeted by HECTAR and have a mitochondrial targeting peptide accord-

ing to TargetP. Peroxisome targeted proteins are SignalP negative, predictNLS negative, not
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mitochondria targeted, and contain a peroxisome targeting signal according to scanProsite.

Proteins in the plastid and mitochondrial genomes were assigned to reactions in the plastid

and mitochondria, respectively. All remaining proteins were assigned to the cytosol. A total of

408 sequences from the optimized gene catalog could not be run through this subcellular local-

ization pipeline despite curation by Gruber, et al. [28] because they have internal stop codons

or were either too long or too short for some of the programs.

Mechanistic model of light-harvesting

Using the Synechococcus elongatus model iJB785 [49] as a guideline, stoichiometric reactions

were generated to represent light harvesting in T. pseudonana. The pigment weight and com-

position [50,51] of cells acclimated to each light-level were used in combination with the

weight-specific absorption spectra for each pigment [52,53] to calculate the relative absorption

of each pigment within 20 nm bins in the photosynthetically active radiation range (PAR

range; 400–700 nm). Excitation energy transfer reactions were generated to account for energy

loss in the transfer of excitation energy from different pigments in the fucoxanthin-chlorophyll

a/c binding proteins (FCPs) to chlorophyll a in the reaction centers. Photon absorption was

constrained for each wavelength using the absorption spectrum of T. pseudonana cells accli-

mated to different light levels [54–56] and the light intensity spectrum of a cool white fluores-

cent bulb according to the methodology in Broddrick, et al. [49]. We also extended the PSI

and PSII reactions to include charge separation and recombination, as in iJB785. Photodamage

of the D1 subunit was included as a component of the PSII reaction [49,57], and the metabolic

cost of D1 repair was included as part of a non-growth associated ATP maintenance reaction

as ATP-cost of phosphorylation and activation of the FtsH protease [58] and as ATP- and

GTP-costs of biosynthesizing a D1 peptide. See S3 Dataset for calculations and references.

Flux balance analysis

Flux balance analysis (FBA) simulates the flow of metabolites through a network of reactions

using the mass balance equation,

dx
dt
¼ S � v ¼ 0

where the change in metabolite concentration (dx) over time (dt) is equal to the stoichiometric

matrix (S) describing a reaction network times a vector of fluxes (v), given that

LB � v � UB

Intracellular metabolites are assumed to be at steady state, which allows v to be solved while

maximizing an objective function within lower and upper bounds (LB, UB).

We used parsimonious Flux Balance Analysis (pFBA) to generate single solutions for each

simulation. pFBA optimizes the model objective and then minimizes the total sum of flux to

obtain a single solution. The second objective imitates a possible cellular objective of minimiz-

ing protein biosynthesis. The default GLPK solver in COBRApy [37] was used to optimize all

FBA problems.

Simulation of steady-state light limitation

pFBA was used with the solver tolerance set to 1e-8 to simulate growth of iTps1432 in three

chemostats maintained at three different light levels (5, 60, 200 μmol photons m-2 s-1) using

photosynthetic production measurements from Fisher & Halsey [24] as constraints. The deliv-

ery rate of each nutrient was calculated based on the nutrient concentration in the media
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reservoir (0.25 mM NO3, 0.050 mM PO4, 0.106 mM Si(OH)4, 28.8 mM SO4), the chemostat

cell concentration, the gram dry weight per cell calculated from biomass composition, and the

chemostat dilution rate. Cultures were continuously bubbled to avoid carbon limitation; we

assumed the ambient CO2 levels to be 390 ppm pCO2 and calculated the resulting concentra-

tions of CO2 and HCO3 in the media [57]. Michaelis-Menten parameters were calculated from

the literature on T. pseudonana for CO2 and HCO3 [59]. The PSII reaction was constrained by

fitting the Platt equation [60] (where Ps and α are parameters of the hyperbolic tangent)

GPP ¼ Ps � ð1 � e� aI=PsÞ

to each gross photosynthesis (GPP) curve generated by Fisher and Halsey ([24], data provided

by K. Halsey) and calculating the 95% confidence interval of gross photosynthesis at each light

level.

Photon absorption flux (PFA) was constrained for each 20 nm in the PAR spectral range

using the method published in Broddrick, et al. [49],

PFA ¼ LBl20
¼ � 1 � rl20

� I � al20

UBl20
¼ 0:9999 � PFA;

where the term rl20
is the fraction of the light source’s photon flux at a particular wavelength

integrated within a 20 nm bin, I is the light intensity (μmol photons m-2 s-1), and al20
is the

absorption of light at that wavelength (m2 gDW-1) [54–56]. The linear relationship between

irradiance and D1 protein damage in T. pseudonana [57] was used to calculate the number of

inactivation events per photon at each light level. The quantum efficiency values measured by

Fisher & Halsey [24] were used to convert the number of inactivation events per photon to

events per oxygen molecule evolved at PSII (S3 Dataset).

For these simulations, sink reactions for chrysolaminarin and glyceraldehyde-3-phosphate

were added to the model to simulate the respiration of a transient carbon pool. Utilization of

these pools was calculated as the difference between gross and net carbon production [24].

Measurements of dissolved organic carbon were used to constrain a symbolic expression rep-

resenting the sum of organic carbon secretion. Light dependent respiration and mitochondrial

maintenance respiration were calculated by Fisher & Halsey for each chemostat [24]. Light

dependent respiration is defined as the difference between 18O2 signals in the light and the

dark and includes all light-driven respiration reactions (the reduction of oxygen to water). We

constrained the sum of all respiration reactions with a symbolic expression in which the lower

bound is equal to the measured light dependent respiration values. Mitochondrial mainte-

nance respiration is defined as the difference between gross carbon production and net oxygen

production (converted to C units) and includes all organic carbon driven respiration reactions.

We constrained the sum of all CO2 producing dehydrogenase reactions in the mitochondrial

TCA cycle with a symbolic expression in which the lower and upper bounds are equal to the

95% confidence intervals of calculated mitochondrial maintenance respiration values. A Jupy-

ter notebook of this analysis can be viewed at https://github.com/hmvantol/diatom-FBA-

notebook.

Simulation of N-starvation

A dynamic FBA simulation was set up with the solver tolerance set to 1e-8 to simulate the pro-

gression in a batch culture of T. pseudonana from mid-exponential under NO3-limitation to

mid-stationary phase under N-starvation using biomass composition and PSII photochemistry
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measurements from Liefer et al. [25,26]. Prior to the start of the experiment, cells were

maintained at 85 μmol photons m-2 s-1 over a 12h: 12h light: dark cycle at 18˚C in filtered

seawater amended with half the concentration of all f/2 nutrients except for NO3, which was

reduced by ~15 fold to 60 μM. At mid-exponential phase, the cells were diluted into fresh

media with no added NO3 [25,26] and measurements were taken 0, 1, 3, 7, and 10 days after

the dilution to “N-free” media, corresponding to mid-exponential, late-exponential 1, late-

exponential 2, early stationary, and mid-stationary growth phases, as defined in Liefer et al.
[25]. Nutrient concentrations in the seawater used for the media were not presented. We

assumed a background seawater nutrient concentration of 20 μM NO3, 0 μM Si(OH)4, and

1.86 μM PO4. This assumption fit well with most nutrient measurements made 1 day after

transfer to the new media and with estimates of nutrient concentrations in surface seawater

at Cape Tormentine (Canada) from the World Ocean Atlas (~28 μM NO3, ~47 μM Si(OH)4,

~2 μM PO4).

To simulate the ten-day experiment, the growth period was divided into eighty 3-hour

intervals. Steady-state was assumed for each time interval and pFBA was used to solve for the

growth rate and reaction flux distributions every 3 hours. Units were converted from mmol

to μmol prior to the pFBA step to avoid numerical precision issues associated with small fluxes.

Each time point of the simulation involved four major steps: (1) calculate the biomass objective

function, (2) calculate the uptake rates for each metabolite or nutrient and set photosynthetic

constraints, (3) solve the pFBA problem, (4) update biomass composition and the

environment.

The biomass objective function (bof) used for each time interval was determined by

calculating the relative difference between the simulated biomass composition at the

current time point (t1) and the next biomass composition measurement (tm) provided by J.

Liefer.

bioiðtmÞ ¼ f � bioiðtmÞ
0
� cðt2Þ

Dbioi ¼ bioiðtmÞ � bioiðt1Þ

bof t1ð Þ ¼
DbioiP
Dbio

;

where each measured biomass component i is translated from pg/cell (bioi(tm)0) into g/L

(bioi(tm)) using cell abundance measurements (c(t2)), and typically f = 1. During the dark

period, pigment biosynthesis was not included in the biomass objective function since T. pseu-
donana lacks a light-independent protochlorophyllide oxidoreductase [61]. Chrysolaminarin

and triacylglycerides were also excluded from the dark period biomass objective function

because these biomass components are known to be consumed at night [62]. Production of

these compounds was increased during the light period by setting f to the fold-change values

measured by Jallet, et al. in P. tricornutum grown across a 12: 12-h light: dark cycle [62]. Dur-

ing time points where all Δbioi components are< 0, the objective function was switched to the

ATP maintenance reaction (ATPM). At each time point, the upper bound of ATPM was re-

calculated for changes in mg chl a/gDW using the rNGAM equation [63]. Individual pigment

components (total chlorophyll, chlorophyll a, and total carotenoid) were also measured over

the course of the experiment [26]. Data from the literature shows that the metabolites making

up bulk biomass components shift in relative abundance over the course of N-starvation and

during growth in batch culture. These were similarly tracked and used as targets to construct

new biosynthesis reactions for each time point. Protein [64] and free amino acid [65]
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composition measurements from nitrogen-replete and nitrogen-starvation conditions were

used to calculate biomass targets for each growth phase; nitrogen-replete composition was

applied as a target for mid-exponential and late exponential phase 1, while nitrogen-starved

composition was applied as a target to late exponential phase 2, early and mid-stationary

phases. Membrane lipid [66] and triacylglyceride [67] composition was measured during

exponential, transition, and stationary phases in nitrogen-limited conditions. We used these

measurements to calculate biomass targets for each growth phase: exponential composition

was used as a target for mid-exponential and late exponential phase 1; transition phase compo-

sition was used as a target for late exponential phase 2; and stationary phase composition was

used as a target for early and mid-stationary phase. See S4 Dataset for all calculations and

references.

Using the method described by Chiu et al. [68] and published by Noecker et al. [69], we

determined the uptake limit for each metabolite j at each time point t, such that the lower

bound of each exchange reaction is equal to either the flux predicted by the Michaelis-Menten

equation or the concentration of each metabolite xj per gram dry weight (gDW) biomass (bio
(t)) per time period Δt, whichever is closer to zero.

LBj tð Þ ¼ � min
Vmax � xj
km þ xj

;
xj

bioðtÞ � Dt

 !

Nutrient uptake rates were calculated using Michaelis-Menten parameters from the litera-

ture on T. pseudonana for CO2, HCO3 [59], NO3 [70], NH4 [71], and PO4 [72] (S3 Dataset).

The Vmax was set to 0.2 and Km was set to 0.05 for all other uptake reactions, with the exception

of H2O and H+ which were assumed to diffuse freely and Vmax was set to 1000. The biomass-

dependent lower bound assumes that iTps1432 exists in a well-mixed environment where it

can sense nutrient-availability and adjust its uptake rate accordingly [68].

PSII flux was calculated from fast repetition rate fluorometry (FRRf) parameters and culture

data (electron transfer rate from PSII, PSII reaction centers per chlorophyll a) measured on days

0, 1, 3, 7, and 10 of the experiment (S3 Dataset, data provided by J. Liefer, [25]). The bounds of

the PSII reaction were set as the 95% confidence interval of error propagated from the different

measurements. To constrain the relative rate of CO2 assimilation to O2 production at each time

point, we calculated the range of potential photosynthetic quotients (Q) by balancing the equa-

tion for the oxidation of new biomass to NO3 or NH4 with the chempy package [73]. Oxygen

utilization and inorganic carbon evolution was not constrained during the dark period. After

each time point, the concentration of O2, HCO3, and CO2 was re-equilibrated with the atmo-

sphere so that concentrations remained constant (well-mixed). We included a constraint for

photorespiration where the oxygenase flux of ribulose-1,5-bisphosphate carboxylase/oxygenase

(RuBisCO) ranges from 0.001–0.025 the carboxylase flux.

For each time point, constraints were converted from mmol mg chl a-1 h-1 to mmol gDW-1

h-1 using simulated chlorophyll a and biomass concentration (mg chl a L-1/gDW L-1) ratios.

Photon absorption flux was constrained for each time point as before, assuming a light

absorption spectrum for cells acclimated to medium light [55] and the light intensity spec-

trum of a cool white fluorescent bulb (S3 Dataset). A new set of photon absorption (PHOA)

reactions were constructed for each 20 nm wavelength at each time point using the simulated

pigment composition.

We allowed for the mobilization of the biomass components chlorophyll a, chitin, polypho-

sphate, chrysolaminarin, protein amino acids, free amino acids, RNA, and triacyglycerides by

including sink reactions for each of these components. The availability of each component was
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calculated as follows if Δbioj is < 0.

Dbioj ¼ biojðtmÞ � biojðt1Þ

LBj tð Þ ¼
Dbioj � 1000

Mrj

bioðtÞ � Dt

The degradation pathway for chlorophyll a is not characterized in diatoms, but chlorophyll

a degradation was required to approximate the mg chl a gDW-1 factor. A demand reaction for

chlorophyll a was included in the simulation and its lower bound was set to -1�Δbioj.
We adapted the method described by Chiu et al. [68] to calculate changes in biomass com-

position and the concentration of metabolites or nutrients over time. To calculate biomass

composition, we calculated biomass concentration bio(t2) for the next time interval Δt using

the exponential growth equation,

bioðt2Þ ¼ bioðt1Þ � e
mDt;

where μ is biomass demand or vDM_biomass_c. Next we calculated the fraction of new biomass

attributed to each component using the biomass objective function. To calculate the concen-

tration of each metabolite xj in the next time interval Δt,

xj t2ð Þ ¼ xj t1ð Þ þ
vj
m

bioðt1Þðe
mDt � 1Þ

� �
;

where vj is the flux of each metabolite, and bio(t1) is the biomass density or sum of all compo-

nents at the current time point. Scripts for this simulation can be obtained from https://github.

com/hmvantol/diatom-dFBA.

Results

Reconstruction of the Thalassiosira pseudonana metabolic model

A genome-scale metabolic model of T. pseudonana CCMP 1335 (iTps1432) was generated

using as a framework the Phaeodactylum tricornutum (CCAP 1055/1) models iLB1027_lipid

[27] and iLB1034 [40]. Our model is distinct from a smaller, recently generated model of T.

pseudonana (iThaps987) designed to explore production of industrially useful compounds

[74] (see S1 Note for a discussion of differences between the two models). Differences between

iLB1027_lipid and iLB1034 and their relevance to iTps1432 are listed in S3 Dataset.

iLB1027_lipid has more reactions than iLB1034 due to the inclusion of detailed lipid metabo-

lism. Additional elements incorporated into the T. pseudonana iTps1432 model include

changes in the subcellular localization of reactions based on protein targeting sequences,

improvements in modeled light absorption, and the inclusion of known metabolic differences

between the diatoms. Several blocked reactions were resolved in iTps1432, and the number of

dead-end metabolites in the network was reduced when compared to the P. tricornutum mod-

els. The T. pseudonana model contains 6,073 reactions that represent a network of 2,789

metabolites and 1,432 genes, approximately 10–12% of the T. pseudonana genome (S1 Table).

The iTps1432 model contains reactions localized to six compartments representing the

cytosol, mitochondria, plastid, thylakoid lumen, peroxisome, and the extracellular environ-

ment. As with the P. tricornutum model, our prediction pipeline did not localize any metabolic

reactions to the endoplasmic reticulum, although other proteins were localized there. We eval-

uated the accuracy of our protein localization prediction pipeline by comparing our predic-

tions to proteomics data from mitochondria and plastid fractions isolated from T. pseudonana
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[75]. Because the resulting fractions were not pure, we used peptide counts to determine if a

protein was enriched in the mitochondrial or plastid fraction or in the cell lysate. A protein

was considered enriched in one compartment if the proportion of peptides was at least two-

fold greater than both other fractions. Using this criterion, 107 proteins were enriched in the

mitochondria, 86 proteins in the plastid, and 208 proteins in the cytosol or some other organ-

elle. Overall, 57% of proteins enriched in the mitochondria and 57% of proteins enriched in

the plastid were accurately localized by our prediction pipeline (S1a and S1b Fig). Seventy-one

percent of the 208 proteins that were enriched outside of the plastid and mitochondria were

assigned to other compartments by our pipeline (S1c Fig); one protein was predicted to be

localized in the endoplasmic reticulum and seven were predicted to be localized in the peroxi-

some, suggesting that most proteins enriched in the cell lysate were probably from the cytosol.

One hundred and forty-five of the proteins detected by Schober, et al. were present in

iTps1432 and overall about 78% (113 out of 145) were accurately localized in the final model, 9

of which were manually curated (S1 Fig).

Two major metabolic differences distinguish the two diatom species. First, T. pseudonana
has an absolute requirement for vitamin B12 as it possesses only the B12-dependent methionine

synthase gene METH, while P. tricornutum does not have a similar absolute requirement for

B12 as it has both METH and the B12-independent METE [76]. Adenosylcobalamin, methylco-

balamin, and aquacobalamin were included in the biomass reaction as estimated millimole

proportions of 1-gram dry weight ([77], S2 Dataset), and the cofactors were included in the

B12-dependent reactions. As a result, iTps1432 can only grow on media that contains cobala-

min when the solver tolerance is set low enough. Second, T. pseudonana produces chitin [78];

iTps1432 was modified to include chitin biosynthesis and degradation pathways.

An orthoMCL comparison [31] of homologous genes between T. pseudonana and P. tricor-
nutum guided additional modifications to iTps1432. These analyses confirmed that T. pseudo-
nana lacks the enzymes guanine deaminase, tryptophanase, ATP citrate synthase, and β-

carbonic anhydrase [79]. The citrate synthase reaction in iTps1432 was modified to deproto-

nate water rather than phosphorylate ADP, and a cytoplasmic carbonic anhydrase was added

to the model [80]. The analysis also detected a few other differences between P. tricornutum
and T. pseudonana. Reactions present only in P. tricornutum were eliminated from iTps1432;

these include the isomerization of xylose to xylulose, transamination of 4-aminobutyrate, lysis

of O-acetyl-L-homoserine to L-homocysteine and acetate, L-tryptophan deamination, agma-

tine hydrolysis, formamide hydrolysis, and guanine deamination. Reactions present only in T.

pseudonana include chitin synthesis and hydrolysis, and cleavage of pyruvate into acetyl-CoA

and formate (S2 Fig).

We also extended the iTps1432 model to include synthesis and respiration of the carbohy-

drate storage molecule chrysolaminarin, synthesis and hydrolysis of polyphosphate, exopoly-

saccharide biosynthesis, silicic acid condensation to a silica frustule, and pathways for the

biosynthesis and respiration of 2,3-dihydroxypropane-1-sulfonate (DHPS) [22,81]. Lipid

metabolism was re-configured in iTps1432 to reflect known differences in lipid composition

[66,67]. We included transport reactions for those amino acids known to be excreted at high

concentrations [82]. If genes encoding putative transporters for amino acids were identified,

then additional transport reactions for chemically similar amino acids were added, with the

assumption that these amino acids could use the same transporter. We included transporters

for the following amino acids: L-glutamate, L-aspartate, L-isoleucine, L-leucine, L-valine, L-

asparagine, L-glutamine, L-alanine, L-histidine, L-serine, L-threonine, glycine, and L-proline.

Additional transport reactions for silicic acid, biotin, cyanocobalamin, aquacobalamin, DMSP,

DHPS, glycine betaine, N-acetyltaurine, formamide, formate, uracil, acetate, choline, xanthine,

ATP, AMP, triphosphate, and UDP-N-acetyl-alpha-D-glucosamine, were added based on
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information from the literature, gene annotations, and information from other algal models

(S2 Table) [83]. Following the guidance of ref. [33], all new transport reactions were set to

reversible.

An important addition to iTps1432 was inclusion of a mechanistic model of photon absorp-

tion and electron transfer by fucoxanthin chlorophyll a/c binding proteins (FCPs). We

included reactions that describe energy transfer efficiency from excited pigments to chloro-

phyll a in the photosystems, and pigment de-excitation reactions to dissipate excess energy as

heat or fluorescence (see S3 Dataset). PSI and PSII reactions were modified to include charge

separation and recombination reactions. Photodamage of the D1 subunit was included as a

component of the PSII reaction [49,57], and the metabolic cost of D1 repair was included as

part of the non-growth ATP maintenance reaction to calculate the ATP-cost of phosphoryla-

tion and activation of the FtsH protease [58] and the ATP- and GTP-costs of biosynthesizing a

D1 peptide (S3 Dataset).

Development of biomass objective functions

A critical step in creating genome-scale metabolic models is development of accurate biomass

production reactions in which precursor metabolites are converted into the cellular compo-

nents that comprise the millimolar contribution to 1 g dry weight (gDW) of cell mass under

specific growth conditions [33]. In iTps1432, the biomass reactions generate the DNA, RNA,

protein, free amino acids, pigments, carbohydrates, lipids (phospholipids, sulfolipids, galactoli-

pids, glycerolipids), triacylglycerides, chitin, chrysolaminarin, osmolytes, a silica frustule, poly-

phosphate, and a soluble pool of vitamins and cofactors that together define the total biomass

of T. pseudonana under a particular environmental condition. Biomass reactions were devel-

oped for T. pseudonana cells acclimated to three different light levels (5, 60, 200 μmol photons

m-2 s-1). Bulk biomass composition (carbohydrates, protein, total dry weight) and chlorophyll

a concentration was measured in cells grown in chemostats maintained at 18˚C under 5, 60

and 200 μmol photons m-2 s-1 [24]. Pigment composition was derived from cells grown in a

photobioreactor maintained at 18˚C at 30 μmol photons m-2 s-1 [50] and from exponentially

growing cells maintained at 18˚C at 83 and 237 μmol photons m-2 s-1 [51]. The remaining bio-

mass components were calculated from the literature, typically from exponentially growing

cells, at temperatures ranging from 15–21˚C (optimal growth temperature is 21˚C); DNA

nucleotide composition was calculated from the genome sequence data. A simplified siliceous

frustule formation reaction was added to the model. The number of condensation reactions

per Si atom was derived from NMR data on the degree of silica hydroxylation/condensation in

T. pseudonana [84] and was used to calculate how much water should be released per gram of

frustule formed. The weight of the frustule was calculated based on the expected degree of

hydroxylation in the frustule and on either a linear relationship between growth rate and Si/C

under light-limiting conditions (5, 60 μmol photons m-2 s-1) or a power law relationship under

N-limiting conditions (200 μmol photons m-2 s-1) [85]. Calculations and references are pro-

vided in S2 Dataset.

The biomass composition also impacts the modeled photon absorption rate. Photon

absorption integrated over the Photosynthetically Active Radiation (PAR, 400–700 nm) spec-

trum in 20 nm units was calculated from whole cell absorption spectra for cells acclimated to

25, 40–60, and 250 μmol photons m-2 s-1 [54–56], as well as weight-specific absorption spectra

[52,53] and pigment composition (S3 Dataset).

Development of these biomass objective functions yielded information about the composi-

tion of T. pseudonana under different conditions and thus potential growth and acclimation

strategies. The resulting total cell dry weights (scaled to the radius of each circle in Fig 2) is
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inversely related to light intensity (22.4, 16.6, 17.8 pg/cell for 5, 60, 200 μmol photons m-2 s-1,

respectively). Similarly, the silica frustule was the greatest component of biomass at the lowest

light intensity (5.2 pg/cell vs 1.6 and 0.7 pg/cell, Fig 2), likely a consequence of the slower,

light-limited divisions rates combined with non-saturable silicic acid uptake kinetics in T.

pseudonana [86]. Protein contribution to biomass was inversely correlated with light intensity,

with the least amount of protein at the highest light levels. In contrast, total carbohydrates

increased with light intensity and represented the largest component at 200 μmol photons m-2

s-1 ([24], Fig 2). Pigments per cell were greatest at 5 μmol photons m-2 s-1, resulting in an

increased rate of photon absorption compared to the higher light levels. Photoprotective pig-

ments (β-carotene, diadinoxanthin, diatoxanthin) were most abundant at 200 μmol photons

m-2 s-1 ([50,51], Fig 2).

ATP maintenance cost calculation

Cellular energy requirements, in the form of ATP utilization, impact biomass production and

metabolite excretion in metabolic models. ATP maintenance costs were calculated for the

Fig 2. Biomass composition and detailed pigment composition of Thalassiosira pseudonana acclimated to three different light levels (5, 60, 200 μmol

photons m-2 s-1). The radius of each circle is scaled to the total cellular dry weight. To demonstrate the effect of pigment composition (highlighted in green) on

photon absorption at different wavelengths, photon absorption was plotted for each acclimated cell during illumination at 100 μmol photons m-2 s-1 under a cool

white fluorescent bulb. The contribution of each pigment is integrated over each 20 nm of the light spectrum.

https://doi.org/10.1371/journal.pone.0241960.g002
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three light levels (5, 60, 200 μmol photons m-2 s-1) using our biomass objective functions and

production measurements (provided by K. Halsey) from chemostats maintained at the same

light levels [24]. Growth-associated ATP utilization represents the energy not accounted for in

biopolymer formation reactions while non-growth associated ATP utilization accounts for

energy utilization in the absence of growth. Growth-associated ATP maintenance calculations

can be impacted by photodamage due to high light intensities [87]. In the chemostat studies

[24], the maximum photochemical yield of PSII (Fv/Fm) remained constant (0.56–0.58),

across the three light levels indicating a lack of photodamage. We therefore constrained bio-

mass production using chemostat dilution rates and performed Flux Balance Analysis (FBA)

for each light level by maximizing the ATP hydrolysis reaction. A linear relationship (R2 =

0.94) between ATP utilization and growth rate allowed us to estimate the non-growth associ-

ated maintenance (rNGAM = -27 ± 52 SE) costs as the y-intercept and the growth associated

maintenance (rGAM = 3809 ± 1221 SE) costs as the slope (S3 Fig). The small sample sizes

resulted in large error bars (S3 Fig). Rather than constrain the ATP maintenance reaction with

these bounds, we iteratively searched for individual rGAM values for each biomass objective

function using the measured growth rate and calculated theoretical upper bounds for rNGAM.

The theoretical upper bound of non-growth associated maintenance (rNGAM) was calculated

for each chemostat using the compensation light level (Ic), which is the light intensity at which

photosynthesis is equal to respiration and the growth rate is zero [63].

rNGAM ¼ Icachlarϕm e

where achl a is the chlorophyll a specific absorption coefficient (m2 mg Chl a-1), r is the ratio of

chlorophyll a to gram dry weight per cell (mg Chl a-1 gDW-1), ϕm is the quantum efficiency of

photosynthesis (mol O2 mol photon-1), and e is the amount of ATP generated per oxygen. The

parameter Ik was estimated by fitting Chalker equation 1 [88] (where DR stands for dark respi-

ration)

NPP ¼ Ps � tanhðI=IkÞ þ DR

to each net photosynthesis (NPP) curve generated by Fisher and Halsey ([24], data provided

by K. Halsey). Ik was then used to calculate the compensation light level (Ic) for each chemostat

(Chalker equation 4).

Ic ¼ Ik tanh
� 1ð� DR=PsÞ

The r and ϕm parameters were obtained from Fisher and Halsey; the achl a parameter was

calculated from Finkel [54], Stramski et al. [55], and Sobrino et al. [56] (S3 Dataset). The

resulting non-growth and growth associated maintenance costs are 1.6, 2.2, and 3.7 mmol

gDW-1 h-1 and 2698, 2217, and 3669 mmol ATP gDW-1 for cells acclimated to 5, 60, and

200 μmol photons m-2 s-1, respectively.

Cyclic electron flow

Cyclic electron flow (CEF) and respiration both consume the reduced ferredoxin and down-

stream equivalents generated via linear electron flow (LEF), driving ATP generation and

increased flux through PSII (Fig 1) and thus balance redox. Additionally, CEF helps generates

a proton gradient across the thylakoid membrane through cytochrome b6/f. Constraining

these reactions can improve the accuracy of flux predictions in iTps1432. Bailleul et al. [10]

proposed that CEF is less than 5% of maximal total electron flow in diatoms. Maximal total

electron flow occurs when light is saturating and increased flux of electrons cannot occur. To

constrain CEF in iTps1432 we simulated the Bailleul et al. [10] light response experiment with
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FBA using the biomass equation we developed and absorption spectrum acquired for cells

acclimated to medium light intensity (60 μmol photons m-2 s-1; their cultures were acclimated

to 70 μmol photons m-2 s-1). The maximal total electron flow through a cell acclimated to

medium light was estimated by setting the level of light exposure to ~2000 μmol photons m-2

s-1 (saturating). PSII, oxygen exchange, and bicarbonate exchange reactions were constrained

by the 95% confidence intervals of gross and net photosynthesis and carbon uptake, respec-

tively, measured for cells acclimated to 60 μmol photons m-2 s-1 and exposed to 1952 μmol

photons m-2 s-1 [24]. The rate of D1 damage for the PSII reaction was calculated based on the

number of inactivation events per O2 molecule evolved [57], using a quantum efficiency (ϕm)

of 0.056 mol O2 per photon [24] (S3 Dataset). Nutrient uptake rates were calculated using the

Michaelis-Menten equation with f/2 nutrient concentrations. The upper bound of CEF was

constrained with the following symbolic expression where CEF is set to 5% of total electron

flow,

2 � CEF ¼ 0:05 � ðPSICSþ PSIICS � 2 � CBFC2 þ 2 � CEFÞ

Linear electron flow (LEF) is the sum of electron flux through PSI and PSII (represented by

charge separation reactions: PSICS, PSIICS) minus the linear flow from PSII through to PSI

(represented by cytochrome b6/f: CBFC2). The pFBA simulation calculated 0.38 mmol gDW-1

h-1 as an upper bound of CEF and we used this value in subsequent simulations. CEF is rela-

tively insensitive to short-term changes in light intensity and appears similar in a variety of dia-

tom species [10]. At the highest light intensities (~2000 μmol photons m-2 s-1), CEF is an

insignificant fractional component of total electron flow (TEF) in T. pseudonana; at the lower

light intensity of ~100 μmol photon m-2 s-1, CEF corresponds to about half of TEF (see

Extended Data Fig 9b in ref. [10]). How CEF differs in cells acclimated to different light levels

or cells in different growth phases is not yet known.

Effect of light limitation

The allocation of photosynthetic energy to biomass production and respiration was quantified

using pFBA with iTps1432 at three different light levels [24], constrained by chemostat pro-

duction data (provided by K. Halsey), the calculated ATP maintenance costs, and CEF, given

the light-dependent differences in biomass composition (Fig 2). The pathways contributing to

the dissipation of reducing equivalents generated by light energy include: CEF; respiration

(ribulose-1,5-bisphosphate oxygenase, glycolate oxidase, plastid terminal oxidase, the Mehler

reaction, alternative oxidase, cytochrome c oxidase); nitrogen assimilation (NO3 reductase,

NO2 reductase, glutamate synthesis); sulfate assimilation (PAPS reductase, APS reductase,

2-aminoacrylate sulfotransferase, SO3 reductase); carbon assimilation and biosynthesis of

reduced metabolites (Fig 1). Some pathways also dissipate the electrons generated by transient

pools of organic carbon respired to CO2. For example, rapidly dividing cells preferentially use

storage polysaccharides such as chrysolaminarin, while slowly growing populations dominated

by cells in G1 phase preferentially use newly formed glyceraldehyde-3-phosphate (G3P) [89].

Additional sink reactions for chrysolaminarin and G3P were included to simulate respiration

of these transient organic carbon pools. From the chemostat dilution rates we calculated the

fraction of cells dividing per hour (T. pseudonana cell division is not synchronized [90]). The

sink reactions were constrained (proportionally to the fraction of cells dividing per hour) with

the differences between gross and net carbon production (the carbon catabolism measure-

ments) for each chemostat [24].

Biomass production and cyclic electron flow are the largest electron sinks (Fig 3a). G3P

production by the Calvin cycle is a sink for electrons across all three light levels, with the lowest
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amount produced at the highest light intensity due to increased supply of G3P that is not

entirely consumed by mitochondrial maintenance respiration. The biosynthesis of complex

macromolecules, or further reduction of G3P, is another source of NADPH consumption, and

becomes increasingly important at higher light intensities. Nitrate and sulfate reduction also

consume reducing equivalents. At 5 μmol photons m-2 s-1, nitrate reduction is a proportionally

more important component of biomass production than at other light levels because of the

high protein content of cells acclimated to low light (10.5 pg/cell vs. 4.3 and 3.3 pg/cell, Fig 2).

Respiration is also more important at low light levels. Mitochondrial maintenance respiration

was used to constrain respiration of organic carbon via the TCA cycle, and as a result cyto-

chrome c oxidase is a constant proportion of TEF (Fig 3a). PFBA predicts that the Mehler reac-

tion was the largest respiratory flux at 5 and 200 μmol photons m-2 s-1, while at 60 μmol

photons m-2 s-1 cytochrome c oxidase was the largest and there was also some respiration by

plastid terminal oxidase (Fig 3a). To achieve a single solution, pFBA minimizes the absolute

sum of fluxes with the objective of minimizing enzyme utilization. Given that this objective

may not be relevant to photosynthetic organisms dealing with redox balance, we explored

additional respiratory constraints in the simulation.

Fig 3. Parsimonious Flux Balance Analysis (pFBA) predictions (in mmol e- gDW-1 h-1) for the contribution of different reactions to the

dissipation of reductants generated by photosynthesis and organic carbon utilization in iTps1432 across three chemostats maintained at 5, 60,

and 200 μmol photons m-2 s-1. Differences in biomass composition and biosynthesis of metabolites impact the contribution of C, N, and S assimilation

reactions (grey, blue, yellow, respectively). Respiration reactions are distributed across several different organelles including the plastid, peroxisome,

and mitochondria (green, purple, red, respectively). Flux predictions with (a) baseline constraints on respiration, (b) photorespiration included, (c)

photorespiration and energetic coupling included.

https://doi.org/10.1371/journal.pone.0241960.g003
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First, we noticed that photorespiration was not a part of the original pFBA prediction and

that it could be an important sink for reductants in photosynthetic organisms. Photorespira-

tory flux, or the specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) for

CO2 versus O2, was calculated with the following expression [91]

vc
vo
¼

VcKo

VoKc
�
½CO2�

½O2�

where vc is the carboxylase flux, and vo is the oxygenase flux through RuBisCO, VcKo/VoKc is

the specificity factor of RuBisCO for CO2 over O2, and [CO2]/[O2] is the ratio of CO2 versus

O2 in the pyrenoid. We used a specificity factor of 79, as determined for the related diatom T.

weissfloggii [92] because of an assumed similarity in function based on the predicted peptide

level similarities between the RuBisCO enzymes from the two diatoms (rbcS is 97% identical,

rbcL is 98% identical). The concentration of CO2 in the pyrenoid, where most RuBisCO is

located, is estimated at 100 μM [93]. The concentration of O2 in the pyrenoid is unknown and

is difficult to measure [94]. We therefore used the ambient concentration of O2 in seawater at

equilibrium with the atmosphere (200 μM).

vc
vo
¼ 79

mmol CO2 min� 1mg � 1 � mMO2

mmol O2 min� 1mg � 1 � mM CO2
�
100 mM CO2

200 mMO2

Photorespiration was constrained with the following symbolic expression,

RUBISO h ¼ 0:025 � RUBISC h

where the oxygenase activity of RuBisCO is 2.5% the carboxylase activity. The addition of a

photorespiratory constraint activates the oxygenase activity of RuBisCO as well as peroxisomal

glycolate oxidase (Fig 3b). For a Km of 65 μM [92], pyrenoid CO2 concentrations are likely

higher than estimated because diatoms are not carbon-limited, and O2 concentrations are

thought to be lower (J. Young, pers. comm.) Thus, these simulations may overestimate the sig-

nificance of photorespiration.

In diatoms, a major component of redox balance is the flow of reducing equivalents from

the plastid to the mitochondria [10], based on the observation that flux of electrons through

PSII depends on mitochondrial respiration. In a third experiment, we included energetic cou-

pling between the plastid and the mitochondria by redirecting reductants generated by linear

electron flow to NADH ubiquinone oxidoreductase with the following symbolic expression,

NADHOR m ¼ 0:0015 � PSI u

Little is known about the extent of energetic coupling in T. pseudonana and how it may

change with acclimation to different light intensities, so the value of this constraint (NAD-

HOR_m/PSI_u = 0.0015) was chosen for exploratory purposes. Flow of reductants from the

plastid activates the mitochondrial alternative oxidase reaction in iTps1432 (Fig 3c). Larger

values that increased the flux through alternative oxidase impacted the growth rate of

iTps1432 because there was a trade-off with CEF which appears to be required for energy gen-

eration at these lower light levels.

The simulations under different light limiting conditions highlighted the interconnected

pathways that diatoms rely on to balance reductant dissipation through biomass requirements

and different respiratory pathways. These results raise the question of how the dissipation of

reductants generated by photosynthesis occurs under nutrient-limitation conditions when

biomass production cannot be used as an electron sink.
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Effect of nitrogen starvation

The previous simulations highlighted the importance of nitrate reduction as an electron sink

under steady-state conditions. We next explored the impact of nitrogen limitation and starva-

tion on reductant flow using dynamic Flux Balance Analysis (dFBA) to simulate growth in

batch culture where cells are not in steady-state. Throughout the simulation, we tracked simu-

lated nutrient and excreted metabolite concentrations in the media as well as molecular and

elemental biomass composition. The simulations relied on experimental data [25,26] derived

from T. pseudonana cells grown at 85 μmol photons m-2 s-1 in a 12: 12h light: dark cycle at

18˚C in f/2 media modified to initiate N-starvation. T. pseudonana acclimated to medium

light levels (60 μmol photons m-2 s-1) is the closest condition examined in the previous simula-

tion. Biomass composition and macro-nutrient concentrations were determined experimen-

tally at 0, 1, 3, 7, and 10 days after the start of the experiment. Measurements of biomass C, N,

and P were made more frequently at 0, 1, 2, 3, 5, 7, and 10 days after the start of the experi-

ment. Liefer, et al. [26] defined four different growth phases according to observed growth pat-

terns: mid-exponential corresponded to N-replete steady-state growth (day 0); late exponential

corresponded to reduced growth after dilution to N-free media prior to stationary phase (day

1–3); early stationary corresponded to one day after cessation of cell division (day 7); and mid-

stationary corresponded to five days after cessation of cell division (day 10).

In batch culture, biomass composition measurements are equal to the composition of cells

from all previous time points plus newly synthesized biomass minus the re-mobilized biomass

components. Biomass objective functions were computed for each time point by comparing

the simulated biomass composition at the current time point to the experimentally measured

biomass compositions at the different time points (target biomass composition) (Fig 4a). As

nitrogen is depleted, T. pseudonana uses up protein and accumulates carbohydrates and lipids;

there is also accumulation of DNA as cells stop actively dividing, a decrease in RNA and pig-

ments per cell, and accumulation of residual P likely corresponding to polyphosphate storage

([25], Fig 4a). Experimental measurements and simulations of biomass composition produce

C:N or N:P ratios that indicate cell composition was impacted by nitrogen starvation after 3

days in culture (Fig 4b). After 10 days in culture, measurements of C:P decreased due to poly-

phosphate increasing as a cellular component in stationary phase. There is a similar change in

C:P in the simulated iTps1432 biomass composition (Fig 4b). Small differences between mea-

surements and simulated elemental ratios could be attributed to both error in the bulk biomass

composition data taken from the literature to supplement the experimental measurements

(osmolytes, chitin, vitamins), errors in the assumed compositional data making up the larger

components (molecular composition of RNA, protein, free amino acids, protein, carbohy-

drates, EPS, and lipids), or over-production and under-production of various components at

different points in the simulation (S4 Fig). Nevertheless, many measured biomass components

were accurately simulated and the predicted timing of nitrogen starvation was accurate, giving

us confidence that our model reflects the principle effects of nitrogen limitation and starvation

in batch culture.

The added NO3 (and NO2) in the experimental media were depleted sometime between 1

and 3 days after the initiation of the experiment; low levels of background NH4 in the media

were depleted after 1 day. Simulated NO3 was completely depleted from the media shortly

after 1 day of growth whereas simulated NH4 was released into the media concurrent with the

NO3 depletion and was subsequently taken up and re-excreted into the media between the dif-

ferent target days. The simulated PO4 concentration in the media matched the observed grad-

ual decrease over time (Fig 5a). The greatest discrepancy between the measured and simulated

nutrients was for Si(OH)4 concentrations. Experimental Si(OH)4 concentrations were
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simultaneously drawn down with the NO3 during the first day and then plateaued at ~10 μM.

The simulated drawdown of Si(OH)4 instead plateaued at ~25 μM shortly after 1 day in cul-

ture. This difference likely reflects errors in the weight of the cell frustule used in the biomass

objective function. This value was not experimentally measured and so the value used for the

biomass objective functions was extrapolated from the difference between dry weight measure-

ments and the sum of other biomass components (S4 Dataset). Inaccurate simulation of sili-

cate utilization will have little impact on the flow of reductants as the silicate condensation

reaction to form the frustule is not a redox reaction. To simulate a diel pattern of biomass for-

mation, we included over-production of chrysolaminarin and TAGs during the light period in

the biomass objective functions and did not include production of TAGs, chrysolaminarin,

and pigments in the dark period [62]. Biomass production was strongest during the light

period and was typically followed by respiration of some biomass components in the dark to

create a diel pattern of changing biomass concentration (Fig 5b).

The ability to accurately simulate uptake of nitrate and C:N under non-steady-state condi-

tions motivated a more detailed examination of electron flow. Gross oxygen evolution from

the PSII reaction was constrained based on the electron transfer rate and the number of PSII

reaction centers per chlorophyll a measured on days 0, 1, 3, 7, and 10 of the experiment [25].

Fig 4. Target biomass composition and comparison between simulated and experimental biomass elemental ratios for the transition of iTps1432 from

exponential to stationary phase under nitrogen-limited conditions. (a) Biomass composition was measured 0, 1, 3, 7, and 10 days after transfer to fresh media

with low nitrate and used to calculate the biomass objective function at each time point. (b) C:N, N:P, and C:P ratios were measured 0, 1, 2, 3, 5, 7, and 10 days after

transfer and compared with simulated biomass elemental composition. See S4 Fig for plots of error rates between predictions and experimental measurements.

https://doi.org/10.1371/journal.pone.0241960.g004
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Per milligram of chlorophyll a, gross oxygen evolution decreased slightly on the first day and

remained steady until the seventh day, with a sharp increase on the tenth day of the experiment

(Fig 6a). There is good agreement between gross oxygen production measured at 85 μmol pho-

tons m-2 s-1 for cells acclimated to medium light intensity grown in chemostats [24] to the PSII

flux calculated with data from FRRf for cells in mid-exponential phase (Fig 6a). On a gram dry

weight basis, there is an initial increase in PSII flux followed by a gradual decline over the

course of the experiment as a result of declining chlorophyll a concentrations relative to total

biomass. PSII flux is only slightly higher on the tenth day of the experiment on a gram dry

weight basis (Fig 6a). The simulation includes diel fluctuations in chrysolaminarin and TAG

production which create regular fluctuations in the ratio of O:C of new biomass (Fig 6b). The

Fig 5. Comparison between simulated and experimental (solid, dashed lines) media nutrient concentration and

biomass concentration for the transition of iTps1432 from exponential to stationary phase under nitrogen-

limited conditions. (a) NO3 (+ NO2), NH4, Si(OH)4, and PO4 were measured 0, 1, 3, 7, and 10 days after transfer to

fresh media with low nitrate and compared to simulated media nutrient concentrations (b) Cell concentration (cells

mL-1) was measured each day and converted to biomass concentration (g L-1) where measurements of cell dry weight

were available and compared with the simulated biomass concentration. 12: 12 h light: dark cycles are depicted with

white and grey stripes.

https://doi.org/10.1371/journal.pone.0241960.g005
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elemental formula of newly produced biomass was used to calculate a range of possible photo-

synthetic quotients (PQ: the proportion of oxygen evolved to inorganic carbon assimilated in

the light) given growth on nitrate or ammonia (Fig 6c). The combination of constraints on the

PSII, oxygen exchange, and inorganic carbon assimilation reactions limit respiration during

the light period, while respiration is left unconstrained in the dark period. In general, total

respiratory flux increases with increased flux through PSII, although there is some influence

by the photosynthetic quotient (Fig 6c and 6d). Diel changes in respiration are controlled by

diel patterns in biomass formation in which the rates of chrysolaminarin and TAG production

vary throughout the light period. During the light period plastid terminal oxidase and the

Mehler reaction are the primary respiratory fluxes. During the dark period, respiration

switches to peroxisomal glycolate oxidase and cytochrome c oxidase as organic matter is

respired for energy (Fig 6d).

The photosynthetic quotient is the proportion of oxygen evolved to inorganic carbon

assimilated in the light and its calculation assumes that all assimilated CO2 is used to generate

biomass. However, diatoms are known to excrete dissolved organic carbon during

Fig 6. Simulated respiratory flux predictions (in mmol O2 gDW-1 h-1) and the constraints affecting respiration for the transition of iTps1432 from

exponential to stationary phase under nitrogen-limited conditions. (a) Flux through the PSII reaction is driven by photon absorption and is constrained by

measurements taken 0, 1, 3, 7, and 10 days after transfer to fresh media with low nitrate (green, mmol O2 mg chl a-1 h-1, [25], S3 Dataset). The 95% confidence

intervals were converted from mmol O2 mg chl a-1 h-1 to mmol O2 gDW-1 h-1 using simulated mg chl a / gDW and set as lower and upper bounds of the reaction.

Steady-state N-replete ± 95% confidence interval (black) measurement of net oxygen production [24] was plotted at the 0 h time point. Simulation results are

plotted here for each 3 h increment in mmol O2 gDW-1 h-1 (black). (b) Plot of simulated new biomass O: C molar ratio during the light (black) and dark (grey)

period. (c) The photosynthetic quotient was calculated from the simulated new biomass elemental composition during the light period (black) and also contributes

to the respiratory flux results. Oxygen and inorganic carbon assimilation were left unconstrained during the dark period (grey). (d) Respiratory flux predictions and

contribution of different respiration reactions (plastid: green, mitochondria: red, peroxisome: purple). 12: 12 h light: dark cycles are depicted with white and grey

stripes.

https://doi.org/10.1371/journal.pone.0241960.g006
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photosynthesis. For this reason, we explored a range of different PQ constraints (95% PQ–

105% PQ) to see how this assumption impacts metabolite secretion (Fig 7). Metabolite excre-

tion can occur if the by-product of a reaction cannot be assimilated by the organism; for exam-

ple, cyanide is a by-product of cyanocobalamin utilization. Occasionally cyanide is used by

3-mercaptopyruvate sulfurtransferase in the de-sulfuration of 3-mercaptopyruvate, resulting

in the excretion of thiocyanate. Cyanocobalamin is a form of vitamin B12 frequently used in

culture media, but is not widely available in the environment. Polyphosphate is also a by-prod-

uct in vitamin B12 metabolism and folate biosynthesis; excess is excreted and then re-assimi-

lated at later time points as the preferred source of phosphorus [95]. In this simulation,

metabolites are excreted predominantly as a result of biomass re-mobilization or to balance

redox.

Formate and DMSP production were most strongly impacted by changes in the PQ. DMSP

production increases with the photosynthetic quotient (or when respiration is low).

Fig 7. Simulated metabolite excretion by iTps1432 during the transition from exponential to stationary phase under nitrogen-limited conditions across a

range of possible photosynthetic quotient constraints. Note that y-axes are scaled to each metabolite and metabolites are listed in order of highest to lowest

maximum concentration. Metabolites composed of organic carbon are labeled red, organic nitrogen are blue, organic sulfur are yellow, and inorganic are black.

https://doi.org/10.1371/journal.pone.0241960.g007
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Conversely, formate production is highest when respiration is high (Fig 7). Similarly, more

ethanol is excreted when the PQ is higher and more urea is excreted when the PQ is lower

than predicted by biomass composition, and then both are re-assimilated at night. Other

metabolites, proline, leucine, formamide, xanthine, and urate, appear to be by-products of re-

mobilizing certain biomass components (protein, free amino acids, RNA) to achieve the tar-

geted objective. Some metabolites including L-aspartate, acetate, glycolate, glycine, L-gluta-

mate, and L-threonine appear to be more sporadically excreted and re-assimilated.

We evaluated reactions involved in N and S metabolism in simulations where DMSP is

excreted and found increased sulfate assimilation after the onset of NO3 depletion (Fig 8). NO3

reductase uses 1 NADH to produce NO2 in the cytosol, NO2 reductase is localized in the plas-

tid and uses 3 NADPH to produce NH4, and the GS-GOGAT cycle assimilates NH4 while uti-

lizing ATP and 2 reduced ferredoxin when localized in the plastid. After NO3 is depleted,

ammonia assimilation continues sporadically throughout the time course as a side-effect of the

ammonia excreted due to the re-mobilization of different pools of organic nitrogen during

biomass composition changes. SO4 can be assimilated in the plastid by a plastid-localized ATP:

sulfate adenylyltransferase that produces adenylyl sulfate (APS). APS reduction to SO3 con-

sumes a reduced thioredoxin, SO3 reductase is plastid localized and consumes 6 reduced ferre-

doxin to produce H2S. SO4 reduction to sulfide becomes more prevalent immediately after

NO3 is depleted and results in DMSP excretion (Figs 7 and 8). 2-aminoacrylate sulfotransfer-

ase also contributes to redox balance by consuming 1 NADPH in the production of L-cysteate

which is thought to be an intermediate in DHPS production [22], a component of diatom bio-

mass in iTps1432.

Discussion

The interdependence between biomass composition, photon absorption, nutrient utilization,

and photosynthetic constraints is a distinguishing feature of iTps1432, and a critical

Fig 8. Simulated N & S (blue, yellow) metabolic flux predictions (in mmol e- gDW-1 h-1) during the transition of

iTps1432 from exponential to stationary phase under nitrogen-limited conditions with a 102% photosynthetic

quotient constraint.

https://doi.org/10.1371/journal.pone.0241960.g008
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component of photosynthetic modeling given the dynamic nature of biomass composition

and its role in photosynthesis. These interconnections allowed us to model the different ways

that diatoms may maintain redox balance. A critical first step was development of biomass

objective functions for three different light levels (5, 60, 200 μmol photons m-2 s-1) and use of

chemostat production measurements to constrain flux for different light intensities (Fig 2).

Given an elemental formula for biomass composition, the degree of reduction can be calcu-

lated as the number of electron equivalents per gram atom C [96]. The inverse relationship

between protein content of cells and light meant that the degree of reduction was also inversely

related to light (5.66, low light; 5.47, medium light; 4.97, high light). More highly reduced bio-

mass composition as result of increased nitrate assimilation, in addition to increased light-

dependent respiration at low light could be part of a previously proposed strategy that T. pseu-
donana limits respiration of organic carbon by using alternative redox balance strategies in

order to improve the efficiency of biomass production [24].

Photosynthetic organisms have evolved a variety of mechanisms to deal with the primary

challenge of photosynthesis: how to capture light energy while evading potential damage. Over

longer time periods, diatoms adjust their pigment composition to deal with incoming light

energy, but short-term fluctuations in light intensity with inadequate sinks for electrons could

theoretically cause a plastid to become over-reduced and damaged. Energy dissipation as heat

or fluorescence (non-photochemical quenching) is one potential mechanism, summarized in

iTps1432 as a photon loss reaction. The metabolic challenge of photochemical quenching is

managing the mismatch between reduced ferredoxin produced by linear electron flow and the

actual metabolic requirements for NADPH. Light-dependent respiration reactions in the plas-

tid are one of the primary sinks for reductants. Alternatively, reduced metabolites can be

exported from the plastid and oxidized by mitochondrial respiration. Finally, cyclic electron

flow is another potential sink for reductants, as well as a non-reducing source of energy since

the reaction drives proton pumping by cytochrome b6/f. Halsey & Fisher postulated that CEF

could be more important at lower light levels, but did not measure it in their experiment [24].

Our FBA predicted that CEF is a major component of alternative electron flow, particularly at

lower light levels (Fig 3a). This finding was unexpected as it has been shown that CEF is less

than 5% of maximal electron flow and the transfer of reductants from the plastid to the mito-

chondria is more prevalent in diatoms when compared to plants [10]. The absolute flux of

CEF remains relatively constant across all light levels and in multiple diatom species [10]. We

used FBA to calculate an upper bound for CEF at saturating light levels (maximal electron

flow). At low light levels, this flux value is relatively important given the decrease in total elec-

tron flow as light intensity goes down. In the data given by Bailleul et al. [10], CEF makes up

about half of TEF at the lowest light level measured (~100 μmol photon m-2 s-1); so we may be

underestimating its importance at these light levels due to the poorly constrained values of

growth-associated ATP maintenance, and given the contribution of CEF to energy generation.

Respiration via cytochrome c oxidase is activated by the respiration of transient organic car-

bon pools by the mitochondrial TCA cycle. Some of the transient organic carbon that was cal-

culated to be available (as the difference between gross and net carbon production

measurements) is directly utilized, as evidenced by the decreased use of the Calvin cycle at

200 μmol photon m-2 s-1 (Fig 3a). Remaining respiratory flux was routed through the Mehler

reaction or plastid terminal oxidase. In the Mehler reaction, oxygen reacts with reduced ferre-

doxin emerging from photosystem I and forms a superoxide anion. Superoxide dismutase

neutralized two reactive anions into oxygen and hydrogen peroxide, and ascorbate peroxidase

converts hydrogen peroxide into water. NAD(P)H is consumed through the glutathione-

ascorbate cycle (Fig 1). Chlororespiration results from the oxidation of the plastoquinone pool

by plastid terminal oxidase (Fig 1) and was historically defined as an electron transport chain
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in the thylakoid membrane involving a proton-translocating NADH:plastoquinone reductase

complex (NDH1) and a plastid terminal oxidase (PTOX) [97]. T. pseudonana and other uni-

cellular algae lack an NDH complex [98], and likely rely on a non-electrogenic NDH2 or ferre-

doxin:plastoquinone reductase (CEF) to fuel the terminal oxidase [97,99]. Chlororespiration is

thought to be only active in low light conditions or darkness [99,100]. Here FBA predicts that

PTOX is active at the medium light levels, and the Mehler reaction is active at low and high

light. Parsimonious FBA minimizes the absolute sum of fluxes, and therefore returns a single

solution with the lowest possible number of active fluxes. As a result, only one light-dependent

respiration reaction is active and this may not be realistic. We experimented with different

constraints on respiration using the available information in the literature (Fig 1).

Photorespiration occurs whenever there is oxygen in the pyrenoid because the enzyme

RuBisCO cannot always distinguish between O2 and CO2. We activated photorespiratory flux

by assuming a high concentration of O2 relative to CO2 in the pyrenoid. This constraint acti-

vated the oxygenase activity of RuBisCO as well as peroxisomal glycolate oxidase (Fig 3b). In

diatoms, photorespiration is truncated and 2-phosphoglycolate is not recycled back to ribu-

lose-1,5-bisphosphate [101]. Glycolate can be oxidized to glyoxylate and then converted to

either malate or transaminated to glycine or is excreted under certain conditions [102,103].

Alternative oxidase was activated by imposing an energetic coupling constraint on PSI and

NADH ubiquinone oxidoreductase to simulate energetic coupling [27] (Fig 3c). However,

only a low level of energetic coupling (NADHOR/PSI = 0.15%) could be introduced before the

constraint impacted biomass production. This observation supports the idea that CEF is more

important at low light levels, and can be inhibited if reductants are diverted to the mitochon-

dria. CEF helps generates a proton gradient in order to fuel ATP production; this could be an

important reaction when light levels are low and cells are more energy starved, which is why

our predictions are dependent on the GAM.

In addition to respiration, nitrate and sulfate assimilation also contribute to balancing

redox reactions in the plastid, the relative impact of which depends on how cells adjust respira-

tion rates in response to changing redox pressures [104]. We simulated the progression of a

batch culture from nitrate limitation to N-starvation using dynamic FBA (Fig 5). When nitrate

is depleted, diatoms continue to produce biomass by re-mobilizing internal sources of nitro-

gen and producing more of the carbohydrates [26]: chrysolaminarin and EPS (Fig 4a). Dia-

toms also experience decreased flux through PSII caused by pigment degradation [25], which

decreases light absorption. Data on net oxygen evolution as nitrogen is depleted in batch cul-

ture was not available; we calculated a range of possible photosynthetic quotients from the new

biomass equation at each time point based on biomass production from nitrate versus ammo-

nia. This strategy only accounts for metabolites that are part of the objective function and does

not account for the possibility of excreted metabolites or the re-mobilization of biomass com-

ponents. We tested a range of different PQ constraints (95%–105% the original PQ value) and

found a potential role for sulfate assimilation after nitrate is depleted (Fig 8). Secretion of the

organic sulfur compound DMSP as a result of increased sulfate assimilation is in line with pre-

vious experimental work indicating that nitrate limitation causes the greatest increase in intra-

cellular DMSP production [105] (Fig 7). DMSP is hypothesized to act as an osmolyte replacing

stores of proline, under nitrate limitation [105]. Many of the compounds produced and

excreted by iTps1432 are compatible solutes, a class of compounds known to be transported in

and out of cells in response to changes in osmotic pressure. We could not account for the pos-

sibility of changing osmolyte composition as part of the biomass objective function as the only

measurement of osmolytes are from N-replete conditions [22].

Experimental support for a role for nitrate uptake in response to fluctuating redox pressures

comes from the observation that nitrogen-replete diatoms secrete ammonium during rapid
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increases in irradiance [106]. Additionally, enzymes within nitrogen and sulfur assimilation

pathways in diatoms, are redox-sensitive [107]. Nitrate assimilation is likely to be more effec-

tive at dissipating reductants than sulfate assimilation because of low consumption of ATP rel-

ative to NADPH equivalents. However, sulfate is consistently available at high concentrations

(28 mM, [108]) throughout the ocean whereas nitrate is typically limiting in both coastal

regions [109] and in the subtropical gyres [110]. Although our focus was on growth limitation

by nitrate, other types of nutrient-limitation (such as silicon, iron, zinc, or vitamin B12 [111])

may impact redox balance by limiting biomass formation.

In our simulations, iTps1432 reduces ATP demand by limiting flux through the TCA cycle

and instead secretes ethanol and formate (Fig 7), both of which are suggestive of some level of

fermentation. Similarly, the eukaryotic green alga Chlamydomonas reinhardtii has the full

complement of enzymes used to ferment pyruvate and is known to excrete fermentation prod-

ucts malate, ethanol, acetate, formate, and H2 under dark anaerobic conditions [112]. In T.

pseudonana, formate is a by-product of the methionine salvage pathway or DMSP biosynthe-

sis, and is produced via pyruvate formate lyase, an alternative reaction to pyruvate dehydroge-

nase. In our simulations, formate is excreted primarily in the dark period as a result of

chrysolaminarin utilization, while Chalmydomonas produces formate during degradation of

starch reserves. In Chlamydomonas, ethanol is typically produced via alcohol dehydrogenase

that detoxifies acetaldehyde generated by pyruvate decarboxylase during fermentation [112].

T. pseudonana lacks the gene for pyruvate decarboxylase, and instead produced acetaldehyde

as a by-product of threonine aldolase. In iTps1432, acetaldehyde is either converted into etha-

nol and excreted or into acetate which may rejoin the TCA cycle as acetyl-CoA. In our simula-

tions, ethanol is secreted during the light period and re-assimilated during the dark period.

Examples of fermentative metabolism in photosynthetic organisms during both the light and

dark period have been previously reported. Cyanobacteria in hot spring microbial mats are

known to experience anaerobiosis at night and switch to fermentative metabolism [113]. Chla-
mydomonas cultures grown with limited aeration, under low nutrient or low light conditions,

also experience anaerobiosis due to respiratory utilization of oxygen exceeding oxygen pro-

duced by photosynthesis [112]. When the PQ is constrained to 95% the calculated value, for-

mate is produced during both the light and dark period, likely due to respiration exceeding

photosynthesis. Amino acids are commonly secreted by a variety of diatoms [21,114]. We

were surprised to predict the secretion of amino acids by iTps1432 under nitrate starvation

conditions (Fig 7). Secretion of these amino acids occurs mostly during shifts to new biomass

targets where protein re-mobilization is possible and are not impacted by changes in respira-

tion. We did not include transport reactions for small peptides although these compounds are

an important component of secreted metabolites in T. pseudonana, possibly as a by-product of

protein turnover [115]. During N-starvation we would expect protein re-mobilization to con-

tribute to biomass formation for other metabolites requiring nitrogen rather than result in

excretion of amino acids. This observation is similar to the degradation of RNA nucleotides

into urate and xanthine and the excretion of formamide (Fig 7). Perhaps these nitrogenous

compounds are too highly reduced to be useful during nitrate starvation and are therefore

released into the environment.

Most of the metabolites secreted by iTps1432 can be consumed by marine bacteria. For

example, a subset of marine bacteria can utilize glycolate as a sole carbon source [116], and

bacterial transcripts for glycolate oxidase were found to vary on a diel cycle during a phyto-

plankton bloom [117]. Many bacteria from the Roseobacter clade rely on organic nitrogen and

sulfur compounds produced by phytoplankton or other bacteria as they are unable to reduce

nitrate or nitrite and some cannot reduce sulfate [118]. Alphaproteobacteria and Gammapro-

teobacteria are known to degrade DMSP into methanethiol (CH4S) or dimethyl sulfide (DMS)
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[119]. Differences in the metabolic networks of phytoplankton as well as differences in respira-

tion, and how different species react to fluctuations in environmental conditions and redox

imbalances will impact the character and quantity of metabolites secreted. These are likely

major factors that structure the bacterial community associated with phytoplankton and con-

trol bacterial succession over the course of a bloom [120].

Conclusion

Thalassiosira pseudonana CCMP 1335 was isolated from Moriches Bay, New York, in 1958,

and the whole genome was sequenced in 2004 [121]. With availability of the genome, T. pseu-
donana has been studied from a systems-wide perspective using transcriptomics, proteomics,

and metabolomics (eg. [115,122–125]). The genome-scale metabolic model of T. pseudonana
created here builds on previous modeling work [27], incorporates currently available physio-

logical and genomic data, and will serve as a powerful tool to generate hypotheses about dia-

tom metabolism and to interpret future experiments.

We simulated the metabolism of T. pseudonana under steady-state light limited conditions

and found that cyclic electron flow plays an important role in generating energy and balancing

redox under low-light conditions, while the role of energetic coupling between plastids and

mitochondria is minimal. We also found that nitrate reduction plays a critical role in dissipat-

ing reductants in the plastid under nutrient-replete conditions, while sulfate reduction replaces

nitrate assimilation during non-steady-state simulations of nitrate-limitation and N-starva-

tion. The character and quantity of metabolites secreted during our simulations depends on

the conditions of redox balance, the relationship between photosynthesis and respiration, and

biomass re-modeling.

iTps1432 incorporates a large body of experimental and genetic knowledge. We caution,

however, that our predictions also rely on a few network reactions for which there is little or

no experimental or genetic evidence. Many enzymes are promiscuous, catalyzing a wider vari-

ety of substrates than represented here, and errors in annotation are possible. iTps1432 should

be considered a preliminary version of a metabolic network that will improve with further

curation and expansion as research on this diatom continues. iTps1432 could be extended in a

variety of directions in the future. Reactions describing complex formation for metal- and

cofactor-requiring proteins could be added to the model to better describe vitamin and trace

metal utilization, as trace metal limitation is an important nutrient condition in the ocean

[111] and vitamins play an import role in interactions with bacteria [126,127]. Additionally, an

effort to better characterize transporters would significantly improve prediction of metabolite

secretion and mechanisms of energetic coupling between the plastid and the mitochondria.

The development of representative marine metabolic models, such as iTps1432, could allow us

to integrate molecular data with models of ocean biogeochemistry in the future.
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