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Abstract: Highly porous, elastic, and degradable polyurethane and polyurethane/polylactide
(PU/PLDL) sponges, in various shapes and sizes, with open interconnected pores, and porosity
up to 90% have been manufactured. They have been intended for gap filling in the injured spinal
cord. The porosity of the sponges depended on the content of polylactide, i.e., it decreased with
the increase of polylactide content. The rise of polylactide content caused an increase of Young
modulus and rigidity as well as a more complex morphology of the polyurethane/polylactide blends.
The mechanical properties, in vitro toxicity, and degradation in artificial cerebrospinal fluid were
tested. Sponges underwent continuous degradation with varying degradation rates depending on the
polymer composition. In vitro cell studies with fibroblast cultures proved the biocompatibility of the
polymers. Based on the obtained results, the designed PU/PLDL sponges appeared to be promising
candidates for bridging gaps within injured spinal cord in further in vitro and in vivo studies.
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1. Introduction

Injuries of the central nervous system (CNS) are serious medical cases that usually lead to severe
disability. They are especially incapacitating in case of spinal cord injuries (SCI). Regardless of the
location, central nervous system injuries always cause a loss of important neurological functions [1–10].
Treatment is difficult, and at the current state of medical knowledge, it is focused on reducing the
primary and secondary damages caused by the injury, and, later on, on neurological improvement by
long-time rehabilitation. Full functional recovery in the case of major trauma is seldom possible to
date [1–15].

If the injury occurs with a loss of nervous tissue, a gap is created in the spinal cord pathways,
and the stumps become covered with a glial scar. It was found that axons of long neuronal tracts in
the split spinal cord start to regrow in the same way as in the peripheral nervous system, but cystic
gaps and glial scars block this process. In recent years, growing interest has been aimed at the use of
Schwann [16] or olfactory ensheathing cells [17–19] to support central system nerve regeneration. These
cells have unique abilities to open glial scars, making them penetrable for regrowing axons. Another

Polymers 2020, 12, 2693; doi:10.3390/polym12112693 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-3676-796X
http://www.mdpi.com/2073-4360/12/11/2693?type=check_update&version=1
http://dx.doi.org/10.3390/polym12112693
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 2693 2 of 17

goal in a successful treatment of the spinal cord injury is bridging the stumps with an appropriate
material, which has to be non-toxic for the extremely sensitive nervous tissue. It should also mimic
the extracellular matrix. Three-dimensional artificial scaffolds have been tested as an experimental
strategy to increase axonal guidance in spinal cord lesions [5,15,16,18].

The idea of applying polymer scaffolds facilitating the restoration of neurological functions
after spinal cord injury has been increasingly investigated. An ideal scaffold has to be penetrable
for regrowing axons of the spinal cord, provide a cell-“friendly” surface for cellular colonization,
provide mechanical support for regrowing nervous tissue, and connect ends of injured nervous
pathways [15,16]. Biocompatible scaffolds supporting tissues have been produced with the use of
natural or synthetic polymers [20–22]. An artificial extracellular matrix (ECM) for tissue engineering
should be biocompatible without the tendency to induce exaggerated inflammatory reaction after
implantation [23,24]. In order to regenerate and restore the damaged or lost tissue and organs,
3D architecture that guides the growth of new tissue must be designed with appropriate biomechanical
properties for the cells adhesion and optimal integration with the host tissue [23]. In general, artificial
ECM implants should exhibit a porous structure with interconnecting pores of adequate size to
allow a rapid and sufficient vascularization and cell infiltration with the possibility for the long-term
survival of cells within the structure [25–28]. Three-dimensional porous polymeric matrices for tissue
engineering are promising constructs. These synthetic structures might offer a biological substitute
for the natural extracellular matrix by directing the organization, proliferation, and differentiation of
various cells and tissues [21,26,29,30]. It is widely accepted that the one of the most important factors
in neuroregeneration inside an implant is a presence of longitudinal pathways guiding the growing
axons [31].

Grafting the injured spinal cord with artificial implants is of great importance in the medical
treatment [1,3–10]. For that purpose, polymer biomaterials have been thoroughly investigated [1–7].
Natural polymers, such as alginate, agarose, collagen, chitosan, and fibronectin have been used
as scaffolds for neural cell growth in vitro [10] as well as axon regrowth in vivo [5]. It was
found that a natural polymer may potentially increase the interaction of the host tissue with
the scaffold. Nevertheless, the synthetic polymers such as poly(lactic acid), poly(glycolic acid),
or poly-β-hydroxybutyrate have been tailored to create a wide range of degradation rates and
mechanical properties. Finally, synthetic and natural polymers can be blended together to achieve
the superior material properties [1,3–10,32–39]. A polymer scaffold for spinal cord repair should be
constructed into specific geometry and micro-architecture, e.g., polymer sponges, multichannel grafts,
hydrogels, and tubes [1,4,6,7]. Numerous techniques of preparation of polymer porous scaffolds are
described, such as electrospinning, solvent casting/salt leaching, phase inversion, thermally induced
phase separation, etc. [22,28–46]. One of the most common is the solvent-casting/salt-leaching technique.

In this article, the fabrication of highly porous polyurethane and polyurethane/polylactide scaffolds
designed for spinal cord posttraumatic cavities reconstruction is reported. Three-dimensional sponges
were made by a solvent-casting/salt-leaching technique using the dimethylformamide as a solvent. The
effect of the polymer blend composition on the porous structure and morphology was examined by
scanning electron microscopy. The mechanical properties of created scaffolds, porosity, and degradation
in an artificial cerebrospinal fluid were studied. To test the cytotoxicity of the scaffolds, studies of
the cellular response using fibroblast cultures were performed. Recently, we successfully assessed
in in vitro and in vivo studies that the PU/PLDL (poly(L/D,L-lactide) blends are very promising
biomaterials for peripheral and spinal cord nerve regeneration [5,39,43,47–50]. The influence of
sterilization on the PU/PLDL blends was also discussed earlier [51].

2. Materials and Methods

Biodegradable polyurethane for biomedical applications (PU) was purchased from BAYER Material
Science Company, Leverkusen, Germany. Poly(L/D,L-lactide) (PLDL), with a molar ratio L-lactide to
DL-lactide 80:20% (PURASORB® PLDL8038) was purchased from PURACbiochem BV, Gorinchem,
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Netherlands. Dimethylformamide (DMF) as a solvent was purchased from POCH S.A., Gliwice, Poland.
Sodium chloride (POCH S.A.) was used as porogen.

Porous polyurethane and PU/PLDL blend sponges were prepared by the
solvent-casting/salt-leaching (SCSL) method. Solutions of concentration 10 wt% were prepared by
dissolving the polymer granules in DMF during 3-day stirring at 40 ◦C. The resulting solution was
used for the pre-form preparation. Polymers solution was mixed with sieved salt grains (300–600 µm).
The mixture was mechanically stirred at room temperature for 30 min. Then, the mixture was poured
into 5-mL glass beakers and kept for one hour under a fume hood. Excess polymer solution was
removed using micropipettes. The formed polymer solution/porogen mixture in glassware was
air-dried for 7 days and then vacuum-dried for 2 days followed by salt leaching in distilled water
until the electrical conductivity of the rinse water was about 2 × 10−3 Sm−1. Sponges of various
compositions of PU and PLDL, namely, 90/10, 80/20, 70/30, 60/40 and 50/50 wt% were fabricated.

The cross-sectional and surface morphology of the polyurethane and PU/PLDL sponges was
observed with scanning electron microscopy SEM (JOEL Model JSM-5400, NANO SEM 200 FEI EUROPE
COMPANY, Eidhoven, Netherlands, and EVO LS15—Zeiss Oberkohen, Carl Zeiss, Oberkochen,
Germany) at an accelerating voltage of 10–20 kV. For SEM investigation, samples in the form of discs
were cut from cylindrical sponges. Polymer sponges were sputtered with carbon or gold (Turbo
Dual Head Coater type K575XD and Scancoat6—Edwards, Warsaw, Poland). Samples exhibiting the
cross-section surface of the sponges were fixed on sample holders using the conductive type.

Spinal cord of adult gecko Eublepharis macularius and laboratory white rat (sacrificed in other
experiment) were harvested for morphological analysis, postfixed in formalin, and embedded in
paraffin. Then, the samples were cut in 20 µm slices, sputtered with gold, and observed in SEM
microscopy with the same technique as for PU/PLDL sponges.

Porosity evaluation of the PU and PU/PLDL sponges were calculated basing on their apparent
densities and the densities of the bulk PU-based material. The weight, height, and diameter of the
porous materials were delimited to calculate the volume and apparent densities. The determination
of the volume and densities of the nonporous polymer samples was performed as described for
porous sponges. For this purpose, finely ground material of the sponges was used. For each sample,
ten specimens were tested.

In vitro degradation studies were carried out by immersing the samples in an artificial cerebrospinal
fluid (ACSF, pH = 7.4) at 37 ◦C (MEMMERT incubator, EQUIMED, Cracow, Poland). The pH of the
extracts was measured regularly during one year. The ACSF was replaced 4 times every day, as it
occurs in the living organism. Glucose-free ASCF was prepared in the laboratory by dissolving
appropriate salt (POCH S.A., Gliwice, Poland) in water. One L of the ASCF contained in mM: NaCl 128,
KCl 3.0, CaCl2 1.3, MgCl2 1.0, Na2HPO4 21.0, NaH2PO4 1.3, and 5% CO2. Cylindrical samples of the
polymer sponges, 10 mm in diameter and 10 mm in height, for the degradation tests were fabricated.
In addition to the pH and conductivity compression strength, the Young moduli, as well as the weight
loss of the sponges were determined. Samples were taken at intervals and weighed (moisture analyzer,
RADWAG, Radom, Poland) after drying in a vacuum for 2 days. The remaining weight (WR) was
calculated as:

WR (%) = 100 × (WB −WD)/WB (1)

where WB and WD are the weights of sponges before and after immersion in ACSF, respectively.
All the given numbers were means of ten measurements (±standard deviation)

A universal machine (Zwick & Rockwell 1435, Zwick/Roell, Ulm, Germany) was used for the
measurement of the compression strength. Cubic (a = 10 mm) or cylindrical (d and h = 10 mm)-shaped
samples were prepared for mechanical testing. The fully dried samples were compressed between
parallel plates. In a first series of experiments, the compression strength (RC0.1) at the point of 10%
compression (strain = 0.1) and compressive Young modulus (E) of the porous samples were measured
immediately after their fabrication at ambient temperature (25 ◦C). As it was stated earlier in the text,
to investigate the changes in mechanical properties during the early stage of degradation, sponges
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after immersion in ACSF were dried, and compression mechanical tests were conducted as described
above. The compressive strain–stress curves of all sponge series were determined with a 10 N load cell
and a cross-head speed of 1 mm/min. The compressive Young’s modulus (MPa) was calculated for the
force range between 0.5 and 1 N from a stress–strain curve. All the given values were means for ten
measurements (±standard deviation)

For in vitro bioassay, the discs with dimensions of 15–16 mm in diameter and 2 mm of thickness cut
from sponges were sterilized using a hydrogen peroxide cold plasma sterilization technique. Then, they
were located in 24-well plates (SARSDTET) and fixed in the inserts. Two types of polymer sponges were
selected for biological studies: pure polyurethane and polyurethane/polylactide with weight content
ratio of 8:2. The NIH 3T3 mice embryonic fibroblast cell line was seeded into the PU and PU/PLDL
composite sponges by dropping the cell suspension solution onto the sponge disc. Cells were seeded
on both sides of the porous disc (bottom and top surface). The initial cell density was 35,000 cells per
well. The cells were cultured for 1 and 3 days on the considered sponges in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% phosphate buffered saline (PBS), 1% penicillin/streptomycin,
and 2 mM L-glutamine at 37 ◦C under 5% CO2 atmosphere.

Mice fibroblast proliferation was measured by determining the level of reduction of the yellow
tetrazolium dye MTT (3-[4-5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) to colored
blue-purple insoluble formazan (calorimetric MTT bioassay). MTT solution in PBS (5 mg/mL) was
added to the cells containing wells and incubated at 37 ◦C for 3 h. The reaction was completed by
addition of dimethyl sulfoxide (DMSO) to dissolve the insoluble formazan. Then, the optical density
of the blue dye was measured at a wavelength of 540 nm on Multiscan FC Microplate Photometer
(Thermo Scientific, Waltham, MA, USA).

The morphology of the fibroblasts NIH 3T3 was observed by SEM and fluorescence
microscopy (Zeiss Axiovert, Carl Zeiss, Oberkochen, Germany). The cultured cells were fixed in
4% paraformaldehyde (Avantor, Gliwice, Poland) for 1 h, washed in PBS, and stained with 1% acridine
orange solution (1 mg cationic dye per mL) prior to microscopic analysis.

The level of protein production by cell supernatants was calculated from the absorption spectra
collected in the bicinchoninic acid test (BCA assay). The BCA protein assay kit was purchased from
Sigma, Saint Louis, USA. The BCA solution (reagent A) was mixed with copper(II) sulfate pentahydrate
solution (4% w/v of CuSO4·5H2O), (reagent B) in the volume ration of 50:1, respectively. Then,
the supernatant (10 µL) and bicinchoninic acid (200 µL) were added to a 96-well plate. After 30 min
incubation in the dark, the absorbance was determined at a wavelength of 540 nm with a photometer
Multiscan FC Microplate Photometer (Thermo Scientific, Thermo Scientific, Waltham, MA, USA).

The level of nitrate(II)/nitrate(III) production, as an indicator of nitric oxide (NO) synthesis,
was quantified in fibroblast culture supernatants by the Griess diazotization reaction (nitric oxide
calorimetric bioassay). Griess reagents for nitrite determination were purchased from Sigma, Saint Louis,
USA To perform this bioassay, a Griess component A–0.1% (1 mg/mL) N-(1-naphtyl)ethylenediamine
dihydrochloride solution in water and Griess component B–1% sulfanilic acid in 5% phosphoric acid
solution (component C) were mixed in the volume proportion 1:1. Then, 100 µL of the supernatant
and 100 µL of the Griess reagents (A and B-C) were transferred to a multi-well plate (96 wells).
The absorbance was measured at wavelength of 540 nm with a photometer Multiscan FC Microplate
Photometer (Thermo Scientific, Waltham, MA, USA).

The results were expressed as means ± standard deviation. Statistical significance was determined
by t-test and the differences were regarded as significant at p < 0.05.

3. Results and Discussion

In our work, we designed and fabricated the PU-based sponges that may act as grafts, providing
support and contact guidance for regrowing axons and endogenous and/or transplanted cells. On the
basis of our earlier research (unpublished data), we found that a material/scaffold suitable for
spinal cord reconstruction should at least fulfill the following basic criteria: (1) biodegradable into
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non-toxic products, (2) high elasticity, (3) high resistance to compression, (4) compression modulus
about 1–1.5 MPa [52,53], (5) interconnected pore structure mimicking the spinal cord architecture,
(6) micropores ranging in size from 100 µm to 1 mm [10,15,18], and (7) be easily fabricated into a
variety geometries and dimensions [15,16]. Its design was drawn from SEM and classic histological
and anatomical studies of spinal cord architecture. It led us to focusing on the sponge material as a
matrix for implants. It was based on their resemblance to the main microscopic architecture of spinal
cord and 3D matrix formed by glial supportive cells, as shown in Figure 1.
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Figure 1. SEM images of rat (a–c) and leopard gecko spinal cord (d–f) at the thoracic level: general
view (a,d), gray matter (b,e) and white matter (c,f).

3.1. SEM Studies, Porosity

Various forms of polymer sponges consisting of polyurethane and polylactide prepared by the
solvent-casting/salt-leaching method are shown in Figure 2. The preparation method showed very
good reproducibility. The samples were fabricated in different shapes appropriate for the mechanical
tests. As we can see on the SEM images of rat and leopard gecko spinal cord cross-sections in the
thoracic level (Figure 1), they have porous architecture. The porosity of both kinds of spinal cord
samples is not uniform. The white matter that consists mainly of axons and glial cells is much more
porous than the gray one containing numerous cell bodies. It is especially noticeable in the rat spinal
cord. One can expect that porosity should be a crucial property of material grafting the disrupted
spinal cord.

Figure 3 shows SEM micrographs of the cross-sections (images b–f) of the PU/PLDL sponges.
All samples showed a highly microporous structure. The pores in the sponges are interconnected and
regularly distributed. Mostly large micropores with the diameter of >300 µm are present; however,
the diameter of pores varied between 50 and 600 µm. In Figure 3a,g SEM images of sole PU and PLDL
sponges are presented. There were no significant differences in the porosity of the sponges made of
pure polyurethane and the PU/PLDL blends. On the contrary, pure polylactide samples obtained with
exactly the same method as the PU and PU/PLDL ones showed pores with diameters less than 10 µm.
The diameters of pores in rat and gecko spinal cords range from the nanoscale up to 10 µm. Even if
the PLDL sponge has better resemblance to the native nerve, they are too hard and rigid for grafting
the spinal cord. The dimensions of the pores in PU/PLDL correlate well with the size of the porogen
and can be modified this way. Figure 3h,i shows two representative SEM micrographs of the external
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surface of PU/PLDL 8/2 sponges taken with two different magnifications. Open pores are clearly visible,
which potentially will let the body fluids and cells inside the material.

The porosity of polyurethane and PU/PLDL sponges is presented in Figure 4. The estimation of
porosity gave values between 75 and 85% for all samples, independent of the initial concentration of
the solution. However PU/PLDL 8/2 sponges have porosity in the higher range, which is more than
80%. Depending on the polymer contents, the morphology (mainly size of the pores) of the samples
slightly differs (Figure 3); however, no clear rule can be seen. There were significant differences in
the porosity and morphology of pure polyurethane sponges and pure polylactide sponges, which is
shown in Figure 3a,g.

The porosity of the manufactured sponges was determined by measuring the apparent density of
the sponges and the densities of the corresponding solid polymeric materials. Based on these densities,
the porosities of the scaffolds were calculated to range between 70% for PU/PLDL 5/5 composite and
above 85% for PU/PLDL 8/2 composite porous scaffolds (Figure 4). Summarizing, the morphology and
porosity of the PU/PLDL sponges can be easily controlled by the amount of sodium chloride added to
the polymer solution and the particle size of the porogen.Polymers 2020, 12, x FOR PEER REVIEW 6 of 17 
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3.2. Degradability of the Sponges in the Artificial Cerebrospinal Fluid

The in vitro degradation of polyurethane, polylactide, and PU/PLDL sponges was performed in
artificial cerebrospinal fluid (ACSF) at 37 ◦C by measuring the weight loss and mechanical properties
alterations of the scaffolds as a function of the incubation time. The total volume of CSF in an adult
human body ranges from 140 to 270 mL. CSF is produced at a rate of 0.2 ± 0.7 mL per minute (about
500 ÷ 700 mL per day), so the whole fluid volume changes every 6 to 7 h [54–58]. In our study, we kept
replacing the ACSF four times a day during whole period of the experiment. In Figure 5, changes of
mass loss upon degradation in ACSF for 56 weeks are presented.
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The immersion of all sponges in artificial cerebrospinal fluid resulted in a gradual decrease of
mass. The tests have been performed for 56 weeks. Polyurethane and polylactide were also tested.
Their degradation rate differs significantly. The PLDL sponges degrade completely in 28 weeks, while
polyurethane ones show only 30% mass loss after 56 weeks. It is reasonable to add that the polyurethane
used for the preparation of scaffolds degrades entirely in ca. 3 years. All investigated blends of the
two polymers, except for PU/PLDL 5/5, last for 56 weeks; however they degrade faster than PU,
and the degradation level depends on the polymer content ratio. The more polylactide, the faster the
degradation. The samples containing 50 wt% of PLDL lost almost 50% of their weight after 8 weeks;
similarly, the mass loss in the other samples is congruent with the content of PLDL. PU/PLDL sponges
containing of more than 20 wt% of PLDL revealed a higher degradation rate during the first 8 weeks
than PU and PU/PLDL 9/1. After 8 weeks, the degradation slows down. However, we can expect that
the degradation mechanism in the polymer mixtures is different than in the neat polymers, and the
degradation of polyurethane is faster in the presence of polylactide. The evidence for that is that
the blend 5/5 degrades almost totally after 56 weeks, while sole PU does not. The PLDL sponges
weight decreased progressively from 100% down to about 50% of the initial weight during 8 weeks
of degradation. On the contrary, insignificant mass loss was observed for the polyurethane sponges
during the first weeks.
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The rate of the biodegradation of the polymer scaffolds intended for spinal cord repair must
correlate with the nervous tissue regeneration rate [18]. Interpretation of the in vitro degradation
results is difficult due to lack of data of the regeneration rate in the CNS on the basis of implants.
For a peripheral nervous system, the rate of fiber regeneration is defined more precisely, and it is
assumed to be about 1 mm/day [59–63].

3.3. Mechanical Properties

The material grafting of the injured spinal cord should be soft and elastic to be mechanically
compatible with the spinal cord tissue. On the other hand, the compressive modulus and compressive
strength of the graft must be very accurate to prevent it from deformation blocking the regeneration
of the nerve fibers. Stress–strain curves of PU and PU/PLDL sponges are presented in Figure 6a.
All samples show viscoelastic behavior that is typical to PU. The addition of PLDL, which is rigid in
its nature, changes the character of the blends form nonlinear viscoelastic (for 9/1 and 8/2) to almost
linear elastic for PU/PLDL 5/5. In Figure 6b, the analogical compression curves of samples after
4-week immersion in ACF are shown. They are consistent with the degradation graphs in Figure 5.
During the first weeks, mainly PLDL is removed from the blend, causing an increase of elasticity of the
samples, which is evidenced by changing the stress–strain curves to nonlinear and is closer to that of
the PU sponge. The stress–strain curve of the PU sponge remained almost unchanged after 4 weeks of
treatment with ACF.
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The compressive moduli (Ec) and compressive strength (Rc 0.1) at 10% deformation are summarized
in Table 1. The values of the compressive moduli of all blends are typical for elastomers (usu. ≈ 1 MPa for
rubbers) and also compatible with the values published for the human spinal cord [53]. The compressive
moduli of the PU/PLDL sponges are visibly higher than those of the PU sponges. The bigger the
PLDL contents, the higher the Rc0.1 and EC of the PU/PLDL sponges, meaning that the sponges are
stiffer and more resistant to mechanical stress. The compression moduli of the sponges ranged from
0.88 ± 0.04 MPa for neat polyurethane to about 3.42 MPa for PU/PLDL 5/5. It refers to human spinal
cord Young moduli described by other that grows with sample size 0.025 mm-0.48 mm-0.12 mm to
0.37, 1.02, 1.17 MPa respectively [52] and is increased when covered by pia matter—1.40 MPa [53].
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Table 1. The comparison of Young’s moduli (EC) of PU/PLDL sponges measured by static compression
test and compressive yield strength RC0.1 for polymer sponges.

Sponge Symbol PU 100% PU/PLDL 9/1 PU/PLDL 8/2 PU/PLDL 7/3 PU/PLDL 6/4 PU/PLDL 5/5

Compressive
strength

RC0.1 [kPa]
10.05 ± 0.35 10.61 ± 0.81 11.84 ± 0.76 18.20 ± 1.57 17.76 ± 2.21 26.93 ± 3.01

Young’s
moduli [MPa] 0.88 ± 0.04 0.87 ± 0.05 0.85 ± 0.03 1.86 ± 0.41 1.50 ± 0.13 3.42 ± 0.23

Figure 7 shows the changes of the compression moduli of the sponges after 36 weeks of incubation
in ACSF. Before immersion, the samples considerably differed with their mechanical properties, and
the compression moduli ranged from 0.88 to 3.42 MPa. After 4 weeks, the immersion mechanical
properties of all samples became comparable to those of PU sponge. After 12 weeks degradation in
ACSF, the compression moduli ranged from 0.44 MPa for PU/PLDL 5/5 to 0.73 MPa for PU. After
24 weeks, the compressive moduli of all blends were lower than of those of PU, which is in agreement
with the significantly greater mass loss in blends than in PU (see Figure 5), and consequently, there are
more voids in the material.
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3.4. In Vitro Bioassay

The proliferation of fibroblasts on the tissue-culture polystyrene plate (TCPS, the control) and
two types of sponges (PU and PU/PLDL 8/2 sponges) was investigated using MMT bioassay, as well
as non-cytotoxic effect of PU-based sponges after day 1 and 3. The PU and PU/PLDL 8/2 sponges
were selected because of their excellent elasticity, mechanical properties, and preferable morphology
and degradation rate. The results of fibroblast proliferation observation in MMT assay are presented
in Figure 8.
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Figure 8. Effect of PU and PU/PLDL 8/2 sponges on the viability and proliferation of mice fibroblast
NIH 3T3.

The absorbance of each type of PU-based sponge was lower to that of the control at every time
point. The absorbance of both types of sponges generally increased from day 1 to day 3 but did not
change significantly. On day 3, the cell proliferation was lower in porous samples, reaching about
30,000 compared to cell viability in control TCPS samples, around 320,000.

In the in vitro experiment, fibroblasts were not found to adhere to neither to PU sponges nor
PU/PLDL 8/2 sponges. Figure 9 shows the representative morphology of a small singular fibroblast
seeded in the pores of PU-based sponges on day 3. The cells had already attached onto the sponges
and exhibited a globular shape.
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To assess the ability of PU-based sponges to promote fibroblast metabolic activity, we analyzed the
production of proteins and nitric oxide after 1 and 3 days. The production of protein slowly decreased
from the first to the third day of cell cultivation. The production of protein increased only in the
presence of the bottom side of polyurethane sponges and TCPS, decreased in the presence of the
PU/PLDL 8/2 composite sponges, was slightly higher in the presence of the top surface, and showed the
most significant increase in the presence of PU/PLDL 8/2 during the first day of cell culture (Figure 10).
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Figure 10. Values of proteins secretion by mice fibroblast NIH 3T3 separately for the first and third day
of cell culture in the PU and PU/PLDL 8/2 sponges.

The study of the interaction between PU/PLDL sponges and mice fibroblast-mediated nitric oxide
in sponges of polyurethane and PU/PLDL 8/2 composition showed increased an production of NO
in the presence of a polylactide phase of PU-based sponges and the presence of the bottom surface
of polyurethane sponges, suggesting that both porous matrices stimulate nitric oxide production,
although, for the top surface of PU sponges, the production of NO by fibroblast decreased (Figure 11).
In summary, the protein and nitric oxide expression by fibroblast seeded on these porous scaffolds was
comparable to that on the control on day 1 and day 3.
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3.5. Summary

We have found that all PU/PLDL sponges exhibited good mechanical properties with a sufficiently
low compression modulus about 1–1.5 MPa, which is important for an atraumatic contact with spinal
cord lesions. Thus, they may be used in neural tissue engineering to generate tissue substitutes that
will not induce a strong irritate reaction after implantation into the soft tissue of the spinal cord,
and at the same time, it will also set up a stable construct that is in contact with the hard vertebral
column surface. The in vitro degradation studies in ACSF revealed a continuous weight loss of all the
tested samples over a degradation period of a year. The rate of degradation depended on the PLDL
concentration. Young moduli of the investigated PU/PLDL sponges depended on the polymer content
ratio and ranged from 0.88 MPa for PU to 1.5 MPa for PU/PLDL 5/5, and the values are similar to
that of human spinal cord (1.4 MPa with pia matter, 1 MPa without pia matter). Polyurethane and
PU/PLDL 9/1 sponges exhibited good mechanical properties, but the degradation rate was rather
low. The initial compression modulus of 3.42 of the PU/PLDL 5/5 sponges is sufficiently high to serve
as a reconstruction material. The PU/PLDL 8/2 sponges best fulfilled all the criteria to serve as a
reconstruction material.

Mice fibroblast were seeded on the PU and PU/PLDL 8/2 sponges. SEM images showed they were
poorly overgrown by the fibroblast. The sponges did not exhibit a cytotoxic effect on the fibroblasts, and
the MMT data indicated that both types of sponges, PU and PU/PLDL 8/2, supported the expression of
protein and nitric oxide throughout the fibroblast culture period of 3 days. The comparable metabolic
activity of fibroblast seeded on the sponges, TCPS, and medium on day 3 suggest that the presence of
PU and PU/PLDL 8/2 sponges was particularly useful for promoting the cells for the expression of
protein and nitric oxide. These preliminary in vitro studies demonstrated the cytocompatibility of the
fabricated scaffolds and their potential to serve as biodegradable matrices for cell culture and tissue
repair. The protein and nitric oxide production by fibroblast seeded on the sponges was comparable
to those of the control sample for each measurement. It is worthwhile to add that nitric oxide is a
biomolecular mediator of many physiological processes, e.g., immunity, inflammation, thrombosis,
and neurotransmission. In addition, our earlier detailed studies on the culture of olfactory ensheating
glial cells on polyurethane/polylactide electrospun nonwovens proved the usefulness of the PU/PLDL
blends for neural regeneration.

4. Conclusions

Applying novel techniques of tissue engineering for neural regeneration requires biocompatible
and preferably bioresorbable scaffolds providing a framework for cells to adhere, proliferate,
differentiate, and create an artificial extracellular matrix. Polyurethane/polylactide sponges mimicking
the spinal cord tissue of rat and leopard gecko were successfully designed and prepared. Our study
demonstrates that the biodegradable polyurethane/polylactide blend sponges exhibit a highly porous
microstructure, good mechanical properties, and also cytocompatibility, and thus, they can be used for
further design as a neural tissue ECM substitute, which can be implanted directly at the defect site in the
spinal cord without inducing a strong irritation response. However, because of the unsatisfactory pore
interconnectivity and the poor infiltration of body fluids in the PU-based sponges, further studies will
be performed to improve the pore interconnectivity, the infiltration, and the cell adhesion, which are an
essential to accomplishing optimal neural regeneration. Prepared characteristics of Pu/PLDL sponges
can be used to determine the expected behavior of potential implants. The porosity, degradation time,
and mechanical properties can be selected. Prepared PU/PLDL sponges may be used for spinal cord
reconstruction. Future studies involving the optimization of glial, neural, and stem cells and tissue
growth within the sponges and in vivo of the scaffolds materials are in progress.
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