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Abstract

Studying the early dynamic development of cortical folding with remarkable individual

variability is critical for understanding normal early brain development and related neu-

rodevelopmental disorders. This study focuses on the fingerprinting capability and the

individual variability of cortical folding during early brain development. Specifically, we

aim to explore (a) whether the developing neonatal cortical folding is unique enough to

be considered as a “fingerprint” that can reliably identify an individual within a cohort of

infants; (b) which cortical regions manifest more individual variability and thus contribute

more for infant identification; (c) whether the infant twins can be distinguished by corti-

cal folding. Hence, for the first time, we conduct infant individual identification and indi-

vidual variability analysis involving twins based on the developing cortical folding

features (mean curvature, average convexity, and sulcal depth) in 472 neonates with

1,141 longitudinal MRI scans. Experimental results show that the infant individual identi-

fication achieves 100% accuracy when using the neonatal cortical folding features to

predict the identities of 1- and 2-year-olds. Besides, we observe high identification capa-

bility in the high-order association cortices (i.e., prefrontal, lateral temporal, and inferior

parietal regions) and two unimodal cortices (i.e., precentral gyrus and lateral occipital cor-

tex), which largely overlap with the regions encoding remarkable individual variability in

cortical folding during the first 2 years. For twins study, we show that even for monozy-

gotic twins with identical genes and similar developmental environments, their cortical

folding features are unique enough for accurate individual identification; and in some

high-order association cortices, the differences between monozygotic twin pairs are sig-

nificantly lower than those between dizygotic twins. This study thus provides important

insights into individual identification and individual variability based on cortical folding

during infancy.
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1 | INTRODUCTION

The human cerebral cortex is a highly convoluted and complex structure,

which presents remarkable individual variability in both cortical folding

pattern and function (Duan, Xia, et al., 2017; Duan et al., 2018; Finn

et al., 2017; MacDonald, Nyberg, & Bäckman, 2006; Mangin et al., 2004).

Although it is still not well understood, several studies found that the

individual variability of the cerebral cortex might be able to link human

behavior and cognition to brain anatomy (Frost & Goebel, 2012; Kanai &

Rees, 2011; J. Liu, Liao, Xia, & He, 2018; MacDonald et al., 2006; Mueller

et al., 2013; Nordahl et al., 2007; Tavor et al., 2016), and the cerebral cor-

tex is altered in structure and morphology in various neurodevelopmental

disorders, for example, autism, cerebral palsy, attention deficit hyperac-

tivity disorder and schizophrenia (Bigler et al., 2007; Keshavan et al.,

1998; Lee et al., 2007; Takahashi et al., 2009). Thus, studying the pat-

terns and characteristics of early brain development, for example, the

developmental individual variability pattern and fingerprinting capability

of infant cortical folding, would be of great importance for understanding

many neurodevelopmental disorders. Current evidences indicate that the

individual variability is nonuniform across the cortex, with high-order

association regions being more variable than the unimodal cortex in both

cortical folding pattern and functional connectivity (Hill et al., 2010; Finn

et al., 2015; Dubois & Adolphs, 2016). Accordingly, there has been a

growing interest in the fingerprinting capability of the human brain, that

is, whether the features of the human brain are unique and distinguish-

able for individual identification. Several studies performed individual

identification based on structural or functional characteristics of the

human brain, for example, morphological shape description of cortical

and subcortical structures, named BrainPrint (Wachinger et al., 2015;

Wachinger, Golland, & Reuter, 2014), shape description of white matter

fibers, named FiberPrint (Kumar, Desrosiers, Siddiqi, Colliot, & Toews,

2017; Kumar, Toews, Chauvin, Colliot, & Desrosiers, 2018), and func-

tional connectivity networks, named functional connectome fingerprint

(Biazoli Jr et al., 2017; Finn et al., 2015; Horien, Shen, Scheinost, & Con-

stable, 2019; Kaufmann et al., 2017; Liu et al., 2018; Tavor et al., 2016).

Of note, most of the above studies focus on adult individual iden-

tification, in which the brain structure and function have been rela-

tively stable in the duration across different scans. Only a few studies

based on functional connectome involve the developing brain from

adolescent datasets (Horien et al., 2019; Kaufmann et al., 2017). To

date, no study has investigated the fingerprinting property of cortical

folding of the dynamic developing infant brain. In fact, studies on

infant identification based on cortical folding are of great neuroscien-

tific significance as they will allow the examination of: (a) whether the

neonatal cortical folding, which undergoes dynamic development dur-

ing the first postnatal years, is reliable and unique enough to be con-

sidered as a “fingerprint” of an infant; (b) which cortical regions

particularly manifest more individual variability of cortical folding dur-

ing the early brain development and are more capable of infant identi-

fication; (c) whether infant twins can be correctly distinguished based

solely on the cortical folding. Addressing these questions remains a

potential challenge since a plethora of evidences suggest that the first

2 years is the most dynamic phase of the postnatal brain development

(Gilmore et al., 2007), during which both cortical volume and surface

area expand rapidly, and new tertiary cortical folding emerges (Duan,

Rekik, et al., 2017; Gilmore et al., 2011; Li, Nie, Wang, et al., 2013a;

Li, Nie, Wang, Shi, Lyall et al., 2013b; Nie et al., 2011) as shown in

Figure 1. Hence, individual identification involving neonatal brains

should be more challenging than adult individual identification. Fur-

thermore, we note that the large-scale longitudinal infant datasets,

which can be used for infant identification, are scarce and invaluable,

due to the challenges in recruitment of eligible pregnant mothers and

the difficulties of collecting quality motion-free infant MR images and

their follow-up scans. Besides, it is also difficult to properly process

the infant MR images, which typically exhibit dynamic appearance and

extremely low tissue contrast (Li et al., 2019).

This study presents the first attempt to leverage the morphologi-

cal features of cortical folding for infant identification and also explore

the cortical regions charactering more individual variability for identifi-

cation. Our particular choice of investigating the fingerprinting poten-

tial of cortical folding is first motivated by the fact that the major

cortical folding patterns and their individual variability in the adult

brain are already present at birth and largely preserved during postna-

tal brain development (Duan et al., 2018; Gilmore, Knickmeyer, &

Gao, 2018; Hill et al., 2010; Rekik, Li, Lin, & Shen, 2016). Second, the

morphology of cortical folding varies remarkably across individuals,

since its formation process is influenced by many complex genetic and

environmental factors. Even for the monozygotic (MZ) twins with

identical genes and similar developmental environments, their cortical

folding morphologies are different as shown in Figure 1. Thus, we

hypothesize that the cortical folding is unique and reliable enough for

infant identification and cortical regions exhibiting large individual var-

iability have high fingerprinting potential.

In this study, we perform the infant individual identification and indi-

vidual variability study in a relatively large-scale longitudinal dataset,

including 1,141 longitudinal MRI scans from 472 infants scanned at birth,

1 and 2 years of age. In particular, first, we propose an intuitive ROI-

based voting method based on the combination of multiple cortical fold-

ing features, that is, mean curvature, average convexity, and sulcal depth,

to identify infant individuals. We apply the proposed method in the

whole dataset to identify the 1-year-olds and 2-year-olds based on their

neonatal cortical folding features. Second, we establish the maps of the

regional identification capability and also the longitudinal maps of individ-

ual variability of cortical folding, thus inspecting the relationship between

the regions that contribute most to the individual identification and the

regions that manifest high individual variability. Third, we perform indi-

vidual identification and analyze the individual variability of infant cortical

folding for MZ and dizygotic (DZ) twins.

2 | MATERIALS AND METHODS

2.1 | Subjects and MR image acquisition

The Institutional Review Board of the University of North Carolina

(UNC) School of Medicine approved this study. Pregnant mothers
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during their second trimester of pregnancy were recruited in the UNC

Hospitals. The informed consent forms were signed by both parents

of each infant. The subjects with abnormalities on fetal ultrasound, or

major medical diseases or psychiatric illness on mother were excluded.

All the infants in this study were free of congenital anomalies, meta-

bolic disease, and focal lesions. All the infants were fed, swaddled, and

fitted with ear protection before MRI scanning. And none of them

was sedated for MRI scanning. More information on this cohort can

be found in (Gilmore et al., 2011).

In this study, 1,141 longitudinal MRI scans were acquired from

472 healthy neonates (Year 0) with their incomplete follow-up scans

in the first two postnatal years. Specifically, 387 neonates were longi-

tudinally scanned at 1 year of age (Year 1 for short), 282 neonates

were longitudinally scanned at 2 years of age (Year 2 for short), and

197 neonates were longitudinally scanned at both 1 and 2 years of

age. The mean gestational age at birth of the 472 neonates is 37.2

± 2.8 weeks, and the percentages of males (45.3%) and females

(54.7%) are relatively comparable. This infant cohort includes 40 pairs

F IGURE 1 Longitudinal infant cortical surfaces at 0, 1, and 2 years of age of a pair of monozygotic twins. From (a) to (c), the cortical surfaces
are color-coded by mean curvature, average convexity, and sulcal depth, respectively
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of MZ twins and 59 pairs of DZ twins. More demographic information

of the infant cohort is shown in Table 1.

T1-weighted and T2-weighted MR images were acquired on a

Siemens head-only 3T scanner (Allegra, Siemens Medical System,

Erlangen, Germany) with a circularly polarized head coil. For

T1-weighted images, 160 sagittal slices were acquired with a 3D

magnetization-prepared rapid gradient echo (MPRAGE) sequence:

TR = 1900 ms, TE = 4.38 ms, inversion time = 1,100 ms, flip angle = 7�,

and resolution = 1 × 1 × 1 mm3. For T2-weighted images, 70 trans-

verse slices were acquired by using a turbo spin-echo (TSE)

sequences: TR = 7,380 ms, TE = 119 ms, flip angle = 150�, and resolu-

tion = 1.25 × 1.25 × 1.95 mm3 (Gilmore et al., 2011).

2.2 | Image processing and surface mapping

2.2.1 | Image preprocessing

All the MR images were processed using an infant dedicated computa-

tional pipeline (Li et al., 2015), which has been extensively validated

on more than 2000 infant brain MRI scans. Specifically, the pipeline

using the following main procedures for image preprocessing:

(a) stripping the brain skull through a learning-based method (Shi

et al., 2012); (b) removing the cerebellum and brain stem using a regis-

tration method (Shen & Davatzikos, 2002); (c) correcting the intensity

inhomogeneity using N3 algorithm (Sled, Zijdenbos, & Evans, 1998);

(d) rigidly aligning all images at each age to the age-matched infant

brain atlas (Shi et al., 2011); (e) segmenting the brain MR images into

gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF)

with an infant-specific patch-driven level-set-based method (Wang

et al., 2013; Wang et al., 2014); (f) masking and filling the noncortical

structures (i.e., lateral ventricles and subcortical structures), and then

further separating each brain into left and right hemispheres.

2.2.2 | Cortical surface reconstruction

Based on the tissue segmentation results, topologically and geometri-

cally correct cortical surfaces for each hemisphere of each scan were

reconstructed by a deformable surface method (Li, Nie, Wang, Shi,

Gilmore, et al., 2014; Li, Nie, Wu, et al., 2012). Specifically, first, the

topological defects in the WM were corrected to ensure a spherical

topology for each hemisphere (Hao, Li, Wang, Meng, & Shen, 2016;

Sun et al., 2019). Then, the corrected WM was tessellated as a trian-

gular mesh to form the initial inner cortical surface. Next, the inner

cortical surface was further deformed by preserving its initial topology

to refine itself and reconstruct the outer cortical surface, using forces

derived from Laplace's equation (Li, Nie, Wang, Shi, Gilmore, et al.,

2014; Li, Nie, Wu, et al., 2012). The inner cortical surface of each

hemisphere was further smoothed, inflated and mapped onto a stan-

dard sphere (Fischl, Sereno, & Dale, 1999).

2.2.3 | Cortical surface registration and
parcellation

For the longitudinal study of cortical folding, we need to establish

both longitudinal cortical correspondences across different ages and

cross-sectional cortical correspondences across different individuals.

To this end, for each hemisphere of each scan, we registered its

spherical cortical surface onto the age-matched instance in the 4D

infant cortical surface atlases (Li et al., 2015; Wu et al., 2017) using

Spherical Demons (Yeo et al., 2010). The inter-subject and intra-

subject vertex-to-vertex correspondences of cortical surfaces were

thus established across all the scans at three ages in our infant

dataset. Consequently, each cortical surface was accordingly res-

ampled to a standard mesh tessellation with 40,962 vertices (subdivi-

sion level 6 of an icosahedron). Meanwhile, the Desikan-Killiany

parcellation (Desikan et al., 2006) maps with 34 regions of interest

(ROIs) in the 4D surface atlases were propagated to each cortical sur-

face. Of note, the Desikan-Killiany parcellation is generally adopted

for adults, not dedicated for infants. However, all the primary and sec-

ondary cortical folds of the adult brain have already been established

at term birth (Chi, Dooling, & Gilles, 1977; Duan et al., 2018; Li et al.,

2016; Li, Wang, Shi, Lin, & Shen, 2014b), thus it is also reliable to

properly propagate the Desikan-Killiany parcellation based on major

cortical folds to infant cortical surface.

2.3 | Cortical folding features

To comprehensively characterize the complex morphology of the cor-

tical folding, we chose three complementary morphological features

of the inner cortical surface, that is, mean curvature, average

TABLE 1 Demographic information
of the infant cohort

Year 0 Year 1 Year 2 Total scans

Subject 472 387 282 1,141

Singleton 274 225 166 665

Twin 198 162 116 476

MZ twin 80 56 54 190

DZ twin 118 106 62 286

Age at MRI scan (months) 1.1 ± 0.6 13.3 ± 1.7 24.8 ± 1.0 —

Abbreviations: DZ: dizygotic; MZ: monozygotic.
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convexity, and sulcal depth. The reason of choosing these features is

that they are widely and jointly used in surface registration and mor-

phometry, and are reliable and informative for characterizing the

inter-subject and intra-subject variability in cortical folding. Specifi-

cally, the mean curvature is an intuitive indication of cortical gyri and

sulci and reflects the finer-scale local geometric information of cortical

folding, including primary, secondary, and tertiary folds (Cachia et al.,

2003; Dubois et al., 2007; Habas et al., 2011; Li, Nie, Wang, Shi, Lyall,

et al., 2013b; Nie et al., 2010). The average convexity indicates the

integrated normal movement of a vertex during cortical surface infla-

tion and mainly reflects the larger-scale morphological information of

primary cortical folds (Fischl et al., 1999). As for the sulcal depth,

which was computed as the distance from each vertex on the inner

cortical surface to the closest point on the cerebral hull surface,

encodes the continuously varying morphology of both coarse and fine

cortical folding (Li et al., 2015; Li, Nie, Wang, Shi, Lyall, et al., 2013b;

Meng, Li, Lin, Gilmore, & Shen, 2014; Van Essen, 2005). Thus, these

features provide comprehensive and complementary information

about cortical folding. Other features, for example, cortical thickness,

which is very sensitive to noise, and gyrification, which is a relative

global description of cortical folding, are unsuitable for such individual

identification and individual variability study. Figure 1 shows the lon-

gitudinal infant cortical surfaces at 0, 1, and 2 years of age of a pair of

MZ twins. From (a) to (c), the cortical surfaces are color-coded by

mean curvature, average convexity, and sulcal depth, respectively.

Herein, the positive and negative mean curvatures/average convexity

on the cortical surface correspond to sulcal bottoms and gyral crests,

respectively. Note that the sulcal depth increases remarkably with the

brain development during this stage.

2.4 | Folding-based infant identification

To investigate whether cortical folding morphology is able to fingerprint

each infant, we proposed to identify infant individuals at 1 or 2 years of

age using their neonatal cortices based on cortical folding features, that

is, mean curvature, average convexity, and sulcal depth. Specifically, we

proposed an intuitive ROI-based voting framework for infant identifica-

tion. Compared to the global-based method, this strategy would largely

improve the identification accuracy, since the negative effect of the

regions with less identification capability would be neglected and

suppressed during the voting process, while the positive effect of the

regions with higher identification capability would be preserved and

strengthened. Herein, the global-based method denotes that the identifi-

cation was conducted by comparing the similarities of whole-brain corti-

cal feature maps between the to-be-identified scan and all other scans in

the database, and the identity of the most similar scan in the database

would be the final identification result. Besides, the feature combinations

in the proposed framework would outperform the single feature in infant

identification, since multi-view features jointly and comprehensively

characterize the cortical folding. In this study, for a new coming scan at a

later age, we performed the individual identification by finding its identity

based on its most similar scan in a database at an early age. Herein, we

carried out three sets of experimental tasks to evaluate the identification

accuracy of the proposed method. Specifically, for each feature or fea-

ture combination, the settings about the early age and later age of the

datasets in three tasks are: (a) Year 0 and Year 1; (b) Year 0 and Year 2;

(c) Year 1 and Year 2, respectively. Herein, in each task, each scan at a

later age has its corresponding scan in the database at an early age. The

identification accuracy was measured as the percentage of infants whose

identity was correctly predicted out of the total number of infants to be

identified in each task. Since the cerebral cortex develops much faster

during the first year than during the second year (Gilmore et al., 2018; Li

et al., 2014), the first two tasks are much more challenging than the third

one. Thus, the first two tasks are our primary focus.

Let F denote cortical feature maps, given a to-be-identified infant X

at a later age t. First, for each feature type f in each cortical ROI r, we

computed the pairwise similarity of feature maps between X and each of

the subjects {Ym}m = 1, 2…M at an early age t
0
in the database, where M

denotes the total number of scans. To account for the dynamic brain size

changes during development, we specifically used the Pearson correla-

tion coefficient to measure the similarity between two feature maps,

denoted as corr(Fr, f(X, t), Fr, f(Ym, t
0
)). Herein, f=1, 2, and 3, correspond to

features: mean curvature, average convexity, and sulcal depth, respec-

tively; r = 1, 2, …, 68, correspond to 68 ROIs from the Desikan-Killiany

parcellation (Desikan et al., 2006) for left and right hemispheres; {t
0
= 0,

t = 1; t
0
= 0, t = 2; t

0
= 1, t = 2} correspond to the age groups in our three

tasks, respectively. Second, for each ROI, all similarities calculated

between the to-be-identified subject and all subjects in the database at

an early age were sorted in decreasing order, and the identity of the sub-

ject with the largest similarity was regarded as a potential identity for the

to-be-identified subject. In total, 68 potential identities were obtained

from all the ROIs based on each specific feature type. For the feature

combinations, the potential identities from all feature types were

concatenated together, thus combining the contributions of multi-view

morphological features. Third, through a simple majority voting across all

ROIs, the potential identity presenting the highest frequency among all

the potential identities was considered as the final predicted identity

for the subject to be identified. Of note, a threshold of the ratio between

the frequencies of the first ranked potential identity and the second

ranked potential identity was set to reject the to-be-identified subject

for which there is no corresponding scan in the dataset. The threshold is

empirically set as 2. Based on this threshold, if the frequency of the first

ranked potential identity is not much higher than that of the second one,

the to-be-identified subject would be rejected and would not obtain the

final predicted identity. Finally, we evaluated our identification frame-

work using each morphological feature type independently, as well as

their different combinations.

2.5 | Patterns of cortical identification capability
and individual variability

Different cortical regions contribute differentially to individual identi-

fication. Their capacity to fingerprint the brain might be associated

with how much they vary across subjects. To investigate this potential
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relationship, that is, understanding whether and how the regions with

high identification capability are in accordance with the regions

encoding high individual variability, for each cortical folding feature,

we computed its ROI-specific identification capability maps in the first

two tasks and also computed its individual variability maps in all age

groups. Thus, we can intuitively inspect and compare these two pat-

terns. Of note, to explore their relationship, an alternative choice is to

first find the regions with the largest individual variability, then use

these regions for infant identification, and further determine their

identification capability. However, this approach might miss out on

key fingerprinting regions that do not necessarily largely vary across

subjects. Hence, in this study, we opted for exploring the fingerprint-

ing regions and the variable regions across subjects separately.

2.5.1 | Mapping the ROI-specific identification
capability

To investigate which cortical ROIs most likely encode the individual fin-

gerprint during dynamic postnatal brain development and thus contrib-

ute more to the individual identification, we charted the ROI-specific

identification capability maps. For each ROI, we calculated its identifica-

tion accuracy as the percentage of the number of correctly identified

infants by this ROI out of the total number of infants to be identified in

each task. Then, we mapped the resulting ROI identification accuracies

based on three types of cortical folding features onto the cortical sur-

faces, respectively. Herein, since the first two tasks are more challenging

than the third one, we only show the representative maps of the first

two tasks.

2.5.2 | Mapping the longitudinal vertex-wise
individual variability

To explore the relationship between the regions with high individual vari-

ability and regions with high identification capability, we further com-

puted vertex-wise individual variability map of each cortical folding

feature in each age group. Of note, the reason for choosing to establish

the vertex-wise rather than ROI-wise map is that the former map would

contain more fine-scale information thus would more comprehensively

display the individual variability distribution. To be consistent with the

similarity measure in infant identification, instead of calculating the stan-

dard deviation of features at each vertex across all subjects, we com-

puted the individual variability of each vertex based on Pearson

correlation of its local feature maps of N-ring neighborhood among indi-

viduals at the same age. Specifically, for each vertex j, the variability

across all subjects in the f-th feature at age t was quantified by averaging

the feature map differences between j's N-ring neighborhoods on cortical

surfaces across all pairs of subjects (Yp, Yq):

vj,f =
2

M M−1ð Þ
X

p,qð Þ∈ 1,2…Mf g,
p 6¼ q

1−corr Fj,f Ypt½ �,Fj,f Yqt½ �� �� � ð1Þ

whereM is the subject number; corr(�) denotes the Pearson correlation

coefficient. Of note, the j-th ROI herein denotes the vertex j's N-ring

neighborhood, and N was empirically set as 15. Then, for each feature,

the resulted variability values of all vertices at each age were mapped

onto the atlas surface with the corresponding age, thereby producing

the longitudinal maps of the vertex-wise individual variability of corti-

cal folding.

2.6 | Twins study: Individual identification and
cortical variability

Twins, including MZ twins and DZ twins, are ideal candidates for

investigating the potential genetic and environmental influences on

cortical folding, since they share similar genes and developmental

environments. Recent studies demonstrate that MZ twins share 100%

of their genes, while DZ twins share on average 50% of their segre-

gating genes (Peper, Brouwer, Boomsma, Kahn, & Hulshoff Pol, 2007;

Wachinger et al., 2015). In this work, we compared the differences

between MZ twins and DZ twins in two aspects. On one hand, we cal-

culated the identification accuracies of MZ twins and DZ twins in the

above-mentioned three tasks, respectively, and examined whether

the difficulties for identifying the individuals from MZ and DZ twins

are significantly different using two-sample t-test. Herein, similar to

the experiments in Section 2.4, we identified the 1- and 2-year-old

brains of each infant, who is one of the MZ or DZ twins, based on its

own neonatal brain. Of note, the experiment on identifying one of the

twins based on its twin brother/sister is not in the scope of this study.

On the other hand, we calculated the difference between MZ twin

pairs based on each specific cortical folding feature in each ROI at

each age, and compared it with the corresponding difference between

DZ twin pairs, thus investigating differences between different kinds

of twins during early brain development. Since MZ twins share more

genes compared to DZ twins, we infer that the difference of cortical

regions between MZ twin pairs would be lower than that of between

DZ twin pairs. To examine this inference, specifically, we defined the

cortical folding difference across n-th pair of MZ (or DZ) twins (Ya(n),

Yb(n)) in r-th ROI with f-th feature as:

dr,f nð Þ=1−corr Fr,f Ya nð Þ,t
� �

,Fr,f Yb nð Þ,t
� �� � ð2Þ

where corr(�) denotes the Pearson correlation coefficient. Herein, the

regional cortical folding difference between MZ twin pairs and the dif-

ference between DZ twin pairs were calculated respectively. Then,

the difference between the average difference of MZ twin pairs and

the average difference of DZ twin pairs was defined as
PNMZ

n =1
dMZ nð Þ

NMZ
−

PNDZ
n =1

dDZ nð Þ
NDZ

, where NMZ (NDZ) is the total number of pairs of

MZ (DZ) twins at age t. For intuitive comparison of the ROI-wised dif-

ference degree, we mapped the difference onto the longitudinal corti-

cal surfaces. Besides, we further performed one-tailed two-sample t-

tests for testing in which ROIs the differences between MZ twin pairs

are statistically significantly lower than those between DZ twin pairs.
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We also performed the one-tailed test in the other direction to check

whether there is any ROI in which the differences between MZ twin

pairs are unexpectedly significantly higher than those between DZ

twin pairs. We have controlled the false discovery rate (FDR) with the

Benjamini-Hochberg procedure for correction of multiple compari-

sons. We also mapped the ROIs with significant differences onto the

longitudinal cortical surfaces.

3 | RESULTS

3.1 | Infant identification based on cortical folding
features

Table 2 displays the infant identification accuracies in three tasks by

using the proposed ROI-based voting framework based on different

combinations of cortical folding features. The corresponding identifi-

cation accuracies of the global-based method are also displayed in this

table. We can clearly see that all three cortical folding features, that is,

mean curvature, average convexity and sulcal depth, are capable of

identifying infants in the three tasks using the ROI-based voting

framework. Specifically, most of accuracies based on the three kinds

of features in the first two tasks are nearly 100%, and the accuracies

in the third task are all 100%. We notice that the identification accura-

cies based on average convexity and sulcal depth are slightly higher

than those based on mean curvature, and the identification accuracies

in the first two tasks are slightly lower than those in the third task, but

no statistical significant difference was found based on one-tailed

two-sample t-test with a significance level of p < .05. When using the

combinations of multiple cortical folding features, the identification

accuracies would further improve. For instance, the accuracies in the

three target tasks are all 100%, when using the combination of all

three folding features together. As for the global-based method, the

identification accuracies in the first two challenging tasks are

statistically significantly lower than those (all 100%) in the third task,

and are also statistically significantly lower than those in the first two

tasks based on the ROI-based voting framework, according to the

results of one-tailed t-tests (p < .05).

Besides, we also evaluated the false positive rate (FPR) and false

negative rate (FNR) of the proposed method. To calculate the FPR

and FNR, we performed the experiments in the inverse direction of

the three tasks, that is, Year 1 ! Year 0, Year 2 ! Year 0, and Year

2 ! Year 1, in which some to-be-identified subjects in Year 0/Year1

have no corresponding scans in Year 1/Year 2 dataset. When the

threshold of the ratios is 2.0, the identification accuracies of three

inverse tasks are 99.15%, 99.78% and 99.22%; the FPRs are 0.00%,

0.53% and 1.58%; the FNRs are 1.03%, 0.00% and 0.00%, respec-

tively, as displayed in Table S1.

3.2 | Patterns of cortical identification capability
and individual variability

3.2.1 | ROI-specific identification capability
patterns

For each cortical folding feature, Figure 2 displays corresponding

maps of the identification capabilities of 68 ROIs in the first two tasks,

respectively. Of note, we did not provide maps of the third task since

in which the identification capabilities of most ROIs are very high due

to the lower identification difficulty and thus the corresponding colors

in the maps are almost red and indistinguishable. Table 3 displays the

Pearson correlation coefficients of the 68 ROIs' identification accura-

cies across different features and different tasks, respectively, which

quantitatively denote that these accuracy distributions are signifi-

cantly positively correlated (the corresponding p values of the correla-

tions are all less than .05). According to Figure 2 and Table 3, we can

conclude that the distributions of the regions with higher or lower

TABLE 2 Infant identification accuracies of the proposed ROI-based voting framework as well as the global-based method using different
combinations of cortical folding features

Feature combinations

Identification accuracy (%)

Year 0 ! Year 1 (387) Year 0 ! Year 2 (282) Year 1 ! Year 2 (197)

ROI Global ROI Global ROI Global

Curv 95.09 83.46 97.52 87.59 100.00 100.00

Conv 99.74 94.83 99.65 95.74 100.00 100.00

Depth 99.22 95.61 98.94 95.04 100.00 100.00

Curv & Conv 99.74 91.99 100.00 93.26 100.00 100.00

Curv & Depth 99.48 93.54 100.00 94.33 100.00 100.00

Conv & Depth 100.00 95.87 99.65 96.10 100.00 100.00

Curv & Conv & Depth 100.00 94.83 100.00 95.74 100.00 100.00

Note: The number in each bracket denotes the number of subjects to be identified in each task. Year 0 ! Year 1: using the dataset with scans at Year 0 to

predict the identities of scans at Year 1; Year 0 ! Year 2: using the dataset with scans at Year 0 to predict the identities of scans at Year 2; Year 1 ! Year

2: using the dataset with scans at Year 1 to predict the identities of scans at Year 2.

Abbreviations: Curv, mean curvature; Conv, average convexity; Depth, sulcal depth.
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identification accuracy are largely consistent across different tasks

and different cortical folding features: mean curvature (Figure 2a),

average convexity (Figure 2b), and sulcal depth (Figure 2c). Specifi-

cally, the precentral gyrus, rostral middle frontal gyrus, superior frontal

gyrus, lateral occipital cortex, caudal middle frontal gyrus, and parietal

cortex in both hemispheres and the middle and inferior temporal gyri

in the left hemisphere show higher identification accuracies (described

in roughly decreasing order of the identification accuracies). Figure 2d

displays the average identification accuracies of three cortical folding

features in each task. To numerically inspect these ROI accuracies, we

also list the first 20 ROIs with the highest average identification accu-

racies in each task and the ROIs with higher average accuracies across

both tasks in Table S2. From Figure 2d and Table S2, we can see that

the rostral middle frontal gyrus in both hemispheres present the

F IGURE 2 Maps of the identification accuracies of 68 ROIs in first two tasks based on cortical folding features: (a) mean curvature,
(b) average convexity, and (c) sulcal depth, respectively. (d) displays the average identification accuracies of the above three features in each task.
The first two columns show the lateral view, and the last two columns show the medial view. (Two tasks: Year 0 ! Year 1, that is, using the
dataset with scans at Year 0 to predict the identities of scans at Year 1; Year 0 ! Year 2, that is, using the dataset with scans at Year 0 to predict
the identities of scans at Year 2. Acc.: accuracy)
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highest average identification capability in most cases. Then in

decreasing order of the average accuracy of both hemispheres, the

lateral occipital cortex, precentral gyrus, superior frontal gyrus, inferior

parietal cortex, superior parietal cortex show higher identification

capabilities. Besides, interestingly, Figure 2 and Table S2 both show

that the identification accuracies of the precentral gyrus, inferior pari-

etal gyrus, middle and inferior temporal gyri in the left hemispheres

are higher than those in the right hemisphere, while the identification

accuracies of the superior frontal gyrus in the left hemisphere are

lower than those in the right hemisphere.

3.2.2 | Longitudinal vertex-wise individual
variability patterns

Longitudinal maps of vertex-wise individual variability based on mean

curvature, average convexity, and sulcal depth, are respectively dis-

played in Figure 3. We can thus visually inspect the distribution pat-

terns of the regions with high individual variability, and also intuitively

compare it with that of the regions with high identification capability.

It can be clearly seen that the regions with higher individual variability

are largely consistent at 0, 1, and 2 years of age within each type of

cortical folding features, and are also largely consistent across differ-

ent cortical folding features. The above consistency of the individual

variability distributions across different features and different ages is

quantitatively measured by the Pearson correlation coefficients dis-

played in Table 4, which denote that all the distributions are consis-

tent and significantly correlated with p < .05. Specifically, the middle

frontal gyrus (including both rostral and caudal middle frontal gyrus),

the bank of the superior temporal sulcus (STS), supramarginal gyrus,

parts of the inferior and superior parietal cortices, the inferior tempo-

ral gyrus, and parts of the lateral occipital cortex exhibit higher indi-

vidual variability in Figure 3. In particular, the middle and inferior

temporal gyri and the bank of the STS in the left hemispheres show

higher individual variability than those in the right hemispheres. These

are largely in accordance with the discovered regions with high identi-

fication capability as shown in Figure 2 and Table S2. Interestingly,

the middle temporal gyri in both hemispheres show lower individual

variability than the inferior temporal gyrus; and the precentral gyrus,

which presents high capability of infant identification, does not exhibit

high individual variability based on cortical folding features. In con-

trast, the supramarginal gyrus, which does not show apparent high

identification capability in Figure 2, shows high individual variability

here, and meanwhile its variability is lower in the left hemisphere than

in the right hemisphere. Additionally, in the medial view, most regions

show lower individual variability, particularly in sulcal depth maps.

Furthermore, we also charted ROI-wise individual variability maps

in Figure 4 based on the correlation coefficients defined similarly for

infant identification. Specifically, the individual variability value of

each ROI was computed as the average difference (1-correlation) of

ROI-wise feature maps across all pairs of subjects at each age. As we

can see, the overall distribution patterns of ROI-wise individual vari-

ability are largely consistent with that of vertex-wise individual vari-

ability in Figure 3, while the latter ones display much finer-scale

information. Besides, to intuitively compare the proposed vertex-wise

neighborhood-based measure in Equation (1) with the more common

measure, we charted vertex-wise individual variability maps based on

standard deviation (SD) across subjects, as shown in Figure S1. As can

be seen, both measures obtain similar individual variability patterns in

all tasks. However, the vertex-wise SD measure is more sensitive to

noise compared to our proposed neighborhood-based measure, espe-

cially in the maps of mean curvature feature. In addition, we also char-

ted longitudinal vertex-wise individual variability maps based on the

correlation coefficients calculated with other different neighborhood

sizes, for example, 10-ring and 20-ring, as shown in Figures S2-S3. As

we can see, the resulted individual variability patterns are largely con-

sistent with the patterns revealed using 15-ring neighborhood in

Figure 3. Hence, we finally chose the middle one, that is, 15-ring, to

explore the individual variability patterns.

3.3 | Twins study: Individual identification and
cortical variability

Table 5 displays the identification accuracies for MZ and DZ twins

using different combinations of cortical folding features, respectively.

According to the results of two-sample t-tests with a significance level

of p < .05, no statistical significant difference of the identification

accuracy was found across different kinds of twins using both ROI- or

global-based methods. Moreover, based on the sulcal depth, we

mapped the difference in each ROI between the average difference

(defined in Equation (2)) across all pairs of MZ twins and the average

difference across all pairs of DZ twins onto the cortical surface at the

corresponding age, as shown in Figure 5. As we can see, most ROIs,

TABLE 3 Pearson correlation coefficients of 68 ROIs' identification accuracies across different features and different tasks

Across features Across tasks

Curv vs Conv Curv vs Depth Conv vs Depth Curv Conv Depth

r Task 1 0.9 0.83 0.92 Task 1 vs 2 0.85 0.90 0.97

Task 2 0.83 0.79 0.94 — — — —

Note: Task 1: Year 0 ! Year 1, that is, using the dataset with scans at Year 0 to predict the identities of scans at Year 1; Task 2: Year 0 ! Year 2, that is,

using the dataset with scans at Year 0 to predict the identities of scans at Year 2.

Abbreviations: Curv, mean curvature; Conv, average convexity; Depth, sulcal depth.
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including prefrontal gyrus, parietal gyrus, temporal gyrus et al., are in

blue, which denote that the average differences between MZ twin

pairs are lower than those between DZ twin pairs. Besides, these pat-

terns are largely preserved during brain development in the first

2 years. Furthermore, as shown in Figures S4-S5, we also displayed

the numerical comparisons of the regional average differences of cor-

tical folding between MZ twin pairs and that of between DZ twin

pairs at each age in 20 cortical ROIs using sulcal depth and average

F IGURE 3 Longitudinal vertex-wise individual variability maps at 0, 1, and 2 years of age with three types of cortical folding features:
(a) mean curvature; (b) average convexity; (c) sulcal depth, based on 15-ring neighborhoods of each vertex across all pairs of subjects at each age.
The first two columns show the lateral view, and the last two columns display the medial view. (Var.: variability)
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convexity, respectively. Herein, these ROIs are the first 20 ROIs with

the highest average identification accuracies as shown in Table S2.

Notably, we can see from these figures that in the majority of cortical

regions, the difference between MZ twin pairs is lower than that

between DZ twin pairs, independent of both age and cortical folding

feature. In addition, longitudinal cortical maps in Figure 6 show the

results of the one-tailed two-sample t-test (p < .05, FDR-corrected)

with the alternative hypothesis that the differences between MZ twin

pairs are statistically significantly lower than those between DZ twin

pairs. In these magenta ROIs in Figure 6, the above alternative

hypothesis was accepted, and most of these ROIs overlapped with

those ROIs in blue in Figure 5. As for the results of the one-tailed test

with an alternative hypothesis in the other direction, none of the ROIs

has been found where the differences between MZ twin pairs are sta-

tistically significantly higher than those between DZ twin pairs.

4 | DISCUSSION

4.1 | Infant identification based on cortical folding
features

The first main contribution of this study resides in the finding that the

cortical folding morphology fingerprints the dynamic developing

infant brain and is reliable for individual identification during the first

postnatal years. Despite the dramatic global change in cortical size,

shape and folding features during birth and 2 years of age (Li, Nie,

Wang, Shi, Lin, et al., 2013a; Li, Wang, Shi, Lyall et al., 2014; Lyall

et al., 2014; Meng et al., 2014), as also shown in Figure 1, we achieved

promising accuracies in identifying 1- and 2-year-old brains from neo-

natal cortices using the combinations of cortical folding features

(Table 2). More importantly, we can thus anticipate that the evidenced

fingerprinting power of the neonatal brain of a specific subject can be

carried out across the whole lifespan. The reasons for this assumption

are in two aspects. First, all major cortical folds and individual variabil-

ity patterns of the human brain are established at term birth (Duan

et al., 2018; Hill et al., 2010; Li, Wang, Shi, Lin, & Shen, 2014a). Sec-

ond, the most dynamic phase of postnatal brain development is the

first 2 years of life, and the folding patterns only undergo minor

changes during later childhood and adulthood, thus the 2-year-olds'

brains largely resemble the adult brains in cortical folding (Gilmore

et al., 2007; Li, Nie, Wang, Shi, Lin, et al., 2013a; Li, Nie, Wang, Shi,

Gilmore, et al., 2014). Hence, once the 2-year-olds can be correctly

identified, the possibility of identifying the adult brains based on their

neonatal cortical folding patterns would be very high. However, fur-

ther investigations are required to validate this assumption using a

larger longitudinal dataset covering both developing and adult

periods.

Table 2 provides us further insights into the infant identification

tasks from neonatal cortical folding. Specifically, first, the combination

of three kinds of cortical folding features can slightly improve identifi-

cation accuracies compared to any single feature. Though the

improvement is not significant, we prefer to adopt the combinations

of three features into the proposed individual identification frame-

work because of two reasons: (a) the mean curvature, average con-

vexity, and sulcal depth provide complementary morphological

information of cortical folding from different aspects, as described at

the beginning of Section 2.3; (b) the accuracies are all 100% in all

tasks, outperforming any single feature and other feature combina-

tions. Second, the identification accuracies in the first two tasks using

neonatal brain to identify 1- and 2-year-olds are lower than that in

the third task using 1-year-olds to identify 2-year-olds. Compared to

the first two tasks, the third task is more similar to the adult individual

identification, due to the moderate change of cortical folding from

Year 1 to Year 2. Thus, these results indirectly validate that the infant

individual identification involving neonates is much more challenging

than the adult individual identification. Furthermore, the identification

accuracies in the first task (i.e., using the dataset with scans at Year

0 to predict the identities of scans at Year 1) are sometimes lower

than that of the second task (i.e., using the dataset with scans at Year

0 to predict the identities of scans at Year 2). It might seem less rea-

sonable, since the first task should be easier than the second one,

because of the smaller brain development in the first year, in compari-

son to the first 2 years. To analyze whether this result is caused by

the imbalanced datasets in the first two tasks, we repeated experi-

ments with balanced datasets based on both ROI-based and global-

based methods, as shown in Table S3. Here, to obtain the balanced

Year 1 and Year 2 datasets, we randomly selected 200 subjects for

10 times from their original datasets, respectively. Table S3 shows the

averaged accuracies of 10 times experiments. As we can see, the

accuracies in Task 1 are still lower than Task 2 in some experiments.

Excluding the reason of imbalanced datasets, we speculate that the

different surface quality in Year 1 and Year 2 datasets might be

responsible for this unexpected result in Table 2. Specifically, in the

image processing pipeline, the surfaces in Year 0 dataset are

reconstructed based on the segmentation results obtained from

T2-weighted images, which show better tissue contrast than the

T1-weighted images of neonatal brains, while the surfaces in Year

TABLE 4 Pearson correlation coefficients of vertex-wise maps of individual variabilities across different features and different ages

Across features Across ages

Curv vs Conv Curv vs Depth Conv vs Depth Year 0 vs Year 1 Year 0 vs Year 2 Year 1 vs Year 2

r Year 0 0.78 0.69 0.87 Curv 0.85 0.90 0.97

Year 1 0.83 0.70 0.87 Conv 0.94 0.94 0.99

Year 2 0.85 0.68 0.87 Depth 0.92 0.92 0.99

Abbreviations: Curv, mean curvature; Conv, average convexity; Depth, sulcal depth.
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1 and Year 2 datasets are reconstructed from T1-weighted images.

Due to the poorer contrast of T1-weighted images at Year 1 compared

with those at Year 2, the surface quality of images in Year 1 dataset in

the first task is poorer than that in Year 2 dataset in the second task,

which thus might lead to the unexpected slightly lower identification

accuracies in the first task.

F IGURE 4 Longitudinal ROI-wise individual variability maps at 0, 1, and 2 years of age with three types of cortical folding features: (a) mean
curvature; (b) average convexity; (c) sulcal depth, based on the average difference (1-correlation) of ROI-wise feature maps across all pairs of
subjects at each age. The first two columns show the lateral view, and the last two columns display the medial view. (Var.: variability)
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To handle the case where the subject to be identified has no

corresponding scan in the dataset, we set a threshold of the ratio between

the frequencies of the first ranked potential identity and the second

ranked potential identity. We recorded the ratios during all subjects' iden-

tification procedures, and found that the minimum ratios in the first two

tasks are 2.0 and 2.2, respectively. The distributions of the ratios are dis-

played in histograms in Figure 7. Of note, choosing a proper threshold of

the ratios is important for the individual identification method. If the

threshold is too large, the FPR would be 0, but the FNR would be large; if

it is too small, the FPRwould be large, and the FNRwould be 0. In both sit-

uations with improper thresholds, the identification accuracies would be

low. The accuracies, FPRs and FNRs based on different thresholds in

inverse tasks are displayed in Table S1. Here, we set the threshold to 2.0

according to the above minimum ratio in the first two tasks. Based on

thresholding, if a new coming scan has no corresponding scan in the early

dataset, wewould reject it, thus controlling the false discovery rate.

4.2 | Relation of cortical identification capability
and individual variability patterns

The secondmain contribution of our study is that we found that the infant

cortex shows regionally variable identification accuracy; and the regions

with high identification capability are largely overlapped with the regions

exhibiting high individual variability. Interestingly, these structural regions

are also highly in line with the functional regions showing high individual

TABLE 5 Identification accuracies for MZ twins and DZ twins based on both ROI-based and global-based methods with different
combinations of cortical folding features, respectively

Features combination

Identification accuracy (%)

Year 0 ! year 1 Year 0 ! year 2

MZ twins (56) DZ twins (106) MZ twins (54) DZ twins (62)

ROI Global ROI Global ROI Global ROI Global

Curv 96.43 83.93 96.23 85.85 98.15 88.89 98.39 88.71

Conv 100.00 98.21 100.00 95.28 100.00 96.30 98.39 95.16

Depth 100.00 96.43 99.06 96.23 100.00 94.44 98.39 95.16

Curv & Conv 100.00 94.64 100.00 92.45 100.00 94.44 100.00 93.55

Curv & Depth 100.00 94.64 99.06 95.28 100.00 96.30 100.00 93.55

Conv & Depth 100.00 98.21 100.00 96.23 100.00 96.30 98.39 95.16

Curv & Conv & Depth 100.00 98.21 100.00 96.23 100.00 96.30 100.00 95.16

Note: Number in bracket denotes the number of subjects to be identified in each task. Year 0 ! Year 1: using the dataset with scans at Year 0 to predict

the identities of scans at Year 1; Year 0 ! Year 2: using the dataset with scans at Year 0 to predict the identities of scans at Year 2. (The identification

accuracies in the third tasks [Year 1 ! Year 2] are all 100% as shown in Table 2, thus they are not displayed here).

Abbreviations: Curv, mean curvature; Conv, average convexity; Depth, sulcal depth; MZ, monozygotic; DZ, dizygotic.

F IGURE 5 Longitudinal cortical maps of the ROI-wise difference between the average sulcal depth difference across all pairs of monozygotic
(MZ) twins and the average difference across all pairs of dizygotic (DZ) twins. Herein, the blue color indicates that the average difference of MZ
twins is smaller than that of DZ twins. (Diff.: difference)
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identification capability and high individual variability (Finn et al., 2015;

Finn et al., 2017; Liu et al., 2018; Mueller et al., 2013). This validates that

the individual variability might be able to link brain structure to brain func-

tion (Frost &Goebel, 2012;MacDonald et al., 2006).

4.2.1 | Cortical identification capability patterns

Based on the identification accuracies of ROIs from the Desikan-

Killiany parcellation (Desikan et al., 2006), we found that the regions

with higher identification capability on all cortical folding features are

mostly located in high-order association cortices (including the rostral

middle frontal gyrus, superior frontal gyrus, caudal middle frontal

gyrus, inferior parietal cortex, middle and inferior temporal gyrus) and

two unimodal cortices (including precentral gyrus and lateral occipital

cortex). Furthermore, this discovery is consistent to some extent with

related studies on functional connectome fingerprinting. For example,

Miranda-Dominguez et al. found that the unique connections in high-

order association regions in frontal and parietal cortices mainly con-

tribute to the individual identification (Miranda-Dominguez et al.,

F IGURE 6 Longitudinal cortical maps of the ROIs (magenta) in which the differences between monozygotic (MZ) twin pairs are significantly
lower than those between dizygotic (DZ) twin pairs. Herein, one-tailed two-sample t-test is adopted with a significance level of p < .05, and the
false discovery rate (FDR) has been controlled with the Benjamini-Hochberg method for correction of multiple comparisons

F IGURE 7 Histogram distributions of the ratios between the frequencies of the first ranked potential identity and the second ranked
potential identity during the individual identification procedure in the first two tasks: (a) using the dataset with scans at Year 0 to predict the
identities of scans at Year 1; (b) using the dataset with scans at Year 0 to predict the identities of scans at Year 2
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2014), and they further demonstrated that the high-order systems,

including the frontoparietal, dorsal attention, ventral attention,

cingulo-opercular and default systems, present substantial heritability

variability (Miranda-Dominguez et al., 2017). Horien et al. found that

both medial frontal and frontoparietal networks are unique and stable

for individual identification during infancy (Horien et al., 2019). Finn

et al. found that the high-order frontoparietal functional network,

comprised of frontal, parietal and temporal lobes, is of the highest

identification power (Finn et al., 2015). However, in their study, the

primary visual network and the motor network are highly consistent

across subjects, thus do not contribute substantially to the individual

identification when using functional MRI, which contrasts our obser-

vation on cortical folding morphology. Interestingly, there is another

functional MRI study largely supporting our finding. Specifically, Liu

et al. found that not only the frontoparietal network, but also other

two high-order cognitive systems (i.e., default mode and dorsal atten-

tion networks) and two primary systems (i.e., visual and sensorimotor

networks) exhibited high identification power (Liu et al., 2018).

4.2.2 | Cortical individual variability patterns

Based on the longitudinal vertex-wise individual variability maps, we

found that the regions with higher individual variability on cortical

folding features are mostly distributed in high-order association corti-

ces (including the middle frontal gyrus, the bank of the STS, middle

and inferior temporal gyrus, part of the inferior and superior parietal

cortices and part of the lateral occipital cortex); and the regions with

lower individual variability are mainly located in unimodal cortices

(including sensorimotor cortex and auditory cortex). Several studies

on individual variability support this finding. Specifically, for individual

variability of cortical folding, Hill et al. found that it is higher in associ-

ation areas and lower in the motor cortex (Hill et al., 2010). As for the

individual variability of functional connectivity, it is significantly higher

in the high-order association cortex and lower in unimodal cortices

(Finn et al., 2017; Gao et al., 2014; Miranda-Dominguez et al., 2017;

Mueller et al., 2013). We also found that the individual variability pat-

terns of infant cortical folding are relatively consistent during the first

2 years of life, and are also relatively consistent across different fea-

tures. This discovery is also largely in line with previous studies (Cao,

Huang, & He, 2017; Gao et al., 2014).

Notably, the regions with high identification capability and those

with high individual variability largely overlap in high-order association

cortices. This is reasonable since the regions characterizing high indi-

vidual variability should be more distinctive across different individ-

uals. Interestingly, the precentral gyrus (motor cortex) presents high

identification capability (Figure 2), despite its low vertex-wise individ-

ual variability (Figure 3). This might be explained by the junction struc-

ture of the middle frontal gyrus and the precentral gyrus, which

provides essential distinct morphological information with high prior-

ity for individual identification. This also supports our primary choice

to separately identify the most fingerprinting regions and establish

the individual variability maps.

4.3 | Twins study: Individual identification and
cortical variability

The third main contribution of our study is the discovery that both

the MZ and DZ twins' brains can be correctly identified using the cor-

tical folding features despite similar genetic and environmental influ-

ences. Table 5 demonstrates that the cortical folding features are

reliable for identifying both infant MZ and DZ twins, and there is no

statistical significant difference in the difficulty degree between their

identification. Besides, the accuracies show slightly higher values than

the corresponding identification accuracies in Table 2, but no signifi-

cant improvement was found. The slight difference might be caused

by the largely imbalanced datasets in the tasks of individual and twin

identification. Moreover, Figure 5 and Figures S4-S5 show that the

discordance between MZ twin pairs in most cortical regions, espe-

cially the high-order association cortices, is generally lower than that

between DZ twin pairs. Figure 6 further validates that in most of

these high-order association cortices, the degree of discordance

between MZ twin pairs is significantly lower than that of between DZ

twin pairs, which is in line with the universal biological principles

(Kaminsky et al., 2009). In a few regions in Figure 5, the differences

between MZ twin pairs are slightly larger than the difference between

DZ twin pairs, but no significance was found according to the results

of the one-tailed test. According to the results of these statistical

tests, we can have an interesting conclusion that only in some high-

order association cortices, the differences between MZ twin pairs are

significantly lower than those between DZ twin pairs, while in other

ROIs, there is no statistical significant difference between the discor-

dance of MZ and DZ twins.

It is interesting that the MZ twins, who share the identical genetic

makeup (DNA) from a single fertilized egg (Jain, Prabhakar, &

Pankanti, 2002; Patwari & Lee, 2008), present distinctive cortical fold-

ing patterns in infants. Though the underlying reason is still unclear,

recent studies found that the genetically-identical cells and organisms

are not an entirely genetic characteristic, but influenced by both

genetic and environmental factors in a dynamic and complex manner

(Jha et al., 2018; Raser & O'shea, 2005). Specifically, first, the variation

in gene expression may contribute to the phenotypic variability

(Patwari & Lee, 2008; Raser & O'shea, 2005) of cortical folding pat-

terns. Second, the prenatal environmental factors (Patwari & Lee,

2008), including the umbilical cord length, access to the nutrition,

blood pressure, and position in the womb, also play import roles dur-

ing the prenatal dynamic development of cortical folding. To this end,

we can conclude that (a) both genetic and environmental factors could

influence the early development of cortical folding morphology;

(b) individual identification based on cortical folding is valid and prom-

ising, because there are no two identical brains, even for MZ twins.

4.4 | Additional considerations

There are several issues that require further considerations as listed

below.
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4.4.1 | Cortical parcellation choice

From a methodological perspective, the scale and definition of the

ROI might influence the patterns of regions with high identification

accuracy to some extent. With a cortical region showing high identifi-

cation accuracy, it might be hard to know which specific part of this

region is more critical, given the large sizes of some ROIs from

Desikan-Killiany parcellation (Desikan et al., 2006). Future work may

explore the patterns of identification accuracy with a finer-scale ROI

parcellation to better understand which sub-regions are more or less

contributive for individual identification and to better inspect the rela-

tion of cortical identification capability and individual variability

patterns.

4.4.2 | Longitudinal individual cortical folding
study across lifespan

It remains unclear to which extent the individual cortical folding is

consistent across the whole lifespan. This would be ideally explored

using a longitudinal brain dataset with follow-up MR images from

birth to adulthood—which is currently nonexistent. Future studies

should include further collecting follow-up images, and exploring the

consistent aspects and developmental aspects of cortical folding dur-

ing brain development. Additionally, since our experiments with prom-

ising identification accuracies were carried out on healthy subjects, it

is still unclear that whether specific neurodevelopmental disorder

would influence the individual variability and fingerprinting power of

the cortical folding. However, it is promising since some studies found

that the descriptor of brain morphology can be used to effectively

identify adult individuals with Alzheimer's Disease (Peper et al., 2007;

Wachinger et al., 2015). Further studies would be required to validate

this assumption based on datasets including both healthy subjects and

subjects with neurodevelopmental disorders. It would constitute a for-

midable step forward to demonstrate this in brain development and

maturation research.

4.4.3 | Infant identification

Though our proposed method based on cortical folding features

achieves promising identification accuracies (100%), we do realize that

it is not a realistic way for infant identification at present, since MRI is a

relatively slow and expensive imaging examination until now. Of note,

our main innovation of this study is not the real application of infant

identification but rather the three neuroscientific discoveries we

reported. Thus, we concisely review the background of current infant

identification methods as follows. To our knowledge, this is the first

study to leverage the developing cortical folding as the biometric trait

for infant identification. There are a few infant identification studies

based on other conventional biometric traits, for example, fingerprint

(Jain et al., 2016), footprint (E. Liu, 2017), face (Bharadwaj, Bhatt, Singh,

Vatsa, & Singh, 2010), or iris (Corby et al., 2006). Compared to the

cortical folding features, these biometric traits are more convenient to

acquire. However, their performance is less promising, especially when

involving neonates (typically < 90% in accuracy) due to the rapidly

changing biometric traits during infancy. Besides, these exterior biomet-

ric traits are typically unstable and easy to be artificially changed or imi-

tated on purpose in the real application. In future, once brain MRI

becomes fast, convenient and cheap to acquire, cortical folding could

potentially be a reliable biometric trait for infant identification.

5 | CONCLUSION

In this study, we investigated infant identification and individual vari-

ability using a large-scale longitudinal dataset with 1,141 scans. The

contribution of this work is threefold. First, for the first time, we

reported that the cortical folding during dynamic early brain develop-

ment is unique and effective for individual identification. The identifi-

cation accuracies of using neonates to identify 1-year-olds and

2-year-olds all reach 100% with the combinations of cortical folding

features, that is, mean curvature, average convexity, and sulcal depth.

We can also infer that the neonatal brain could be used for individual

identification during the whole lifespan. Second, we discovered that the

regions with high identification capability mainly distributed in high-order

association cortices (including prefrontal, lateral temporal, and inferior

parietal regions) and two unimodal cortices (including precentral gyrus

and lateral occipital cortex). Furthermore, the patterns of individual vari-

ability are age-consistent and region-specific, which largely overlap with

the distribution patterns of identification capability. More interestingly,

these discovered regions with large structural individual variability are

also largely in line with the regions encoding functional individual vari-

ability. Third, we also found that even for MZ twins, who share identical

genes and similar developmental environment, their cortical folding pat-

terns are unique fingerprints, as the cortical folding might be shaped by

complex gene expression and prenatal environmental factors. As for the

cortical variability of twins, we found that only in some high-order associ-

ation cortices, the differences between MZ twin pairs are significantly

lower than those between DZ twin pairs, while in other cortices, no sig-

nificant difference was found. This study thus provides important

insights into individual identification and individual variability based on

cortical folding during early brain development.
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