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Neural Responses and Perceptual 
Sensitivity to Sound Depend on 
Sound-Level Statistics
Björn Herrmann1,2,3 ✉, Thomas Augereau1 & Ingrid S. Johnsrude1,4

Sensitivity to sound-level statistics is crucial for optimal perception, but research has focused mostly on 
neurophysiological recordings, whereas behavioral evidence is sparse. We use electroencephalography 
(EEG) and behavioral methods to investigate how sound-level statistics affect neural activity and the 
detection of near-threshold changes in sound amplitude. We presented noise bursts with sound levels 
drawn from distributions with either a low or a high modal sound level. One participant group listened 
to the stimulation while EEG was recorded (Experiment I). A second group performed a behavioral 
amplitude-modulation detection task (Experiment II). Neural activity depended on sound-level 
statistical context in two different ways. Consistent with an account positing that the sensitivity of 
neurons to sound intensity adapts to ambient sound level, responses for higher-intensity bursts were 
larger in low-mode than high-mode contexts, whereas responses for lower-intensity bursts did not 
differ between contexts. In contrast, a concurrent slow neural response indicated prediction-error 
processing: The response was larger for bursts at intensities that deviated from the predicted statistical 
context compared to those not deviating. Behavioral responses were consistent with prediction-error 
processing, but not with neural adaptation. Hence, neural activity adapts to sound-level statistics, but 
fine-tuning of perceptual sensitivity appears to involve neural prediction-error responses.

Acoustic environments are highly variable. In the course of a day, someone may work in a library, commute by 
subway, listen to a podcast, and attend a stadium concert. How does that person manage to hear effectively in 
all those different environments? Some perceptual flexibility is crucial for the optimization of perception and 
behavior1–4. However, neurons that support audition are limited in the range of sensory stimulation to which they 
respond5,6. For example, spiking activity of auditory nerve fibers in rodents sensitively discriminates between 
different sound levels over a limited range, typically between 10 and 40 decibels7,8. Sound levels outside this range 
either saturate neural responding (i.e., when sounds are more intense than the upper response limit) or do not 
elicit a response (i.e., when sounds are less intense than the lower response limit; Fig. 1). Humans can perceptually 
identify small differences in the levels of two sounds over a 120-decibels range, even though individual neurons 
only respond over a ~40 dB range6,9.

Achieving a wide perceptual range with a limited neuronal range is thought to be accomplished by a dynamic 
adjustment of the response range (input-output function) of neurons to sound-level statistics in the environ-
ment (Fig. 1A)10,11. This process – called adaptation to stimulus statistics, dynamic-range adaptation, or gain 
control1,12–16 – involves shifting the response range of neurons depending on the mean or modal sound level in an 
acoustic environment10,11,17–22. When ambient sound levels are low, neurons are more sensitive and more respon-
sive, but saturate for moderate- to high-level sounds, compared to when ambient sound levels are moderate to 
high (red and teal lines in Fig. 1A,B, respectively). The red and teal dots in Fig. 1B indicate predicted responses 
to target stimuli of lower or higher intensity, presented in two different sound contexts (low ambient level; high 
ambient level). According to this dynamic-range adaptation hypothesis, if adaptation shifts the neural response 
range based on sound-level statistical context, we should observe a large effect of context on a higher-level target 
sound, and much less effect of context on a lower-level sound (Fig. 1B, right).

A different line of work indicates that neural responses to sound may reflect the deviation of sound level 
from predicted level23–26. When ambient sound levels are low, neurons are more responsive to higher-level than 

1Department of Psychology and Brain & Mind Institute, University of Western Ontario, N6A 3K7, London, ON, 
Canada. 2Rotman Research Institute, Baycrest, M6A 2E1, Toronto, ON, Canada. 3Department of Psychology, 
University of Toronto, M5S 1A1, Toronto, ON, Canada. 4School of Communication Sciences & Disorders, University 
of Western Ontario, N6A 5B7, London, ON, Canada. ✉e-mail: herrmann.b@gmail.com

OPEN

https://doi.org/10.1038/s41598-020-66715-1
mailto:herrmann.b@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-66715-1&domain=pdf


2Scientific Reports |         (2020) 10:9571  | https://doi.org/10.1038/s41598-020-66715-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

lower-level sounds, but when ambient sound levels are high, neurons are more responsive to lower-level than 
higher-level sounds23,25. The red and teal dots in Fig. 1C indicate the predicted responses to target stimuli of lower 
and higher intensity, presented in two different sound contexts. Under this scenario, we should observe a large 
effect of context for low-level and high-level target sounds, albeit of opposite direction (Fig. 1C, right). Effects of 
this nature may reflect an error signal when a sound deviates from the predicted statistical context27–30.

Most research on adaptation of neural activity to sound-level statistics has been conducted using neurophys-
iological techniques in non-human mammals10,11,13,17–20,31,32. We have recently demonstrated using magnetoen-
cephalography that neural activity in human auditory cortex adapts to sound-level statistics (i.e., to the modal 
sound-level) consistent with dynamic-range adaptation (Fig. 1B)21. However, whether such adaptive changes 
confer benefit to perceptual sensitivity is less clear. We expect that the ability to perceive changes in sound level, 
such as those introduced by amplitude modulation, will also be affected by sound-level statistical context (e.g., 
low vs. high mode), in a way that reflects the neurophysiological data: Dynamic-range adaptation predicts better 
sensitivity for higher-level target sounds than lower-level target sounds, uniquely in the context with a low modal 
level (Fig. 1B, right). A prediction-error account predicts better sensitivity for target sound levels that deviate 
from a distribution’s modal sound level; that is, better sensitivity for higher-level sounds in low-mode contexts 
and better sensitivity for lower-level sounds in high-mode contexts (Fig. 1C, right).

In a behavioral study, Simpson and colleagues33 assessed whether relative loudness perception depends on 
the modal sound level of the auditory context. Participants were presented with sound pairs whose sound lev-
els were drawn from a distribution with either a low or a high modal level, and they indicated which of the 
two sounds was louder. Discrimination performance was sensitive to the context’s modal level. However, 

Figure 1.  Schematic depiction of hypothesized effects of sound-level statistics on neural responses and 
behavior. (A) Probability with which sound levels occur in two statistical contexts (B) Neural responses as a 
function of sound level for two sound-level contexts with different modal sound levels (low vs. high; panel A) 
predicted by the dynamic-range adaptation hypothesis. Dots mark two target-intensities (lower and higher), 
similar to the neural and behavioral analysis of empirical data (Experiment I & II). Gray bars indicate the 
difference between the low-mode and the high-mode contexts, separately for each target intensity10,11,21. (C) 
Similar as in panel B for the prediction-error hypothesis.
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inconsistent with dynamic-range adaptation measured neurophysiologically (Fig. 1B)10,11,17,18,21, sound-level dis-
crimination was better for low-intensity compared to higher-intensity target sounds in the high-modal context33. 
Neurophysiological work on dynamic-range adaptation, in contrast, suggests that neurons are not very sensitive 
to low-intensity sounds when the ambient sound level is high (Fig. 1B, right). The reported behavioral results 
are more consistent with prediction-error responses (Fig. 1C). The experimental paradigm used in this previous 
study33 differed in a potentially important way from that typically used to study neural adaptation to sound-level 
statistics10,11,17,18,31: the interval between sound pairs was substantially longer to allow for a behavioral response33. 
It is not clear whether neural adaptation to sound-level statistics is effective over these longer intervals.

In the current study, we use a common stimulation paradigm to examine the effects of sound-level statistics 
on neural responses (Experiment I) and perceptual sensitivity to fluctuation in a sound’s amplitude (Experiment 
II). Young adults listened to white-noise bursts (0.1 s duration; 0.5 s onset-to-onset interval) whose sound levels 
were drawn from a distribution with either a 15-dB or a 45-dB modal level (Fig. 2). The main analyses focused 
on neural and behavioral responses to noise bursts (targets) for which the sound level, and the sound level of the 
directly preceding noise, were identical across the two statistical contexts (black dots in Fig. 2, middle/right). This 
allowed us to investigate the effects of longer-term sound-level statistics on neural responses and perception21.

Results
Experiment I: Neural responses depend on sound intensity and sound-level con-
text.  Electroencephalography (EEG) was recorded from twenty-five normal-hearing adults (18–31 years), 
while they listened to 0.1-s white-noise bursts presented in two sound-level contexts (Fig. 2). Participants watched 
a muted, subtitled movie during the experiment. Sensitivity of neural responses to sound level was assessed by 
binning the responses to each sound (across both contexts) into five sound-level categories (20-dB width, cen-
tered on 15, 22.5, 30, 37.5, and 45 dB SL21). Single-trial responses within each category were averaged (Fig. 3A) 
and the P1-N1 and P2-N1 peak-to-peak amplitudes were calculated separately for each participant34–38. A linear 
function was fit to amplitude data (separately for P1-N1 and P2-N1) as a function of the five sound levels, inde-
pendently for each participant. Slopes (linear coefficients) were reliably larger than zero for the P2-N1 amplitude 
(t24 = 4.044, p = 4.7 × 10−4, re = 0.637; Fig. 3C), demonstrating that the P2-N1 amplitude increased with increas-
ing sound level39–41. The slope for the P1-N1 amplitude, while numerically positive, did not differ from zero 
(t24 = 1.236, p = 0.229, re = 0.245; Fig. 3B).

P1-N1 and P2-N1 responses to noise bursts were compared between two different sound-level contexts pre-
sented in three blocks each: the modal level of the noise bursts was 15 dB in one context and 45 dB in the other 
(Fig. 2)21. Critically, analyses focused on noise bursts for which the intensity, and the intensity of the directly 
preceding burst, were identical across contexts (these targets are indicated by black dots in Fig. 2, middle/
right). Hence, any difference in neural response between stimuli from the different contexts must be due to the 
longer-term sound-level distributions.

In order to maximize the signal-to-noise ratio of the neural responses to target bursts, they were binned 
according to target intensity, separately for the two statistical contexts: responses from targets with intensities 
below 30 dB SL were combined (mean of 15.7 dB SL), as were those with intensities higher than 30 dB SL (mean 
of 44.3 dB SL). The P1-N1 and P2-N1 peak-to-peak amplitudes were calculated for both contexts, for both 
target-intensity categories, separately for each participant (Fig. 4B).

A repeated-measures analysis of variance (rmANOVA) revealed that the P1-N1 amplitude increased from 
the low to high Target-Intensity Category (F1,24 = 5.446, p = 0.028, η2

p = 0.185), and was larger for the 15-dB SL 
compared to the 45-dB SL context (F1,24 = 4.485, p = 0.045, η2

p = 0.158). The Context × Target-Intensity Category 
interaction was significant (F1,24 = 18.854, p = 2.2 × 10−4, η2

p = 0.440): P1-N1 amplitudes were larger in the 15-dB 
SL compared to the 45-dB SL context for the higher-intensity target category (44.3 dB; t24 = 4.021, p = 0.0005, 

Figure 2.  Experimental stimulation used in Experiment I and II. Left: Example probability distributions 
used for the acoustic stimulation for the two statistical contexts: one had a modal sound level of 15 dB SL, the 
other one had a modal sound level of 45 dB SL. Middle/right: 1400 white noises with different sound levels 
(y-axis) were presented at a rate of 0.5 s within a 700-s block (x-axis). Each dot reflects the sound level of one 
noise stimulus. Black dots indicate the stimuli of interest (targets) for which the effect of sound-level statistics 
on neural responses (Experiment I) and amplitude-modulation detection performance (Experiment II) was 
analyzed. For each target burst, its level and the level of the directly preceding noise burst were identical across 
contexts (15 dB SL and 45 dB SL modal level).
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re = 0.635), but not for the lower-intensity target category, for which we observed a trend towards larger responses 
in the 45-dB SL compared to the 15-dB SL context (15.7 dB; t24 = –1.979, p = 0.059, re = 0.375; Fig. 4C).

The P2-N1 amplitude also increased from the low to high Target-Intensity Category (F1,24 = 23.730, 
p = 5.8 × 10−5, η2

p = 0.497), and was larger for the 15-dB SL compared to the 45-dB SL context (F1,24 = 21.632, 
p = 0.0001, η2

p = 0.474). The Context × Target-Intensity Category interaction was significant (F1,24 = 9.923, 
p = 0.0043, η2

p = 0.293): P2-N1 amplitudes were larger in the 15-dB SL compared to the 45-dB SL context for the 
higher-intensity target category (44.3 dB; t24 = 4.717, p = 8.5 × 10−5, re = 0.694), whereas no difference between 
contexts was observed for the lower-intensity target category (15.7 dB; t24 = 0.901, p = 0.377, re = 0.181; Fig. 4C; 
compare to predictions in Fig. 1B, right). Topographical distributions suggest that auditory cortex underlies the 
observed P1-N1 and P2-N1 neural responses (Fig. 4C)42,43.

The results are consistent with recent work in humans using sine tones21 and with previous work in ani-
mals10,11,17,18, and are largely consistent with a dynamic-range adaptation account (Fig. 1C), particularly for P2-N1 
responses. The data suggest that response sensitivity shifts dynamically with modal level, enhancing sensitivity to 
higher-level sounds in contexts with a low modal level (see Fig. 1C). However, time courses in Fig. 4A also suggest 
that a slower, context-dependent neural response may be superimposed on the P1-N1-P2 responses. In order to 
isolate the slow neural activity, response time courses for the two statistical contexts were subtracted (15-dB mode 
minus 45-dB mode), separately for the two target-intensity categories (15.7 dB, 44.3 dB; Fig. 5).

Consistent with a slow negative potential reflecting a prediction-error signal (Fig. 1C), responses were more 
negative for higher- than lower-intensity targets in the 15-dB SL context (0.05–0.15 s; t24 = –4.154, p = 3.6 × 10−4, 
re = 0.647; Fig. 5A, negative-going wave) and more negative for lower- than higher-intensity targets in the 45-dB 
SL context (0.1–0.2 s; t24 = 3.496, p = 0.0019, re = 0.581; Fig. 5A, positive-going wave), reflecting a Context × 
Target-Intensity Category interaction (t24 = 4.582, p = 1.2 × 10−4, re = 0.683; compare Fig. 5B to predictions in 
Fig. 1C, right). Topographical distributions (Fig. 5B) are consistent with underlying sources in auditory cor-
tex42,43. The results from the analysis of the slow negative potential mirror previous observations of a mismatch 
negativity elicited when a sound level deviates from a predicted level23–26.

In sum, the results of Experiment I show that P1-N1 and P2-N1 responses generated in auditory cortex 
are largely consistent with a dynamic-range adaptation hypothesis (Fig. 1B), but that a slower negative-going 
response elicited concurrently indexes a prediction-error response (Fig. 1C). In Experiment II, we used to same 
paradigm as in Experiment I in order to elucidate the perceptual consequences of such neural changes.

Experiment II: Perceptual sensitivity to AM depends on sound-level context.  The effect of 
sound-level statistics (context) on perceptual sensitivity was investigated by applying amplitude modulation (AM; 
50 Hz) to the target sounds of Experiment I and comparing detection performance across contexts (non-target, 
filler, noise bursts were unmodulated). An AM-detection task was chosen because AMs are fluctuations in sound 
level, and neural adaptation to sound-level statistics is hypothesized to affect sound-level acuity.

In order to equate the difficulty of AM detection across the target-sound levels, six participants (20–27 years) 
who did not participate in Experiment I or II participated in a pre-test to estimate the function (linear slope) 
that relates AM detection thresholds to target-sound levels. This function was then applied to the AM detection 
threshold that was estimated for one sound level (40 dB SL) for each participant of Experiment II (N = 33; aged 
17–31 years; all participants were naive), in order to determine the AM depth that yields 75% detected targets for 
each of the eight target intensity levels of the experimental protocol depicted in Fig. 2 (see Experiment II pre-test 
methods and Fig. 6, for details).

As in Experiment I, responses to targets were binned according to target intensity, separately for the two con-
texts: responses from targets with an intensity below 30 dB SL (mean of 15.7 dB SL) were combined, as were those 

Figure 3.  Overall response sensitivity to sound level (across sound-level contexts). (A) Response time courses 
for five different sound-level categories (averaged across a fronto-central electrode cluster). (B) P1-N1 peak-to-
peak amplitude for each sound level. The solid line reflects the averaged slope of the linear fit. Error bars reflect 
the standard error of the mean (removal of between-subject variance67). (C) Same as in panel B for P2-N1 peak-
to-peak amplitude.
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with an intensity higher than 30 dB SL (mean of 44.3 dB SL). Perceptual sensitivity (d’) was calculated for both 
target-intensity categories and for both statistical contexts (Fig. 7A), for each participant.

Performance on the task was good, with all conditions exceeding a mean d’ value of 2. An rmANOVA indi-
cated that the two factors Context and Target-Intensity Category exhibited a significant interaction (F1,32 = 34.610, 
p = 1.5 × 10−6, η2

p = 0.520; Fig. 7A). Comparing d’ values between the two contexts, separately for each 
target-intensity category (lower-intensity targets centered on 15.7 dB SL; higher-intensity targets centered on 
44.3 dB SL), revealed higher perceptual sensitivity to AM in the 15-dB context compared to the 45-dB context 
for high-intensity targets (t32 = 3.200, p = 0.003, re = 0. 492), but higher perceptual sensitivity to AM in the 45-dB 
context compared to the 15-dB context for low-intensity targets (t32 = –2.116, p = 0.042, re = 0.350; Fig. 7B).

Figure 4.  Neural responses to noise bursts in two different sound-level contexts. (A) Response time courses 
(averaged across a fronto-central electrode cluster) for sound level × context conditions. (B) P1-N1 and P2-N1 
peak-to-peak amplitudes for target-noise bursts with different intensities (one centered on 15.7 dB and one 
on 44.3 dB) for the 15-dB SL context and for the 45-dB SL context. Error bars reflect the standard error of the 
mean (removal of between-subject variance67). The interaction between context and target-intensity category 
is significant for both P1-N1 and P2-N1 amplitudes (p < 0.05). (C) Amplitude difference between the 15-dB SL 
and 45-dB SL contexts, separately for low- and high-intensity targets. A positive value means a larger amplitude 
for the 15-dB SL compared to the 45-dB SL context, whereas a negative value means a larger amplitude for the 
45-dB SL compared to the 15-dB SL context. Topographical distributions reflect the mean response difference 
between the two statistical contexts. #p ≤ 0.01, *p ≤ 0.05, n.s. – not significant.

Figure 5.  Response difference between the two statistical contexts (15-dB mode minus 45-dB mode). (A) 
Difference time courses for the two target-intensity categories (15.7 dB, 44.3 dB). The lines at the bottom reflect a 
significant difference from zero (FDR-corrected68,69). (B) Amplitude difference between the 15-dB SL and 45-dB 
SL contexts, separately for low- and high-intensity targets (time windows 0.1-0.2 s and 0.05–0.15 s, respectively). 
Note that negative amplitude differences are plotted upwards, in order to facilitate correspondence with Figs. 1, 
4, and 7. The reversed polarity relative to the other figures is the result of the negative potential, possibly 
reflecting a prediction-error signal. Topographical distributions reflect the mean response difference between 
the two statistical contexts. *p ≤ 0.05.
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There was no effect of Context (F1,32 = 0. 0.266, p = 0.610, η2
p = 0.008) nor an effect of Target-Intensity 

Category (F1,32 = 0. 587, p = 0. 449, η2
p = 0.018). The latter was expected because we normalized the AM depth 

for individual target-sound levels based on the Experiment II pre-test (Fig. 6) to achieve equal task difficulty (i.e., 
AM-detection performance) for each target-sound level.

In sum, the results of Experiment II show that the detection of amplitude fluctuations (AM) in sounds is 
affected by sound-level statistical contexts. Consistent with a prediction-error account, sensitivity was enhanced 
for AM on higher-intensity targets compared to lower-intensity targets when ambient sound level was low, but 
that sensitivity was enhanced for AM on lower-intensity targets compared to higher-intensity targets when ambi-
ent sound level was high. The statistical results of Experiment II resemble the dependency of neural data on 
statistical context for the slow negative potential demonstrated in Experiment I (Fig. 5), but does not mirror the 
context effects related to neural adaptation to sound-level statistics (Fig. 4)10,11,17,18,21.

Figure 7.  Perceptual sensitivity (d′) for detecting amplitude-modulated target noises in two sound-level 
contexts. (A) d’ for detecting amplitude-modulated target bursts for different target-intensity categories (one 
centered on 15.7 dB SL and one on 44.3 dB SL) for the 15-dB SL and the 45-dB SL contexts. Error bars reflect the 
standard error of the mean (removal of between-subject variance67). The interaction is significant (p < 0.05). (B) 
Difference in d’ between the 15-dB SL and 45-dB SL contexts, separately for low- and high-intensity targets. A 
positive value means a larger d’ for the 15-dB SL compared to the 45-dB SL context, and a negative value a larger 
d’ for the 45-dB SL compared to the 15-dB SL context. *p ≤ 0.05.

Figure 6.  Acoustic stimuli and AM depths for behavioral Experiment II. Left: Example waveforms of non-
target (filler, unmodulated) and target (50-Hz amplitude-modulated) noise bursts used in Experiment II. In 
the example, the amplitude of the target noise burst is modulated with a modulation depth of 50%. Right: AM 
depths used for each participant (gray lines) and sound level (gray dots) in Experiment II. The black line reflects 
the mean across participants. The slope common to all lines was calculated from the Experiment II pre-test. The 
height of each participant’s line is determined by the AM depth yielding 75% correct detection in 40 dB SL noise 
bursts during preliminary testing.
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Discussion
The current study investigated the effects of sound-level statistical context on neural activity and perceptual sen-
sitivity for sound level. Sound-level statistics were manipulated by presenting white-noise bursts at levels drawn 
from one of two distributions with different modes (15 dB vs. 45 dB). Neural responses were affected by the statis-
tical sound-level context in two different ways concurrently, providing evidence for both dynamic-range adapta-
tion and prediction-error accounts (Experiment I). Perceptual sensitivity to amplitude modulation was affected 
by the statistical sound-level context in a way consistent with prediction-error processing, but not with neural 
adaptation (Experiment II).

In Experiment I, neural P1-N1 and P2-N1 amplitudes were sensitive to target intensity and to sound-level 
statistics. We observed a large effect of context (15-dB modal vs. 45-dB modal sound level) on higher-level target 
sounds, and much less of a context effect on lower-level sounds (Fig. 4). P1-N1 amplitudes for lower-level target 
sounds showed a trend towards a reverse context effect (i.e., larger response in the 45-dB than 15-dB context), 
but this observation may need to be treated with caution due to the relatively small magnitude of the P1-N1 
response (see Fig. 4A). Our data, particularly P2-N1 amplitude effects, are consistent with the hypothesis that 
neurons in the auditory system adjust their sensitivity by shifting the dynamic response range depending on the 
modal sound level in an acoustic environment (schematically depicted in Fig. 1B)10,11,17,18,21. These results are 
also consistent with observations from stimulus-specific adaptation, a related context-dependent form of adap-
tation32,44–46, showing enhanced sensitivity to sound level specifically for higher-level target sounds in lower-level 
compared to higher-level ambient contexts32,47. Here we used white-noise bursts, unlike in our previous work, in 
which we used pure tones21. White-noise bursts activate the full extent of the cochlear partition and associated 
auditory nerve fibers – this avoids the issue that pure tones with more intense levels recruit more off-frequency 
(i.e., non-best frequency) fibers, which, in turn, may contribute to effects of sound-level context using pure tones.

Neural adaptation to sound-level statistics has been observed at different stages along the auditory hierarchy, 
including the auditory nerve18,19, inferior colliculus10,11,20,31, and auditory cortex48. Until recently, investigations 
of adaptation to sound-level statistics were limited to animal models. The current data, together with recent mag-
netoencephalography data21, demonstrate response patterns that are consistent with adaptation to sound-level 
statistics in human auditory cortex. The mechanisms underlying statistical adaptation are not fully understood, 
but research in animals suggests that neural inhibition is likely an important contributor4,17,49–52.

Experiment I also revealed an increased slow negative potential that appeared to reflect prediction error. The 
negative potential was larger for higher-level target sounds in the 15-dB compared to the 45-dB context, and 
larger for lower-level target sounds in the 45-dB compared to the 15-dB context (shown as negative and positive 
deflections in the 15-dB context minus 45-dB context difference in Fig. 5, respectively). This work is consistent 
with a large body of work on a deviant-related negative potential – the mismatch negativity23–26,53 – that has been 
linked to prediction-error processing (schematically depicted in Fig. 1C)27–30: A sound whose features deviate 
from a previously established, predictable pattern elicit a negative potential originating in auditory cortices54. 
Experiment I shows that two processes – neural adaptation and prediction-error signals – can occur concurrently 
in auditory brain regions.

In Experiment II, we utilized the experimental paradigm (Fig. 2) used to demonstrate that sound-level context 
influences neural responses to investigate effects on perception of amplitude modulation in sound. We observed 
that AM sensitivity for higher-intensity target sounds was higher in the 15-dB compared to the 45-dB context, 
but that AM sensitivity for lower-intensity target sounds was higher in the 45-dB compared to the 15-dB context 
(Fig. 7). The behavioral effect of sound-level context resembled the effect of context on the EEG-recoded slow 
negative potential (Experiment I; Fig. 5) and is consistent with prediction-error processing (Fig. 1C). Our behav-
ioral results are further in line with previous work investigating the effect of sound-level statistical context on sen-
sitivity to sound level using pairs of noise bursts and longer intervals to allow for a behavioral response between 
noise pairs33. The current results and the results from this previous study suggest that prediction-error processes 
operate on shorter and longer time scales. Note that, in contrast to our neural data (Fig. 4), there was no effect of 
target-intensity category on perceptual sensitivity (d’), because AM depth was normalized across target-sound 
levels to achieve equal AM-detection difficulty at different target levels. The effect of sound-level context on 
perceptual sensitivity is consistent with the hypothesis that prediction-error signaling optimizes perception in 
different statistical contexts13,27–30,55.

In the current study, noise bursts were presented every 0.5 seconds (with a 0.4-s silent interval), and targets 
were identical between contexts as were the noise bursts preceding the targets. Thus, 0.9 s would have elapsed 
between the end of the last filler (which could differ systematically between contexts) and the onset of the meas-
ured target. This is too long an interval for masking to be operating56–58, or for any other simple explanation of the 
effect. The differences in the effect of target intensity on AM-detection sensitivity must be due to the longer-term 
sound-level statistics, likely over multiple seconds15.

In sum, we investigated how sound-level statistics affect neural responses and perception by utilizing a 
paradigm in which white-noise bursts were presented in sound-level contexts with different modes (low and 
high). We show that neural-response sensitivity to sound level is affected by sound-level contexts in two differ-
ent ways concurrently. First, the pattern of responses is consistent with the hypothesis that neural responsive-
ness changes with the modal ambient sound level, such that neurons are more sensitive and more responsive 
when ambient sound levels are low compared to when ambient sound levels are moderate to high (schematically 
depicted in Fig. 1B). Second, the slow negative potential that occurs concurrently with these adaptation effects 
is consistent with the prediction-error hypothesis (schematically depicted in Fig. 1C), such that neurons are 
most sensitive to sound levels that deviate from an established, predictable sound-level context. Perceptual sen-
sitivity to sound-level modulation was also affected by sound-level statistical contexts in a way consistent with 
the prediction-error hypothesis: Sensitivity was highest for sounds whose levels deviated from the mode of the 
sound-level context. The data thus indicate that the auditory system uses statistical information about sound level 
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to fine-tune perception dynamically by increasing sensitivity to low-probability events in a given statistical con-
text. Adaptation to sound-level statistics was not apparently related to perceptual sensitivity.

Methods and Materials
Participants.  Twenty-five adults participated in Experiment I (median age: 20 years; range: 18–31 years; 
15 females), six adults participated in the Experiment II pre-test (median age: 23 years; range: 20–27 years; 4 
females), and thirty-three adults participated in Experiment II (median age: 20 years; range: 17–31 years; 20 
females). Two additional participants were recorded for Experiment I, but the data were excluded because no 
clear components in the event-related potential could be identified. One additional participant was excluded from 
Experiment II, because the person did not complete all blocks.

Participants reported no neurological disease or hearing impairment. They gave written informed consent 
prior to the experiment and were paid $5 CAD per half hour for their participation. The study was conducted in 
accordance with the Declaration of Helsinki, the Canadian Tri-Council Policy Statement on Ethical Conduct for 
Research Involving Humans (TCPS2-2014), and approved by the local Nonmedical Research Ethics Board of the 
University of Western Ontario (protocol ID: 106570).

Acoustic stimulation.  All experimental procedures were carried out in a single-walled sound-attenuating 
booth within a larger quiet testing room in the Western Interdisciplinary Research Building (Brain & Mind 
Institute, Western University). Sounds were presented via Sennheiser (HD 25-SP II) headphones and a Steinberg 
UR22 (Steinberg Media Technologies) external sound card. Stimulation was controlled by a PC or Laptop 
(Windows 7, 64 bit) running Psychtoolbox in MATLAB software (MathWorks, Inc.).

Estimation of sensation level.  Before each experiment, the sensation level (SL) was determined for each 
participant for a white noise stimulus using a method-of-limits procedure that we have described in detail in pre-
vious work59,60. Sounds presented to participants during the experiments were presented relative to the estimated 
sensation level (SL).

Stimulus design.  The experimental paradigm closely mirrored our previous work21. Noise bursts were pre-
sented in two different types of stimulation blocks (contexts) that differed with respect to the sound-level distri-
butions from which a noise burst’s sound level was drawn: for one context the modal sound level was 15 dB SL, for 
the other it was 45 dB SL (Fig. 2). In order to investigate the effects of sound-level statistics on neural responses 
and perception, we eliminated the confounding effects of different acoustics by ensuring that the bursts for which 
data were analyzed, as well as the immediately preceding burst were identical across contexts (i.e., 15 dB SL vs. 
45 dB SL). Participants listened to six (Experiment I) or four (Experiment II) blocks, half of them with a 15-dB 
modal sound level, and the other half with a 45-dB modal sound level.

In each 700-second long block, 1400 white-noise bursts, each with a duration of 0.1 s, were presented. The 
onset-to-onset interval was kept constant at 0.5 s. In each block, eight sound levels ranging from 5 dB SL to 55 dB 
SL (step size: 7.143 dB SL) were each presented 30 times, yielding 240 target noises per block. These stimuli were 
identical across all blocks (black dots in Fig. 2, middle/right). The 240 noise bursts immediately preceding each 
of these targets were also fixed, such that for each of the 30 presentations of one of the eight sound levels, the 
sound level of the preceding noise took on one of 30 sound levels (range: 5 dB SL to 55 dB SL; step size: 1.724 dB 
SL) without replacement. Thus, the same 240 experiment pairs were presented in each block. The sound levels 
for the remaining 920 filler-noise bursts were chosen randomly (range: 5 dB SL to 55 dB SL; step size: 0.1 dB SL) 
depending on the sound-level context (Fig. 2). For half the blocks, sound levels were randomly chosen from a 
sound-level distribution with a 15-dB high-probability region (red dots in Fig. 2, middle). For the other half of the 
blocks, sound levels were randomly chosen from a sound-level distribution with a 45-dB high-probability region 
(teal dots in Fig. 2, right). High-probability regions had a width of 10 dB centered on 15 dB SL or 45 dB SL (Fig. 2, 
left). The experimental pairs and the fillers were randomly intermixed in each block and presented such that at 
least one filler occurred before and after each experimental pair. Sound-level context blocks alternated, and the 
starting sound-level context was counter-balanced across participants.

Analysis of the influence of sound-level context on neural responses (Experiment I) and perceptual sensitivity 
(Experiment II) focused on target bursts (i.e., the second noise burst in each experimental pair): these were iden-
tical across the two contexts (black dots in Fig. 2, middle/right) as was the preceding noise burst21.

Experiment I: Effect of sound-level statistical context on neural responses.  EEG recording and 
preprocessing.  EEG signals were recorded at a 1024-Hz sampling rate from 16 electrodes (Ag/Ag–Cl-electrodes; 
10-20 placement) and additionally from the left and right mastoids (BioSemi, Amsterdam, The Netherlands; 
208 Hz low-pass filter). Electrodes were referenced to a monopolar reference feedback loop connecting a driven 
passive sensor and a common-mode active sensor, both located posterior on the scalp.

Offline data analysis was carried out using MATLAB software. Line noise (60 Hz) was suppressed in the raw 
data using an elliptic filter. Data were re-referenced to the average mastoids, high-pass filtered at a cutoff of 0.7 Hz 
(2449 points, Hann window), and low-pass filtered at a cutoff of 22 Hz (211 points, Kaiser window). Independent 
components analysis (runica method61; logistic infomax algorithm62; Fieldtrip implementation63) was used to 
identify and suppress activity related to blinks and horizontal eye movements. Data were divided into epochs 
ranging from –0.1 to 0.4 s (time-locked to burst onset). Epochs that exceeded a signal change of more than 180 
µV for any electrode were excluded from analyses. All epochs were baseline-corrected by subtracting the mean 
signal in the 0.1 s prior to the noise-burst onset from each time point of the epoch (separately for each channel).

Data analysis.  P1-N1 and P2-N1 peak-to-peak amplitude.  Data analysis focused on the P1-N1 and P2-N1 
peak-to-peak amplitudes, as in previous work34–38. Estimation of P1, N1, and P2 peak amplitudes for each 
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participant can be challenging when responses are strongly adapted as in the current experiment. In order to 
overcome this challenge and estimate individual response amplitudes of the P1, N1, and P2 components of the 
event-related potentials, we utilized a simplified jackknifing approach that retrieves amplitude estimates for each 
participant64. For a specific condition, data from one participant were left out, while the response time courses 
(averaged across a fronto-central electrode cluster) of the remaining participants were averaged. P1, N1, and P2 
amplitudes were extracted from this leave-one-out average as the mean signal within a 10-ms time window cen-
tered on the P1, N1, and P2 peaks, respectively. This procedure was repeated such that data from each participant 
were left out once. In order to obtain the participant-specific estimate using the simplified jackknifing approach, 
we applied the following equation64:

= − −y nX n x( 1)i i

where yi refers to a participant-specific amplitude estimate of one component of the event-related potential; xi 
to the sub-average amplitude for which the participant data were left out, n to the number of participants, and X  
to the mean across sub-averages in x. Critically, although jackknifing makes uses of sub-averages across partici-
pants to calculate stable estimates of individual data, the approach effectively transfers the subaverage values back 
to the individual participant so that they can be interpreted similarly to those derived from original 
single-participant data64.

Response sensitivity to sound level.  In order to investigate how sound level affects response amplitude (across 
statistical contexts), trials from all context blocks were sorted into one of five categories according to their sound 
level, ranging from 5 to 55 dB (width 20 dB). Single-trial response time courses were averaged separately for each 
sound-level category. For each participant, the P1-N1 and the P2-N1 amplitude difference was extracted from 
the averaged time courses, separately for each sound-level category. In order to investigate whether responses 
increased with increasing sound level, a linear function was fit to the amplitude as a function of sound level, 
separately for P1-N1 and P2-N1 amplitudes. The slope of the linear function indicates the degree of response 
sensitivity to sound level. Each participant’s data yielded one slope value for the P1-N1 and the P2-N1: we tested 
whether the slopes differed from zero using a one-sample t-test.

Context-dependent response sensitivity.  For this analysis, only responses to target bursts with the 8 different 
critical sound levels were analyzed (black dots in Fig. 2). The number of trials at each of the 8 sound levels in 
the two contexts was relatively low (90 trials) and the response magnitudes were relatively small due to strong 
neural adaptation. In order to increase the number of trials in the response average, thereby increasing the 
signal-to-noise ratio, we binned the target responses into two categories based on target sound levels (separately 
for the two contexts). After baseline correction, single-trial time courses for noise bursts with a level below 30 dB 
SL (i.e., four levels between 5 and 26.4 dB with a mean of 15.7 dB SL) were averaged as were the time courses for 
bursts with a level above 30 dB SL (i.e., four levels between 33.6 and 55 dB with a mean of 44.3 dB SL). P1-N1 and 
P2-N1 response magnitudes were analyzed using a repeated-measures ANOVA with the factors Context (15 dB 
SL, 45 dB SL) and Target-Intensity Category (2 levels, centered on 15.7 and 44.3 dB SL).

Experiment II pre-test: Determination of AM-detection thresholds at different sound levels.  
A psychophysical pretest was conducted using the method of constant stimuli, in order to estimate the AM depth 
corresponding to the detection threshold for a 50-Hz AM in a 0.1-s duration white-noise burst, for different 
sound levels. The slope of the function relating intensity to AM-detection sensitivity was then used in Experiment 
II (Fig. 6).

White-noise bursts (0.1 s duration) were presented every 0.5 s. Targets bursts were amplitude modulated at a 
rate of 50 Hz; fillers were unmodulated. Participants listened to three blocks of noise bursts, each containing 160 
targets and 906 fillers. Participants were instructed to press a button on a keyboard as soon as they detected a tar-
get. Each target was presented at one of four sound levels (i.e., 15, 25, 35, or 45 dB SL) and one of eight AM depths 
(from 2% to 100%, in steps of 14%). In each block, five targets were presented at each sound-level and AM-depth 
combination. The sound levels for fillers were randomly drawn from a uniform distribution ranging from 5 dB SL 
to 55 dB SL. Between three and eight fillers were interposed between successive targets. Participants performed 
one to three brief training blocks to familiarize them with the stimulation and task.

A target was considered detected if a key press was made between 0.1–1.1 s after the target onset. The pro-
portion of detected targets was calculated for each sound level and AM depth, pooled across all six participants. 
A logistic function was fit to the proportion of detected targets as a function AM depth, separately for the four 
different sound levels. For each sound level, the AM depth that yielded 50% detected targets was estimated from 
the fitted logistic function. In order to estimate the AM depth for any of the eight target-sound levels used in 
Experiment II (Fig. 2), we fitted a linear function to the 50% thresholds as a function of the four pre-test target 
levels. The slope from the linear fit was used in Experiment II to relate AM depth to target-sound level.

Experiment II: Effect of sound-level statistical context on AM detection.  The stimuli of 
Experiment II were identical to those in Experiment I, except that target bursts (see Fig. 2; black dots) were ampli-
tude modulated at 50 Hz while fillers remained unmodulated (Fig. 6). Participants performed the AM-detection 
task, as in the Experiment II pre-test, for four stimulation blocks. Sound levels in the blocks were drawn from one 
of the two sound-level distributions (with a mode of 15 dB SL or 45 dB SL) as in Experiment I. Blocks alternated 
between the 15 dB SL context and the 45 dB SL context (counterbalanced across participants). As in Experiment 
I, the sound levels of targets, and the level of preceding bursts, were identical across contexts (Fig. 2, black dots). 
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Hence, any difference in AM-detection performance between contexts can be attributed to the sound-level 
statistics.

For Experiment II, we wished to equalize the AM-detection rate across target-sound levels in order to avoid 
differences in task difficulty for different target intensities. This involved estimating the AM depth that would 
yield 75% detected targets at one sound level (40 dB SL) in a pre-experiment block and calculating the AM depth 
for all target intensities relative to this 75%-AM depth using the estimated slope from the Experiment II pre-test 
that relates AM-detection thresholds to sound levels. In the pre-experiment block, ten 40-dB SL targets at each of 
eight modulation depths (2% to 100%, in steps of 14%) were presented among 450 fillers drawn from a uniform 
level distribution that ranged from 5 to 55 dB SL. The proportion of detected targets was calculated for each AM 
depth and a logistic function was fit to the data to obtain the AM depth that yielded a 75% detection rate at 40 dB 
SL. AM depths for all target intensities were then estimated from the slope of the Experiment II pre-test relative 
to the AM depth yielding the 75% detection rate at 40 dB SL. Note that the identical AM depths were used for 
targets in both statistical contexts during the main part of Experiment II, and any difference in AM-detection 
performance between contexts can thus be attributed to the sound-level statistics.

For the analysis of Experiment II data, a target was considered detected if a key press was made within 0.1–
1.1 s after the target onset. As in Experiment I, we binned targets into two categories based on burst intensity in 
order to increase the number of trials (and thus signal-to-noise ratio). Targets with a sound level below 30 dB SL 
(mean of 15.7 dB SL) were analyzed separately from those with a sound level above 30 dB SL (mean of 44.3 dB SL). 
For each participant, the proportion of detected targets was calculated separately for each sound-level context 
(15 dB SL, 45 dB SL), and each target-intensity category (15.7 dB, 44.3 dB). In order to calculate perceptual sensi-
tivity (d’), the false alarm rate was calculated using a method applicable to paradigms with high event rates such 
as the current one65. Perceptual sensitivity (d’) values were subjected to a repeated-measures ANOVA with the 
factors Context (15 dB SL, 45 dB SL) and Target-Intensity Category (15.7, 44.3 dB SL).

Effect sizes.  Throughout the manuscript, effect sizes are provided as partial eta squared (ηp
2) for 

repeated-measures ANOVAs and as re (requivalent) for t-tests66.

Data availability
The datasets generated during the current study are not publicly available because participant consent for public-
data sharing was not obtained. Data are available from the corresponding author on reasonable request.
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