
ORIGINAL RESEARCH
published: 28 June 2021

doi: 10.3389/fgene.2021.697279

Frontiers in Genetics | www.frontiersin.org 1 June 2021 | Volume 12 | Article 697279

Edited by:

Wei Lan,

Guangxi University, China

Reviewed by:

Hao Lin,

University of Electronic Science and

Technology of China, China

Leyi Wei,

Shandong University, China

*Correspondence:

Xiaoqing Peng

xqpeng@csu.edu.cn

Xiaojun Ding

ding.xiaojun@foxmail.com

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 19 April 2021

Accepted: 01 June 2021

Published: 28 June 2021

Citation:

Peng X, Li Y, Kong X, Zhu X and

Ding X (2021) Investigating Different

DNA Methylation Patterns at the

Resolution of Methylation Haplotypes.

Front. Genet. 12:697279.

doi: 10.3389/fgene.2021.697279

Investigating Different DNA
Methylation Patterns at the
Resolution of Methylation Haplotypes
Xiaoqing Peng 1*, Yiming Li 1, Xiangyan Kong 2, Xiaoshu Zhu 3 and Xiaojun Ding 3*

1Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South

University, Changsha, China, 2 School of Computer Science and Engineering, Central South University, Changsha, China,
3 School of Computer Science and Engineering, Yulin Normal University, Yulin, China

Different DNA methylation patterns presented on different tissues or cell types are

considered as one of the main reasons accounting for the tissue-specific gene

expressions. In recent years, many methods have been proposed to identify differentially

methylated regions (DMRs) based on themixture of methylation signals from homologous

chromosomes. To investigate the possible influence of homologous chromosomes on

methylation analysis, this paper proposed a method (MHap) to construct methylation

haplotypes for homologous chromosomes in CpG dense regions. Through comparing

the methylation consistency between homologous chromosomes in different cell types,

it can be found that majority of paired methylation haplotypes derived from homologous

chromosomes are consistent, while a lower methylation consistency was observed in

the breast cancer sample. It also can be observed that the hypomethylation consistency

of differentiated cells is higher than that of the corresponding undifferentiated stem

cells. Furthermore, based on the methylation haplotypes constructed on homologous

chromosomes, a method (MHap_DMR) is developed to identify DMRs between

differentiated cells and the corresponding undifferentiated stem cells, or between the

breast cancer sample and the normal breast sample. Through comparing the methylation

haplotype modes of DMRs in two cell types, the DNA methylation changing directions of

homologous chromosomes in cell differentiation and cancerization can be revealed. The

code is available at: https://github.com/xqpeng/MHap_DMR.

Keywords:methylation haplotype, differentiallymethylated region, cell differentiation, homologous chromosomes,

methylation consistency, hypomethylation consistency

1. INTRODUCTION

In recent years, the revealing of the mechanisms behind the diseases has been performed from
different angles, such as mutated genes, altered DNA methylation (Eden et al., 2003; Baylin, 2005),
non-coding RNAs (Yan et al., 2017, 2018; Chen et al., 2019; Lan et al., 2020), microbes (Yan et al.,
2019, 2021), etc. Differentially methylated regions (DMRs) are the main explanation accounting
for the diversity of gene expression in different cell types in a body. Differentiation-associated
differential methylation profiles were observed on cell types under different stages of development
and differentiation (Laurent et al., 2010). Recent studies show that altered DNA methylation has a
very close relationship with diseases. In cancer genomes, the promoter regions of tumor suppressor
genes are altered to be hypermethylated (Baylin, 2005), while the promoter regions of tumor genes
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are altered to be hypomethylated (Eden et al., 2003). Identifying
DMRs can promote revealing the mechanisms in tissue-
specific/diseases-specific gene expression (Scott et al., 2020)
and tissue-specific DMRs can be used as feature markers
in identifying the tissues-of-origin of cfDNAs in noninvasive
diagnosis (Hu et al., 2019; Xiaoqing et al., 2020).

Infinium HumanMethylation450 BeadChip and Infinium
MethylationEPIC BeadChip provide a convenient way to
measure the methylation levels of CpG sites in CpG islands and
gene regions. In BreadChips, the methylation level of a certain
CpG site is estimated by using the ratio of intensities between
methylated and unmethylated alleles. In recent years, due to the
development of sequencing technology, bisulfite sequencing (BS-
Seq) makes to reveal the methylation status of each cytosine site
on a read become possible. The numbers of methylated cytosines
and unmethylated ones of each cytosine site can be measured,
respectively. Recently, by using deep-learning, DNAmethylation
status of each cytosine site can be deduced from Nanopore
sequencing reads (Ni et al., 2019). In both BeadChip and BS-Seq,
molecules derived from two homologous chromosomes are not
discriminated and are always processed together.

Based on the methylation profiles extracted from BeadChips
or BS-Seq data, many methods have been proposed to identify
DMRs in different tissues or cell types. These methods can be
roughly divided into two categories: differentially methylated
cytosine site (DMC)-based methods and candidate region-based
methods. In DMC based methods, methylation levels of CpG
sites can be calculated based the raw methylation information
of CpG sites (Catoni et al., 2018; Condon et al., 2018; Xu et al.,
2020), estimated by beta-binomial distribution considering the
biological variances and sample variances (Feng et al., 2014; Park
et al., 2014; Lea et al., 2015; Wu et al., 2015; Park and Wu,
2016; Wen et al., 2016) or estimated by considering the spatial
correlation (Hansen et al., 2012; Hebestreit et al., 2013; Wu et al.,
2015; Sun and Yu, 2016). Then, DMCs are identified and DMRs
are formed by merging the neighboring DMCs satisfying some
defined criteria, such as DMCs with p-values less than a certain
threshold, the distance between theDMCs less than a cutoff value,
and the minimum number of DMCs required in a region.

In candidate region-based methods, there are two types
of candidate regions, including sample-dependent candidate
regions and sample-independent ones. The sample-independent
candidate regions are predefined on the genome with a fixed-
size or sliding window (Stockwell et al., 2014; Wang et al., 2015;
Catoni et al., 2018). The sample-dependent candidate regions
are generated according to the coverage, the depth of CpG
sites, the methylation levels of CpG sites in samples, and the
methylation changes of CpG sites among multi-samples. Then
DMRs are identified by comparing the methylation of regions
among different samples (Su et al., 2012; Lokk et al., 2014; Liu
et al., 2015; Jühling et al., 2016; Gomez et al., 2019).

As we known, the allele-specific methylation is a special
phenomenon of DNAmethylation, which is that the methylation
of an allele on two homologous chromosomes is not consistent.
With the development of high-throughput sequencing
technology, the region capture based sequencing and the
genome-wide sequencing have been widely used for detecting

allele-specific methylation sites. Some strategies and algorithms
also contribute to improve the identification of allele-specific
methylation (Cheung et al., 2017; Abante et al., 2020). However,
the research on identifying allele-specific methylation is limited
to the alleles, and the influence of homologous chromosomes on
methylation analysis should be investigated genome wide.

In the methods of identifying DMRs, the reads from
homologous chromosomes are processed together, and the
methylation levels of CpG sites are calculated based on the
mixture of reads from homologous chromosomes. The influence
of homologous chromosomes on methylation analysis was not
considered and investigated. To investigate the possible influence
of homologous chromosomes on methylation analysis, we
construct methylation haplotypes for homologous chromosomes
on the sample-independent candidate regions. Then the
methylation consistency of paired methylation haplotypes from
homologous chromosomes in different cell types is compared.
Further, DMRs are identified at the resolution of methylation
haplotypes. The proposed method in this paper not only can
be applied to methylation analysis, but also can provide a clear
explanation for the methylation difference at the resolution of
methylation haplotypes.

2. MATERIALS AND METHODS

In this paper, two methods, MHap and MHap_DMR, are
proposed to construct methylation haplotypes and identify
DMRs based on methylation haplotypes, respectively. MHap is a
method for constructing methylation haplotypes, which consists
of four steps. Firstly, it generates sample-independent candidate
regions based on genomic information, such as CpG islands and
CpG dense regions. Then, for the BS-seq data of each sample,
it classifies CpG sites into homozygous and heterozygous ones,
and then constructs methylation haplotypes for each candidate
region. Finally, the pairedmethylation haplotypes of homologous
chromosomes are represented by methylation haplotype modes
(MHMs). MHap_DMR is the method designed to identify
DMRs based on methylation haplotypes. The framework of
MHap and MHap_DMR is shown in Figure 1 and the detail
of each step in the proposed methods will be described in the
following subsections.

2.1. Materials
To investigate the influence of homologous chromosomes
on methylation analysis, 12 WGBS datasets of 10 different
tissues/cell types are involved in this study, including two lower
leg skin samples and two tibial nerver samples downloaded
from the ENCODE project (The ENCODE Project Consortium,
2012) (access sample id: ENCSR930WUY, ENCSR128RMY,
ENCSR752OCM, and ENCSR658MZU), breast cancer sample
and normal breast sample in the GEO database under the
accession number GSE29069 (Hon et al., 2012), adipose-derived
stem (ADS) cells and mature fat cells (adipocytes derived from
the ADS cells) in the NCBI SRA database under the accession
number SRA023829.2 (Lister et al., 2011), embryonic stem cells
(hESCs) and foreskin fibroblasts (hESC-Fibro cells) in the GEO
database under the accession number GSE19418 (Laurent et al.,
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FIGURE 1 | The framework of MHap and MHap_DMR.

2010), mature B cells and hematopoietic stem cells in the GEO
database under the accession number GSE31971 (Hodges et al.,
2011). The WGBS datasets were aligned to the human reference
genome (hg38) and themethylation statuses of cytosines on reads
were called by using Bismark (Krueger and Andrews, 2011).

2.2. MHap: Methylation Haplotype
Construction
Due to the limited read lengths and the uneven distribution
of CpG sites, it is challenging to construct two complete
methylation haplotypes for two homologous chromosomes.
Thus, sample-independent candidate regions are predefined on
CpG dense regions, and methylation haplotypes are constructed
for homologous chromosomes in these regions. MHap is
proposed to construct methylation haplotypes for homologous
chromosomes based on the overlapping methylation statuses

of heterozygous methylated CpG sites on reads. The details of
MHap is described as following.

2.2.1. Generate Sample-Independent Candidate

Regions
MHap generates sample-independent candidate regions based
on the CpG island information and the distance between
neighboring CpG sites. In order not to hide local methylation
signals, CpG islands are usually divided into a number of
candidate regions, each of which contains at least 7 CpG sites. For
other regions with densely located CpG sites, a distance-based
clustering algorithm is applied to generating candidate regions,
which contains at least 7 CpG sites also and the distances between
neighboring CpG sites are not >20 bp. As shown in Table 1,
for each chromosome, the number of candidate regions and the
corresponding averages of CpG numbers and region lengths are
listed. Then, MHap will construct methylation haplotypes for
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TABLE 1 | The number, the average number of CpGs, and the length of candidate

regions in each chromosome.

Chromosome Num. of Ave. Num. of Ave. length of

candidate regions CpGs candidate regions

chr1 26,643 10.48 92.11

chr2 20,446 10.46 91.71

chr3 14,013 10.46 93.08

chr4 13,316 10.49 95.06

chr5 14,411 10.46 93.70

chr6 14,378 10.49 93.86

chr7 16,809 10.42 92.33

chr8 12,429 10.43 92.64

chr9 13,798 10.44 91.80

chr10 13,482 10.46 91.90

chr11 14,194 10.43 91.38

chr12 13,107 10.42 93.56

chr13 7,503 10.41 93.78

chr14 9,217 10.44 91.07

chr15 9,173 10.49 89.84

chr16 14,837 10.36 91.21

chr17 17,285 10.45 92.24

chr18 6,419 10.55 92.72

chr19 20,663 10.51 95.05

chr20 8,844 10.40 90.39

chr21 5,597 10.70 92.66

chr22 8,153 10.38 87.39

chrX 10,687 10.42 97.36

chrY 1,982 10.31 103.24

homologous chromosomes on these candidate regions. of the
candidate regions.

2.2.2. Classify CpG Sites Into Homozygous and

Heterozygous Ones
The flow char of classifying CpG sites into homozygous and
heterozygous ones is illustrated as in Figure 2. For each sample,
the reads falling in candidate regions are collected. In these
candidate regions, firstly, CpG sites with depth less than a
threshold Thdp are filtered out. Then the remaining CpG sites
are classified into homozygous sites and candidate heterozygous
sites(CHSs) based on the types of methylation statuses and the
corresponding depths. If a CpG site has only one methylation
status with depth not less than Thdp, it is considered as a
homozygous site. If it has two methylation statuses and the depth
of each status is not less than half of Thdp, it is considered as
a CHS.

Due to the sequencing errors and the bisulfite conversion
rates, the identified CHSs inevitably contain false-positives. The
joint methylation statuses of neighboring CHSs on the same
reads can help to distinguish true-positives from false-positives.
Thus, the joint methylation statuses of two neighboring CHSs
on the covering reads are extracted and can be represented as
00/11/01/10 patterns. In MHap, the frequency of each pattern

on two neighboring CHSs is calculated, and patterns with
frequency<2 are filtered. Then, one or two true-positive patterns
are identified according to the ratios of the corresponding
frequencies to the total frequency of all patterns or to the
maximum frequency. If there is a pattern with the maximum
frequency among other patterns and the ratio of its frequency
to the total frequency of all patterns is above a threshold
(recommended as 0.6), it is considered as the only one true-
positive pattern on the two neighboring CHSs. Otherwise, if there
are two patterns with higher frequencies than other patterns
and the ratio of the second maximum frequency to the first
maximum frequency is not less than a threshold (recommended
as 0.4), it is considered that there are two true-positive patterns
on the two neighboring CHSs. Then two neighboring CHSs are
reclassified into homozygous or heterozygous ones based on the
true-positive patterns.

Pairs of neighboring CHSs are processed sequentially. Assume
there are three successive CHSs (u, v,w). During the processing of
two successive pairs (u, v) and (v,w), the unbalance join depths
may result in a conflict on the classification of the overlapped
CHS v. To handle with this conflict, a confidence score is
calculated for each pair of neighboring CHSs, computed as the
ratio of the total frequency of true-positive patterns on two sites
to the maximum depth among three CpG sites, as defined in
Equation (1). If conf (u, v)> = conf (v,w), the class of v will be
not changed, and the class of w will be determined based on the
joint methylation statuses of (v,w) with the given class of v. If
conf (u, v) < conf (v,w), the class of v will be revised based on the
true-positive patterns of (v,w).

conf (u, v) =

p∈TP
∑

p
f (p)

max(d(u), d(v), d(w))
(1)

where TP denotes the set of true-positive patterns of (u, v), f (p)
denotes the frequency of pattern p, and d(u), d(v), and d(w)
denote the depths of u, v, and w, respectively.

2.2.3. Construct Methylation Haplotypes for Each

Candidate Region
After classifying CpG sites into homozygous and heterozygous
ones, the skeletons of twomethylation haplotypes are constructed
by linking the patterns of neighboring heterozygous sites
sequentially. Then, a pair of methylation haplotypes are
constructed by padding the homozygous CpG sites into
the skeletons.

2.2.4. Definition of Methylation Haplotype Mode
Each methylation haplotype can be represented by a 0–1 string.
To simplify the comparison between methylation haplotypes,
each methylation haplotype is converted into a label based on
its 0–1 string, defined in Equation (2). Then, two labels of the
paired methylation haplotypes on a candidate region, denoted as
LL,HL, LN, LM, NN,MM,MN,HN,HM orHH, are termed as a
methylation haplotype mode (MHM).

Frontiers in Genetics | www.frontiersin.org 4 June 2021 | Volume 12 | Article 697279

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Peng et al. Identifying DMRs on Methylation Haplotypes

FIGURE 2 | The flowchart of classifying CpG sites into homozygous and

heterozygous ones.

TABLE 2 | Statistics of candidate regions with methylation haplotypes in different

samples.

Num. of Ave. Num. of Ave. Num. of

Sample candidate regions CpG sites covered CpG

with VMHs in candidate regions sites in VMHs

Mature fat cells 249,253 10.51 5.91

Adipose-derived

stem cells

256,671 10.51 6.08

Breast cancer

sample

233,973 10.49 6.69

Normal breast

sample

223,692 10.49 6.22

Hematopoietic stem

cells

172,536 10.44 6.38

Mature B cells 138,053 10.44 5.20

Embryonic stem

cells

220,970 10.63 6.05

Foreskin fibroblasts 213,317 10.66 6.10

Lower_leg_skin_1 228,263 10.30 8.67

Lower_leg_skin_2 244,369 10.36 8.96

Tibial_nerve_1 239,034 10.36 8.81

Tibial_nerve_2 225,728 10.31 8.67

Label(s) =















L, ifMH(s) ≤ 0.25
N, elseifMH(s) ≤ 0.5
M, elseifMH(s) ≤ 0.75
H, else

(2)

where MH(s) =

len(s)
∑

i=1
(si−0)

len(s)
, s represents the 0–1 string of a

methylation haplotype, len(s) represents the length of s, and si is
the i-th character in s.

2.3. Map_DMR: DMR Identification Based
on Methylation Haplotypes
Based on the MHMs of each candidate region among different
samples, MHap_DMR identifies DMRs by comparing theMHMs
directly. If the MHMs are identical, the candidate region is
considered as a non-DMR. Otherwise, a methylation haplotype
difference (MHD) between a pair of samples or groups is
calculated, defined as in Equation (3). Then, the methylation
difference among multi groups on the region can be defined as
the maximumMHD among pairs of groups.

MHD(gi, gj) = max(abs(MH(gi1)−MH(gj1)), abs(MH(gi2)

−MH(gj2))) (3)

where gi and gj denote group i and j, gi1 and gj1 denote the
0–1 strings of methylation haplotypes with higher MH values
in gi and gj, respectively, and gi2 and gj2 denote the 0–1
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FIGURE 3 | The comparison of methylation consistency of homologous chromosomes in different tissues/cell types.

strings of methylation haplotypes with lower MH values in gi
and gj, respectively.

To investigate the influence of homologous chromosomes on
methylation analysis, we applied MHap to construct methylation
haplotypes for 12 WGBS datasets of 10 different tissues/cell
types. MHap constructs methylation haplotypes for each sample
based on the alignment file and candidate regions. Methylation
haplotypes covering more than 3 CpG sites are defined as valid
methylation haplotypes (VMHs). Table 2 lists the number of
candidate regions with VMHs contained by each sample. It can
be observed that the average number of CpG sites in these
candidate regions is >10, and the average number of covered
CpG sites in VMHs is ranging from 5.9 to 8.9.

3. RESULT

3.1. Majority of Methylation Haplotypes Are
Consistent Between Homologous
Chromosomes
MHMs HH and LL denote that the paired methylation
haplotypes of two homologous chromosomes are simultaneously
hypermethylated (HH) or hypomethylated (LL). Both the
HH and LL are considered as consistent MHMs. Then, the
methylation consistency between two homologous chromosomes
in a sample can be defined as the ratio of the number

of CpGs in VMHs with consistent MHMs to that in
all VMHs.

The methylation consistency of homologous autosomes in
different tissues/cell types is compared, as shown in Figure 3. For
normal tissues or cell types, the methylation consistency is above
90% on average, especially in hematopoietic stem cells. A lower
methylation consistency can be observed in the breast cancer
sample, which is about 86% on all the homologous chromosomes.

The methylation consistency of chromosome X indicates the
gender of a sample. In Figure 4, it can be observed that three
samples with methylation consistency above 94% are derived
from male, while samples with methylation consistency ranging
from 54 to 72% are derived from female which is much lower
than that of other homologous autosomes. It coincides with the
previous studies that the methylation between two homologous
chromosome X in female are different, one of which is inactive
and highly methylated (Mohandas et al., 1981; Goto and Monk,
1998).

Further, we compared the hypomethylation consistency in
different samples. The hypomethylation consistency between two
homologous chromosomes in a sample can be defined as the
ratio of the number of CpGs in VMHs with consistent MHM
LL to that in all VMHs. From Figure 5, we can observe that
the hypomethylation consistency of derived cells is higher than
that of the corresponding undifferentiated stem cells, which is
consistent with the former studies that methylation decrease with
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FIGURE 4 | The comparison of methylation consistency of chromosome X in different samples.

the degree of differentiation increased (Laurent et al., 2010).
In Figure 5, we can find that the mature fat cells are more
hypomethylated than adipose-derived stem cells, mature B cells
are more hypomethylated than hematopoietic stem cells, and
foreskin fibroblasts are more hypomethylated than embryonic
stem cells. It is also noted that the hypomethylation consistency
of breast cancer sample is much lower than that of normal breast
sample on homologous chromosome.

In addition, it is interesting to observe that the tissues/cell
types can be roughly clustered into three groups according to the
hypomethylation consistency, as shown in Figure 5. Lower leg
skin and tibial nerve have similar hypomethylation consistency

and they belong to the ectoderm. The hypomethylation
consistency ofmature fat cells, adipose-derived stem cells, mature
B cells, hematopoietic stem cells and the normal breast sample
are similar, and these tissues/cell types belong to the mesoderm.
The hESCs and hESC-Fibro cell types have high hypomethylation
consistency in chromosomes, which are higher than that of other
tissues/cell types.

3.2. Identifying DMRs Between Two
Samples
MHap_DMR was applied to identify DMRs in four pairs of
samples, including breast cancer vs. normal breast, mature fat
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FIGURE 5 | The comparison of hypomethylation consistency of homologous chromosomes in different tissues/cell types.

TABLE 3 | Four types of DMRs identified by MHap_DMR for each pair of samples.

Type 1 DMR Type 2 DMR Type 3 DMR Type 4 DMR

Pairs of samples (hypo- (consistent hypo- (consistent hyper-

vs. vs. vs. with

non-hypo) semi-hypo) semi-hyper) other modes

Mature fat cells 1,156 1,032 583 309

vs. (LL vs. HH: 1) (LL vs. HL: 574)

Adipose-derived stem cells (HL vs. HH: 459)

Breast cancer 20,138 1,351 0 0

vs. (LL vs. HH: 15,175) (LL vs. HL: 1,351)

Normal breast (HL vs. HH: 650)

Hematopoietic stem cells 1,468 625 182 257

vs. (LL vs. HH: 391) (LL vs. HL: 286)

Mature B cells (HL vs. HH: 223)

Embryonic stem cells 6,856 2,812 914 340

vs. (LL vs. HH: 2,698) (LL vs. HL: 1,490)

Foreskin fibroblasts (HL vs. HH: 1,465)

cells vs. adipose-derived stem cells, embryonic stem cells (hESCs)
vs. foreskin fibroblasts (hESC-Fibro cells), and mature B cells vs.
hematopoietic stem cells. In this study, MHap_DMR reports the
DMRs with p < 0.05 andMHD >0.5.

Based on the MHMs of samples on DMRs, the
identified DMRs can be further classified into four groups:

1. hypomethylation mode (a MHM containing L) vs.
non-hypomethylation mode (a MHM not containing
L); 2. hypomethylation consistent mode LL vs. semi-
hypomethylation mode (an unconsistent MHM containing
L); 3. hypermethylation consistent mode HH vs. semi-
hypermethylation mode (an unconsistent MHM containing
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TABLE 4 | The number of DMRs identified by different methods.

Pairs of samples MHap_DMR CpG_MPs DMRCaller SMART Metilene

Mature fat cells

vs. 3,080 932 4,081 2,152 44,359

Adipose-derived stem

cells

Breast cancer

vs. 21,489 233,298 861,108 353,565 357,980

Normal breast

Hematopoietic stem

cells

vs. 2,532 26,526 172,475 50,453 75,180

Mature B cells

Embryonic stem cells

vs. 10,922 130,376 385,877 282,617 338,631

Foreskin fibroblasts

H); 4. DMR with other modes. The number of these
types of DMRs between each pair of samples is listed in
Table 3.

To investigate the methylation changing directions at the
methylation haplotype level, the number of some subtypes of
DMRs in Type 1 and Type 2 DMRs is specified. For example,
in Type 1 DMRs, the number of DMRs with hypomethylation
consistent mode LL vs. hypermethylation consistent mode HH

and the number of DMRs with hypomethylation unconsistent
mode HL vs. hypermethylation consistent mode HH are listed.

In Type 1 DMRs, it can be observed that there is only 1 DMR
with hypomethylation consistent mode LL vs. hypermethylation
mode consistent HH in mature fat cells and adipose-derived
stem cells. It may indicate that the methylation statuses of two
homologous chromosomes are seldom changed simultaneously
during the differentiation from adipose-derived stem cells to
mature fat cells.

In Type 1 DMRs between breast cancer and normal
breast, it can be observed that there are 13,173 DMRs with
hypermethylation consistent mode HH in breast cancer
and hypomethylation consistent mode LL in normal breast,
while there are only 2,002 DMRs with hypomethylation
consistent mode LL in breast cancer and hypermethylation
consistent mode HH in normal breast. It suggests that
many regions with hypomethylation consistent mode LL
in normal breast become hypermethylated in breast cancer,
while a small quantity of regions with hypermethylation
consistent mode HH in normal breast become hypomethylated
in breast cancer. Further, comparing the number of four
types of DMRs between breast cancer and normal breast,
it may indicate that, in breast cancer, the methylation
statuses of homologous chromosomes changes in the
same direction (hypomethylated or hypermethylated)
simultaneously in many cases. The MHMs of DMRs among
different samples can indicate the methylation changing

directions of homologous chromosomes in cell differentiation
and cancerization.

3.3. Compared With Comparative Methods
To further demonstrate the performance of MHap_DMR, four
comparative tools were also applied to these four pairs of samples,
including CpG_MPs (Su et al., 2012), DMRCaller (Catoni
et al., 2018), SMART (Liu et al., 2015), and Metilene (Jühling
et al., 2016). The default parameter settings were adopted when
running these methods.

The numbers of DMRs identified by different methods are
compared, as shown in Table 4. Metilene always predicts
a larger number of DMRs with low methylation level
differences than other methods. MHap_DMR predicts a
smaller number of DMRs than other methods, because it
works on candidate regions predefined on the CpG dense
regions. All the methods report a largest number of DMRs
between breast cancer sample and normal breast sample,
and a second largest number of DMRs between embryonic
stem cells and foreskin fibroblasts. This consistency indicates
that DNA methylation is altered a lot in cancerization,
and the methylation difference between embryonic stem
cells and foreskin fibroblasts is larger than that between
other types of stem cells and the cells derived from these
stem cells.

4. CONCLUSION

In this paper, MHap is developed to construct methylation
haplotypes for homologous chromosomes in CpG dense
regions. Through the analysis based on methylation
haplotypes of homologous chromosomes, we found
that majority of methylation haplotypes are consistent
between homologous autosomes, while a lower methylation
consistency was observed in the breast cancer sample.
Further, the hypomethylation consistency of derived cells
is higher than that of the corresponding undifferentiated
stem cells. The hypomethylation consistency can be
used as a feature for cell clustering. DMRs identified
by MHap_DMR based on methylation haplotypes can
help to investigate the methylation changing directions
of homologous chromosomes in cell differentiation
and cancerization.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study.
This data can be found at: the ENCODE project (https://
www.encodeproject.org/) through the access sample ids
ENCSR930WUY, ENCSR128RMY, ENCSR752OCM, and
ENCSR658MZU, the GEO database (https://www.ncbi.nlm.
nih.gov/geo/) through GEO accession numbers GSE29069,
GSE19418, and GSE31971, and the NCBI SRA database
(https://www.ncbi.nlm.nih.gov/sra) under the accession
number SRA0238292.

Frontiers in Genetics | www.frontiersin.org 9 June 2021 | Volume 12 | Article 697279

https://www.encodeproject.org/
https://www.encodeproject.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/sra
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Peng et al. Identifying DMRs on Methylation Haplotypes

AUTHOR CONTRIBUTIONS

XP and XD conceived and designed the approach. XP and YL
performed the experiments. YL and XK analyzed the data. XP
wrote the manuscript. XP and XZ supervised the whole study
process and revised the manuscript. All authors have read and
approved the final version of manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Nos. 61702555, 61662028, and
U1909208), the National Key R&D Program of China (No.
2018YFC0910504), 111 Project (No. B18059), and Hunan
Provincial Science and Technology Program (2018WK4001).

REFERENCES

Abante, J., Fang, Y., Feinberg, A., and Goutsias, J. (2020). Detection of haplotype-

dependent allele-specific DNA methylation in WGBS data. Nat. Commun. 11,

1–13. doi: 10.1038/s41467-020-19077-1

Baylin, S. B. (2005). DNAmethylation and gene silencing in cancer. Nat. Rev. Clin.

Oncol. 2:S4. doi: 10.1038/ncponc0354

Catoni, M., Tsang, J. M., Greco, A. P., and Zabet, N. R. (2018). DMRcaller:

a versatile R/bioconductor package for detection and visualization of

differentially methylated regions in CpG and non-CpG contexts. Nucl. Acids

Res. 46:e114. doi: 10.1093/nar/gky602

Chen, Q., Lai, D., Lan, W., Wu, X., Chen, B., Chen, Y.-P. P., et al. (2019). ILDMSF:

inferring associations between long non-coding RNA and disease based on

multi-similarity fusion. IEEE/ACM Trans. Comput. Biol. Bioinformatics. 18,

1106–1112 doi: 10.1109/TCBB.2019.2936476

Cheung, W. A., Shao, X., Morin, A., Siroux, V., Kwan, T., Ge, B., et al.

(2017). Functional variation in allelic methylomes underscores a strong genetic

contribution and reveals novel epigenetic alterations in the human epigenome.

Genome Biol. 18, 1–21. doi: 10.1186/s13059-017-1173-7

Condon, D. E., Tran, P. V., Lien, Y.-C., Schug, J., Georgieff, M. K., Simmons, R. A.,

et al. (2018). Defiant:(dmrs: easy, fast, identification and annotation) identifies

differentially methylated regions from iron-deficient rat hippocampus. BMC

Bioinformatics 19:31. doi: 10.1186/s12859-018-2037-1

Eden, A., Gaudet, F., Waghmare, A., and Jaenisch, R. (2003). Chromosomal

instability and tumors promoted by DNA hypomethylation. Science 300:455.

doi: 10.1126/science.1083557

Feng, H., Conneely, K. N., and Wu, H. (2014). A Bayesian hierarchical model

to detect differentially methylated loci from single nucleotide resolution

sequencing data. Nucl. Acids Res. 42:e69. doi: 10.1093/nar/gku154

Gomez, L., Odom, G. J., Young, J. I., Martin, E. R., Liu, L., Chen, X.,

et al. (2019). coMethDMR: accurate identification of co-methylated and

differentially methylated regions in epigenome-wide association studies with

continuous phenotypes. Nucl. Acids Res. 47:e98. doi: 10.1093/nar/gkz590

Goto, T., and Monk, M. (1998). Regulation of x-chromosome inactivation in

development in mice and humans. Microbiol. Mol. Biol. Rev. 62, 362–378.

doi: 10.1128/MMBR.62.2.362-378.1998

Hansen, K. D., Langmead, B., and Irizarry, R. A. (2012). BSmooth: from whole

genome bisulfite sequencing reads to differentially methylated regions.Genome

Biol. 13:R83. doi: 10.1186/gb-2012-13-10-r83

Hebestreit, K., Dugas, M., and Klein, H.-U. (2013). Detection of significantly

differentially methylated regions in targeted bisulfite sequencing data.

Bioinformatics 29, 1647–1653. doi: 10.1093/bioinformatics/btt263

Hodges, E., Molaro, A., Dos Santos, C. O., Thekkat, P., Song, Q., Uren, P. J., et al.

(2011). Directional DNAmethylation changes and complex intermediate states

accompany lineage specificity in the adult hematopoietic compartment. Mol.

Cell 44, 17–28. doi: 10.1016/j.molcel.2011.08.026

Hon, G. C., Hawkins, R. D., Caballero, O. L., Lo, C., Lister, R., Pelizzola, M., et al.

(2012). Global DNA hypomethylation coupled to repressive chromatin domain

formation and gene silencing in breast cancer. Genome Res. 22, 246–258.

doi: 10.1101/gr.125872.111

Hu, X., Li, M., Wang, L., Li, X., Wu, F.-X., and Wang, J. (2019). “Classification

of schizophrenia by iterative random forest feature selection based on

DNA methylation array data,” in 2019 IEEE International Conference

on Bioinformatics and Biomedicine (BIBM) (San Diego, CA), 807–811.

doi: 10.1109/BIBM47256.2019.8983308

Jühling, F., Kretzmer, H., Bernhart, S. H., Otto, C., Stadler, P. F., and

Hoffmann, S. (2016). metilene: Fast and sensitive calling of differentially

methylated regions from bisulfite sequencing data. Genome Res. 26, 256–262.

doi: 10.1101/gr.196394.115

Krueger, F., and Andrews, S. R. (2011). Bismark: a flexible aligner and

methylation caller for bisulfite-seq applications. Bioinformatics 27, 1571–1572.

doi: 10.1093/bioinformatics/btr167

Lan, W., Lai, D., Chen, Q., Wu, X., Chen, B., Liu, J., et al. (2020). LDICDL:

LncRNA-disease association identification based on collaborative

deep learning. IEEE/ACM Trans. Comput. Biol. Bioinformatics.

doi: 10.1109/TCBB.2020.3034910

Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C. T., et al. (2010).

Dynamic changes in the humanmethylome during differentiation.Genome Res.

20, 320–331. doi: 10.1101/gr.101907.109

Lea, A. J., Tung, J., and Zhou, X. (2015). A flexible, efficient binomial

mixed model for identifying differential DNA methylation in bisulfite

sequencing data. PLoS Genet. 11:e1005650. doi: 10.1371/journal.pgen.

1005650

Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., et al.

(2011). Hotspots of aberrant epigenomic reprogramming in human induced

pluripotent stem cells. Nature 471:68. doi: 10.1038/nature09798

Liu, H., Liu, X., Zhang, S., Lv, J., Li, S., Shang, S., et al. (2015). Systematic

identification and annotation of human methylation marks based on

bisulfite sequencing methylomes reveals distinct roles of cell type-specific

hypomethylation in the regulation of cell identity genes. Nucl. Acids Res. 44,

75–94. doi: 10.1093/nar/gkv1332

Lokk, K., Modhukur, V., Rajashekar, B., Märtens, K., Mägi, R., Kolde,

R., et al. (2014). DNA methylome profiling of human tissues identifies

global and tissue-specific methylation patterns. Genome Biol. 15:3248.

doi: 10.1186/gb-2014-15-4-r54

Mohandas, T., Sparkes, R., and Shapiro, L. (1981). Reactivation of an inactive

human x chromosome: evidence for x inactivation by DNA methylation.

Science 211, 393–396. doi: 10.1126/science.6164095

Ni, P., Huang, N., Zhang, Z., Wang, D.-P., Liang, F., Miao, Y., et al.

(2019). DeepSignal: detecting DNA methylation state from nanopore

sequencing reads using deep-learning. Bioinformatics 35, 4586–4595.

doi: 10.1093/bioinformatics/btz276

Park, Y., Figueroa, M. E., Rozek, L. S., and Sartor, M. A. (2014). Methylsig: a whole

genome DNA methylation analysis pipeline. Bioinformatics 30, 2414–2422.

doi: 10.1093/bioinformatics/btu339

Park, Y., and Wu, H. (2016). Differential methylation analysis for BS-seq

data under general experimental design. Bioinformatics 32, 1446–1453.

doi: 10.1093/bioinformatics/btw026

Scott, C. A., Duryea, J. D., MacKay, H., Baker, M. S., Laritsky, E., Gunasekara,

C. J., et al. (2020). Identification of cell type-specific methylation signals

in bulk whole genome bisulfite sequencing data. Genome Biol. 21, 1–23.

doi: 10.1186/s13059-020-02065-5

Stockwell, P. A., Chatterjee, A., Rodger, E. J., and Morison, I. M. (2014).

DMAP: differential methylation analysis package for RRBS and WGBS data.

Bioinformatics 30, 1814–1822. doi: 10.1093/bioinformatics/btu126

Su, J., Yan, H., Wei, Y., Liu, H., Liu, H., Wang, F., et al. (2012).

CpG_MPs: identification of CPG methylation patterns of genomic regions

from high-throughput bisulfite sequencing data. Nucl. Acids Res. 41:e4.

doi: 10.1093/nar/gks829

Sun, S., and Yu, X. (2016). Hmm-fisher: identifying differential methylation using

a hidden Markov model and fisher’s exact test. Stat. Appl. Genet. Mol. Biol. 15,

55–67. doi: 10.1515/sagmb-2015-0076

The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA

elements in the human genome. Nature 489:57. doi: 10.1038/nature11247

Frontiers in Genetics | www.frontiersin.org 10 June 2021 | Volume 12 | Article 697279

https://doi.org/10.1038/s41467-020-19077-1
https://doi.org/10.1038/ncponc0354
https://doi.org/10.1093/nar/gky602
https://doi.org/10.1109/TCBB.2019.2936476
https://doi.org/10.1186/s13059-017-1173-7
https://doi.org/10.1186/s12859-018-2037-1
https://doi.org/10.1126/science.1083557
https://doi.org/10.1093/nar/gku154
https://doi.org/10.1093/nar/gkz590
https://doi.org/10.1128/MMBR.62.2.362-378.1998
https://doi.org/10.1186/gb-2012-13-10-r83
https://doi.org/10.1093/bioinformatics/btt263
https://doi.org/10.1016/j.molcel.2011.08.026
https://doi.org/10.1101/gr.125872.111
https://doi.org/10.1109/BIBM47256.2019.8983308
https://doi.org/10.1101/gr.196394.115
https://doi.org/10.1093/bioinformatics/btr167
https://doi.org/10.1109/TCBB.2020.3034910
https://doi.org/10.1101/gr.101907.109
https://doi.org/10.1371/journal.pgen.1005650
https://doi.org/10.1038/nature09798
https://doi.org/10.1093/nar/gkv1332
https://doi.org/10.1186/gb-2014-15-4-r54
https://doi.org/10.1126/science.6164095
https://doi.org/10.1093/bioinformatics/btz276
https://doi.org/10.1093/bioinformatics/btu339
https://doi.org/10.1093/bioinformatics/btw026
https://doi.org/10.1186/s13059-020-02065-5
https://doi.org/10.1093/bioinformatics/btu126
https://doi.org/10.1093/nar/gks829
https://doi.org/10.1515/sagmb-2015-0076
https://doi.org/10.1038/nature11247
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Peng et al. Identifying DMRs on Methylation Haplotypes

Wang, Z., Li, X., Jiang, Y., Shao, Q., Liu, Q., Chen, B., et al. (2015).

swDMR: a sliding window approach to identify differentially methylated

regions based on whole genome bisulfite sequencing. PLoS ONE 10:e0132866.

doi: 10.1371/journal.pone.0132866

Wen, Y., Chen, F., Zhang, Q., Zhuang, Y., and Li, Z. (2016). Detection of

differentially methylated regions in whole genome bisulfite sequencing

data using local Getis-Ord statistics. Bioinformatics 32, 3396–3404.

doi: 10.1093/bioinformatics/btw497

Wu, H., Xu, T., Feng, H., Chen, L., Li, B., Yao, B., et al. (2015).

Detection of differentially methylated regions from whole-genome bisulfite

sequencing data without replicates. Nucl. Acids res. 43:e141. doi: 10.1093/nar/

gkv715

Xiaoqing, P., Hong-Dong, L., Fang-Xiang, W., and Jianxin, W. (2020).

Identifying the tissues-of-origin of circulating cell-free DNAs is a

promising way in noninvasive diagnostics. Brief. Bioinformatics 22:bbaa060.

doi: 10.1093/bib/bbaa060

Xu, Z., Xie, C., Taylor, J. A., and Niu, L. (2020). ipDMR: identification of

differentially methylated regions with interval p-values. Bioinformatics 37,

711–713. doi: 10.1093/bioinformatics/btaa732

Yan, C., Duan, G., Wu, F.-X., Pan, Y., and Wang, J. (2019). BRWMDA: predicting

microbe-disease associations based on similarities and bi-random walk on

disease and microbe networks. IEEE/ACM Trans. Comput. Biol. Bioinformatics

17, 1595–1604. doi: 10.1109/TCBB.2019.2907626

Yan, C., Duan, G., Wu, F.-X., Pan, Y., and Wang, J. (2021). MCHMDA: Predicting

microbe-disease associations based on similarities and low-rank matrix

completion. IEEE/ACM Trans. Comput. Biol. Bioinformatics 18, 611–620.

doi: 10.1109/TCBB.2019.2926716

Yan, C., Wang, J., Ni, P., Lan, W., Wu, F.-X., and Pan, Y. (2017). DNRLMF-MDA:

predicting microRNA-disease associations based on similarities of microRNAs

and diseases. IEEE/ACM Trans. Comput. Biol. Bioinformatics 16, 233–243.

doi: 10.1109/TCBB.2017.2776101

Yan, C., Wang, J., and Wu, F.-X. (2018). DWNN-RLS: regularized least squares

method for predicting circRNA-disease associations. BMC Bioinformatics

19(Suppl. 19):520. doi: 10.1186/s12859-018-2522-6

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Peng, Li, Kong, Zhu and Ding. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 11 June 2021 | Volume 12 | Article 697279

https://doi.org/10.1371/journal.pone.0132866
https://doi.org/10.1093/bioinformatics/btw497
https://doi.org/10.1093/nar/gkv715
https://doi.org/10.1093/bib/bbaa060
https://doi.org/10.1093/bioinformatics/btaa732
https://doi.org/10.1109/TCBB.2019.2907626
https://doi.org/10.1109/TCBB.2019.2926716
https://doi.org/10.1109/TCBB.2017.2776101
https://doi.org/10.1186/s12859-018-2522-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Investigating Different DNA Methylation Patterns at the Resolution of Methylation Haplotypes
	1. Introduction
	2. Materials and Methods
	2.1. Materials
	2.2. MHap: Methylation Haplotype Construction
	2.2.1. Generate Sample-Independent Candidate Regions
	2.2.2. Classify CpG Sites Into Homozygous and Heterozygous Ones
	2.2.3. Construct Methylation Haplotypes for Each Candidate Region
	2.2.4. Definition of Methylation Haplotype Mode

	2.3. Map_DMR: DMR Identification Based on Methylation Haplotypes

	3. Result
	3.1. Majority of Methylation Haplotypes Are Consistent Between Homologous Chromosomes
	3.2. Identifying DMRs Between Two Samples
	3.3. Compared With Comparative Methods

	4. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


