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Abstract
Therapeutic outcomes in patients with metastatic colorectal cancer (mCRC) 
receiving bevacizumab treatment are highly variable, and a reliable predictive 
factor is not available. Progression-free survival (PFS) and overall survival (OS) 
were recorded from an observational, prospective study after 5 years of follow-
up, including 46 patients with mCRC receiving bevacizumab treatment. Three 
vascular endothelial growth factor (VEGF)-A and two intercellular adhesion 
molecule-1 genes polymorphisms, age, gender, weight, dosing scheme, and co-
treatments were collected. Given the relatively small number of events (37 [80%] 
for the PFS and 26 [57%] for the OS), to study the effect of these covariates on 
PFS and OS, a covariate analysis was performed using statistical and supervised 
machine learning techniques, including Cox regression, penalized Cox regres-
sion techniques (least absolute shrinkage and selection operator [LASSO], ridge 
regression, and elastic net), survival trees, and survival forest. The predictive 
performance of each method was evaluated in bootstrapped samples, using pre-
diction error curves and the area under the curve of the receiver operating char-
acteristic. The LASSO penalized Cox-regression model showed the best overall 
performance. Nonlinear mixed effects (NLME) models were developed, and a 
conventional stepwise covariate search was performed. Then, covariates identi-
fied as important by the LASSO model were included in the base NLME models 
developed for PFS and OS, resulting in improved models as compared to those 
obtained with the stepwise covariate search. It was shown that having gene pol-
ymorphisms in VEGFA (rs699947 and rs1570360) and ICAM1 (rs1799969) are 
associated with a favorable clinical outcome in patients with mCRC receiving 
bevacizumab treatment.
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INTRODUCTION

Bevacizumab is a fully humanized monoclonal antibody 
that selectively inhibits the vascular endothelial growth 
factor (VEGF) binding to its receptors, reducing the mi-
crovascular growth of tumor blood vessels.1 The process 
of angiogenesis is primarily mediated by the VEGF-A 
and secondarily by the intercellular adhesion molecule 1 
(ICAM-1).2 Bevacizumab is currently an essential thera-
peutic agent for treating metastatic colorectal cancer 
(mCRC). However, large variability in the progression-
free survival (PFS) and overall survival (OS) of patients 
receiving bevacizumab has been reported, attributed to 
various factors, including genetics, demographic charac-
teristics, disease status, and co-medications.3–8

The effect of these factors on PFS and OS has been 
studied using standard methods to analyze time-to-event 
(TTE) data, such as Kaplan–Meier estimator, log-rank 
tests, Cox regression, and nonlinear mixed effects (NLME) 
modeling.9–11 Kaplan–Meier estimator and log-rank tests 
are nonparametric methods that do not require assump-
tions. They can qualitatively indicate the statistically sig-
nificant factors affecting the survival probability. However, 
these methods can handle only categorical covariates, and 
they cannot quantify the magnitude of the effect or pro-
vide a predictive model. Cox regression is a semiparamet-
ric technique that does not require any assumptions for 
the hazard distribution. This technique uses a regression 
model that quantifies the effects of the covariates on the 
hazard ratio. As a result, it assumes that the hazards are 
proportional at any timepoint. It has been shown that a 
large number of patients are required to get accurate 

results with this technique as it tends to overfit the data 
when the ratio of events per covariates explored is low.9–12 
As a rule of thumb, 10 events per covariate have been pro-
posed as an adequate sample size; however, some studies 
indicate that 10–20 events per covariate are necessary to 
obtain a Cox regression model with precise estimates of 
the effects of the key covariates.13 Last, the development of 
parametric TTE models using NLME modeling can offer 
a fully specified hazard function. It can handle any type 
of covariate. Still, it is sensitive to misspecifications with 
small sample sizes as a specific distribution of the hazard 
for the population from which the data was retrieved is 
assumed.9,14,15 When evaluating covariate effects using 
NLME models and the well-established stepwise forward 
addition and backward elimination, some disadvantages 
are that adequate data and a reliable model are needed to 
accurately estimate the random effects and low shrinkage 
of Empirical Bayes (EB) predictions toward the popula-
tion values.16

Due to some of the disadvantages of the commonly 
used methods when applied to small sample sizes, super-
vised machine learning (ML) algorithms have been pro-
posed, such as the survival forest algorithm or penalized 
Cox regression methods.12,17,18 Thanks to its bagging fea-
ture (bootstrap aggregation), the survival forest algorithm 
can help identify trends in the data, even in relatively 
small datasets.18,19 Then, semiparametric penalized Cox 
regression methods, such as the least absolute shrinkage 
and selection operator (LASSO), ridge regression, or elas-
tic net, can be helpful to identify the covariates with the 
strongest effects, thanks to the penalty that these methods 
apply during the estimation of the coefficients.12,13,17,20,21

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Machine learning techniques can be helpful to identify predictors of therapeutic 
outcomes in oncology, provided there is an adequate sample size.
WHAT QUESTION DID THIS STUDY ADDRESS?
What is the best approach to identify significant predictors of overall survival and 
progression-free survival when the sample size is small, and how can it guide 
covariate selection for parametric time-to-event models?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
For a small sample of real-world patients receiving bevacizumab treatment, the 
least absolute shrinkage and selection operator method was an adequate way to 
screen for covariates when the sample is small.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT,  
AND/OR THERAPEUTICS?
Clinical trials in oncology include a small number of patients due to ethical re-
strictions. This study provides a tool to use to develop predictive models that 
allow for assessing covariates in small samples. By applying this methodology, 
the identification of better responders to bevacizumab treatment was enabled.
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In this study, we sought to compare the standard step-
wise covariate search and some ML models that can han-
dle small sample sizes for covariate identification when 
developing TTE models with a limited dataset. We also 
aimed to identify significant predictors of bevacizumab’s 
therapeutic outcome.

METHODS

Data

The data used were obtained from a previously pub-
lished study.22 Briefly, the study was an observational, 
prospective study with a 5-year follow-up that included 
46 patients with mCRC. The study’s primary end points 
were PFS and OS. The patients were treated as per stand-
ard clinical practice at the Department of Oncology, 
University Hospital of Patras, Greece. The study was 
conducted according to the Declaration of Helsinki and 
the International Conference on Harmonization (ICH) 
Good Clinical Practice Guideline. Approval was ob-
tained from the Hospital’s Ethics Committee. Prior to 
study enrollment, all patients provided signed informed 
consent.

Patients were receiving either 5  mg/kg bevaci-
zumab (Avastin; Genentech/Roche) every 2 weeks 
co-administered with 5-fluorouracil/leucovorin and irino-
tecan (CPT-11) or oxaliplatin (OHP) or 7.5 mg/kg bevaci-
zumab every 3 weeks co-administered with capecitabine 
and irinotecan (CPT-11) or OHP. Genotyping data for the 
following three VEGF single nucleotide polymorphisms 
(SNPs) were available: V2578 (VEGFA, rs699947), V1154 
(VEGFA, rs1570360), and V634 (VEGFA, rs2010963) and 
for the following two ICAM-1 SNPs: ICAM469 (ICAM1, 
rs5498) and ICAM241 (ICAM1, rs1799969). The deviation 
from the Hardy–Weinberg equilibrium (HWE) was tested 
using the R package “HardyWeinberg”23 (Table S5).

Other potential covariates collected were demographic 
data, including age, sex, and weight, and the patient’s 
treatment (Table S1). Independence between two dichoto-
mous covariates was tested using a chi-squared test and a 
Fisher’s exact test. A lack of correlation between two con-
tinuous covariates was tested using a Pearson correlation 
test. A lack of correlation between a dichotomous and a 
continuous covariate was tested using a Mann Whitney U 
test in R.

The effect of 10 covariates (weight, age, sex, co-
treatment, dosing scheme, 3 polymorphisms in VEGFA, 
and 2 polymorphisms in ICAM1) was explored in 46 pa-
tients. For the PFS, 37 events were recorded (events per 
covariate ratio: 3.7), and for the OS, a total of 26 events 

were recorded (events per covariate ratio: 2.6). The me-
dian survival time for PFS was 285 days, and for OS, it was 
1016 days (Figure S1). In view of the small sample size, 
each SNP was evaluated separately as a dichotomous cat-
egorical variable, with one category being homozygous 
wild type (W) and the other carrying the variant allele (V) 
either as heterozygous or as homozygous. Thus, a domi-
nant model was assumed in all cases (WV + VV vs. WW) 
for grouping, in line with previous studies.24–27

Machine learning models

ML algorithms (survival trees, survival forest, Cox-
regression, LASSO, ridge-regression, and elastic net) were 
applied to explore the impact of the available covariates 
on PFS and OS. The ML models obtained were evaluated 
using bootstrapping. All the development and evalua-
tion of the ML models were performed in R version 4.1.0. 
The development of the ML models is described in the 
Supplementary Material. The R code used for the final 
models and dummy data are also provided.

Machine learning models comparison

Given the small sample size, it was not possible to 
split the dataset into “training” and “test” datasets. 
Therefore, resampling and cross-validation techniques 
were applied to compare the predictive performance of 
the models.28,29

In this study, the models were initially evaluated for 
the ability to describe the observed data and based on 
statistical goodness of fit criteria, such as the Harrell’s 
concordance index (C-index). The cross-validation predic-
tion error using the R package “pec”30 was estimated for 
1000 bootstrapped samples, and prediction error curves 
were obtained. Then, using the package “risksetROC”31 
the area under the receiver operator characteristic curve 
(AUC of the ROC) to time was evaluated in a bootstrapped 
sample that included 1000 patients.

Parametric TTE modeling and stepwise 
covariate selection

A parametric TTE model for the PFS was developed using 
Monolix2019R2 (Lixoft). The exponential, Gompertz, log-
logistic, uniform, Weibull, and gamma distribution were 
explored to describe the hazard function. The algorithm 
used to estimate the parameters was the stochastic ap-
proximation estimation method, whereas the objective 
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function value (OFV) was computed using the Importance 
Sampling Monte Carlo method with the final population 
parameter estimates. Parameters of the TTE model were 
assumed to follow a lognormal distribution, and an ex-
ponential model was used to describe interindividual 
variability, with the random effect (η) of each parameter 
following a normal distribution with a mean of zero and 
an estimated variance of ω.1

Initially, a one-way analysis of variance (ANOVA) for 
categorical covariates or a Pearson test for continuous 
covariates was performed with the random effects (η) to 
assess if a covariate should be included. Then, the im-
pact of covariates on model parameters was evaluated 
using a stepwise forward addition and backward elim-
ination. Continuous covariates (age and weight) were 
tested normalized to the sample median and using a 
power model. In contrast, the rest of the available cat-
egorical covariates were tested using a linear model. A 
likelihood ratio test (LRT) to test if the addition of the 
covariates results in a statistically significant change in 
the OFV and a Wald test to test if the coefficient is sig-
nificantly different from zero were performed. A signif-
icance level of 5% was considered for both forward and 
backward steps.

Correlations between model parameters were also 
investigated. The models were evaluated based on the 
precision of the estimates and goodness-of-fit statistical 
criteria (−2 log-likelihood, Akaike information criterion, 
and Bayesian information criteria). The predictive perfor-
mance and robustness of the models was assessed by vi-
sual predictive checks (VPCs). The VPCs were generated 
using Monte Carlo simulations of 1000 datasets and 90% 
prediction intervals.

Machine learning guided covariate  
selection

The LASSO was the ML model with the best predictive 
performance (higher C-index, lower prediction error, and 
higher AUC of the ROC). The covariates identified as sig-
nificant for the outcome (coefficient ≠  0) were used in the 
parametric models developed. Then, the covariate model 
obtained using the stepwise approach and the model ob-
tained using the ML algorithm were compared in terms of 
stability (condition number), precision of the estimates (rel-
ative standard error), and interindividual variability terms.

ETHICS STATEMENT

The data have been previously published.22 No new sub-
ject enrollment took place as part of this study. Approval 

was obtained by the University Hospital of Patras Ethics 
Committee (3221/7, 12.02.2013).

RESULTS

Machine learning models

A total of six different ML algorithms were explored in this 
study to evaluate the impact of the 10 available covariates 
on the PFS and OS. A summary of the models obtained 
with each technique is provided in Table  1. The tuning 
hyperparameters used for the final survival trees and sur-
vival forest models are presented in Tables S2 and S3.

Based on the survival tree analysis, none of the avail-
able covariates led to a statistically significant split for 
the PFS. Only ICAM241 affected the OS significantly 
(Figure S2). As no model was obtained for the PFS, this 
method was not included in the following steps of the 
analysis for comparative purposes.

For the PFS, all the tested algorithms showed that 
V2578 significantly affects the outcome. In terms of the 
C-index, the LASSO resulted in the best predictive per-
formance, including the lowest number of parameters 
(Table 1). All the ML models developed described the data 
similarly well except for the Cox regression model, which 
was outperformed by the others (Figure 1a). Likewise, all 
the models gave a similar performance based on the pre-
diction error curves, with the LASSO showing the lowest 
prediction error (Figure 2a). For the AUC of the ROC, the 
LASSO model had a slightly better predictive performance 
as compared to the other models (Figure 3a).

Similar results were also observed for the OS. All algo-
rithms tested showed that V1154 and ICAM241 significantly 
affect the outcome. The LASSO resulted in the best perfor-
mance based on the C-index, including the lowest num-
ber of parameters (i.e., the lowest predictive performance; 
Table 1). All the ML models developed described the data 
similarly except for the Cox regression model, which was 
outperformed by the others (Figure 1b). The models gave a 
similar performance based on the prediction error curves, 
with the LASSO and the elastic net showing the lowest pre-
diction error (Figure  2b). After visual examination of the 
changes in the AUC of the ROC over time, the predictive 
performance of the LASSO and elastic net (overlapping 
curves) improved over time, outperforming the other mod-
els by the end of the observation period (Figure  3b). The 
similar predictive performance of the LASSO and the elastic 
net is probably because these two models had the same sig-
nificant terms with very similar coefficients (Table 1).

Taken altogether, the models developed using the LASSO 
algorithm presented the best predictive performance. 
According to the LASSO model, individuals with a variant 
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allele V2578 have about a 13% reduced risk of disease pro-
gression than those with only wild type alleles. The most 
significant predictors for OS were V1154 and ICAM241. 
According to the LASSO model, individuals with a variant 
ICAM241 allele have about a 15% reduced risk of death. 
Those with only the wild type allele and individuals with a 
variant V1154 allele have a 6% reduced risk of death com-
pared to those with only the wild type allele.

Parametric TTE models and stepwise 
covariate search

The hazard for PFS was best described using a Weibull 
distribution, whereas for OS, it was best described 
using a uniform distribution (Table S4 and Figure S3). 
After the base model development, a stepwise covariate 
search was performed on the scale parameters of the two 

F I G U R E  1   A comparison of the ability of the machine learning approaches to describe the observed data. After development of the 
models using the observed data (black line), the survival probability as a function of time obtained with the Cox regression model (blue line), 
elastic net model (yellow line), ridge regression model (turquoise line), least absolute shrinkage and selection operator (LASSO) model (red 
line), and survival forest (green line) were overlaid for (a) progression-free survival and (b) overall survival.

F I G U R E  2   The prediction error curves for all the approaches applied and based on the Brier score followed over time. The reference 
model was a full Cox regression model with all the covariates (black line). In addition, the Cox regression model (blue line), elastic net 
model (yellow line), ridge regression model (turquoise line), least absolute shrinkage and selection operator (LASSO) model (red line) and 
survival forest (green line) were overlaid for (a) progression-free survival and (b) overall survival. A total of 1000 bootstrapped samples were 
used for cross validation.
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distributions. The results of the covariate search are pre-
sented in Table 2. It should be noted that the addition 
of any covariate did not promote any notable change in 
the VPC.

The covariates that seemed to affect the scale param-
eter of the hazard distribution significantly differed de-
pending on the test performed. However, the final models 
were selected according to the results of the LRT, and 
given that the LRT is the most common way to select 
covariates in TTE parametric models. Thus, in the final 
models, weight and ICAM241 were included in the PFS 
model, and V1154, V2578, and ICAM241 were included 
in the OS model.

Covariate model based on LRT versus 
LASSO guided

The final covariate model obtained with the stepwise co-
variate search was compared to a model that included 
only the covariates shown to significantly affect the PFS or 
OS using the LASSO model. A comparison of the models 
obtained in each case is provided in Table 3.

In this analysis, where the number of events was rel-
atively small compared to the covariates assessed, the 
covariate models suggested by the LRT were overparame-
trized. On the contrary, using the covariates suggested 
by the LASSO led to more stable models with a lower 
condition number and with improved precision of the 

estimates. Most importantly, the interindividual variabil-
ity term of the scale parameter was significantly lower in 
the LASSO-guided covariate models, indicating that these 
covariates explained better the sources of interindividual 
variability. The final parametric TTE model suggests that 
patients with mCRC receiving bevacizumab treatment 
that have a variant V2578 allele have reduced the hazard 
of disease progression. In contrast, patients with the vari-
ant ICAM241 and/or V1154 alleles have reduced hazard 
of death.

DISCUSSION

In the past few years, ML techniques have been increas-
ingly applied along with pharmacometrics in oncology to 
identify underlying trends and relationships in the set-
ting of big data (omics, imaging, or electronic health re-
cords)32 and, most importantly, to identify prognostic and 
predictive factors associated with long-term OS and tumor 
growth dynamics in large clinical trials.33–35 In the present 
analysis, the ability of ML techniques to identify predic-
tive factors associated with improved OS and PFS was ex-
plored in a dataset including 46 patients. The effect of 10 
covariates/predictors was investigated using six ML sur-
vival models developed, and their predictive performance 
was compared. The ML models were compared in terms 
of prediction error, AUC of the ROC, and C-index. The 
values of C-index obtained from the models were rather 

F I G U R E  3   The area under the curve (AUC) to time of time-varying receiver operator curves (ROC) were generated using the observed 
data as a training dataset. As a test dataset, a bootstrapped sample containing 1000 volunteers was used to evaluate the performance of 
the machine learning approaches. The curves obtained with the Cox regression model (blue line), elastic net model (yellow line), ridge 
regression model (turquoise line), least absolute shrinkage and selection operator (LASSO) model (red line), and the survival forest model 
(green line) were overlaid for the (a) progression-free survival (PFS) and (b) overall survival (OS). The LASSO model and elastic net model 
(red and yellow lines) overlapped.



      |  1335MACHINE-LEARNING GUIDED COVARIATE SELECTION

T
A

B
L

E
 2

 
R

es
ul

ts
 o

bt
ai

ne
d 

w
ith

 st
ep

w
is

e 
co

va
ri

at
e 

se
le

ct
io

n

Pr
og

re
ss

io
n-

fr
ee

 s
ur

vi
va

l
O

ve
ra

ll 
su

rv
iv

al

O
FV

Δ
O

FV
Δ

ωT
e

LR
T

W
al

d
Pe

ar
so

n 
or

 A
N

O
V

A
O

FV
Δ

O
FV

Δ
ωT

e
LR

T
W

al
d

Pe
ar

so
n 

or
 A

N
O

V
A

Ba
se

 m
od

el
52

4.
58

–
–

–
–

–
Ba

se
 m

od
el

42
4.

49
–

–
–

–
–

A
ge

52
4.

11
0.

47
−

0.
00

4
0.

49
3

0.
73

4
0.

77
2

A
ge

42
4.

28
0.

21
0.

01
0

0.
64

7
0.

44
7

0.
52

5

W
ei

gh
t

52
0.

03
4.

55
−

0.
02

4
0.

03
3

0.
15

4
0.

18
0

W
ei

gh
t

42
4.

37
0.

12
0.

00
9

0.
72

9
0.

69
8

0.
47

8

Se
x

52
4.

44
0.

14
0.

00
7

0.
70

8
0.

86
8

0.
73

4
Se

x
42

4.
37

0.
12

0.
01

4
0.

72
9

0.
55

4
0.

92
3

V
25

78
52

1.
67

2.
91

0.
23

3
0.

08
8

0.
03

5
0.

06
8

V
25

78
42

0.
48

4.
01

0.
24

1
0.

04
5

0.
06

3
0.

07
0

V
11

54
52

3.
49

1.
09

−
0.

00
5

0.
29

6
0.

38
6

0.
35

4
V

11
54

41
8.

68
5.

81
0.

10
1

0.
01

6
0.

06
0

0.
01

7

V
63

4
52

4.
69

−
0.

11
0.

01
4

1.
00

0
0.

69
8

0.
66

9
V

63
4

42
4.

19
0.

30
0.

00
7

0.
58

4
0.

74
4

0.
60

0

IC
A

M
46

9
52

3.
59

0.
99

−
0.

05
7

0.
32

0
0.

80
8

0.
73

4
IC

A
M

46
9

42
0.

80
3.

69
0.

13
5

0.
05

5
0.

12
3

0.
21

7

IC
A

M
24

1
52

0.
27

4.
31

0.
07

0
0.

03
8

0.
06

9
0.

14
5

IC
A

M
24

1
41

7.
96

6.
53

0.
17

4
0.

01
1

0.
04

2
0.

02
9

C
ot

re
at

m
en

t
52

3.
99

0.
59

−
0.

03
3

0.
44

2
0.

67
1

0.
12

0
C

ot
re

at
m

en
t

42
3.

64
0.

85
0.

02
8

0.
35

7
0.

27
3

0.
43

0

D
os

in
g 

sc
he

m
e

52
3.

24
1.

34
0.

06
2

0.
24

7
0.

19
2

0.
83

1
D

os
in

g 
sc

he
m

e
42

2.
46

2.
03

0.
15

7
0.

15
4

0.
22

2
0.

11
8

W
ei

gh
t +

 IC
A

M
24

1
51

6.
41

5.
18

−
0.

00
4

0.
02

7
–

–
V

25
78

 +
 V

11
54

41
7.

14
7.

35
0.

22
0

0.
02

5
–

–

V
25

78
 +

 IC
A

M
24

1
41

5.
49

9.
00

0.
34

1
0.

01
1

–
–

V
11

54
 +

 IC
A

M
24

1
41

4.
65

9.
84

0.
16

0
0.

00
7

–
–

V
25

78
 +

 V
11

54
 +

 
IC

A
M

24
1

41
4.

50
9.

99
0.

34
1

0.
01

9
–

–

N
ot

e: 
Δ

O
FV

, O
FV

 o
f t

he
 b

as
e 

m
od

el
 m

in
us

 O
FV

 o
f t

he
 m

od
el

 w
ith

 th
e 

co
va

ri
at

e;
 Δ

ωT
e,

 in
te

ri
nd

iv
id

ua
l v

ar
ia

bi
lit

y 
te

rm
 fo

r t
he

 sc
al

e 
pa

ra
m

et
er

 T
e 

in
 th

e 
ba

se
 m

od
el

 m
in

us
 th

e 
in

te
ri

nd
iv

id
ua

l v
ar

ia
bi

lit
y 

te
rm

 fo
r t

he
 

sc
al

e 
pa

ra
m

et
er

 T
e 

af
te

r i
nc

lu
di

ng
 th

e 
co

va
ri

at
e 

in
 th

e 
m

od
el

; L
RT

, p
 v

al
ue

 o
f a

 li
ke

lih
oo

d 
ra

tio
 te

st
; W

al
d,

 p
 v

al
ue

 o
f a

 W
al

d 
te

st
; P

ea
rs

on
 o

r A
N

O
V

A
: p

 v
al

ue
 o

f a
 P

ea
rs

on
 te

st
 fo

r c
on

tin
uo

us
 o

r a
 o

ne
-w

ay
 A

N
O

V
A

 
te

st
 fo

r c
at

eg
or

ic
al

 c
ov

ar
ia

te
s. 

D
os

in
g 

sc
he

m
e:

 5
 m

g/
kg

 b
ev

ac
iz

um
ab

 e
ve

ry
 2

 w
ee

ks
 +

 5-
flu

or
ou

ra
ci

l/
le

uc
ov

or
in

 o
r 7

.5
 m

g/
kg

 b
ev

ac
iz

um
ab

 e
ve

ry
 3

 w
ee

ks
 +

 c
ap

ec
ita

bi
ne

, C
ot

re
at

m
en

t: 
ir

in
ot

ec
an

 (C
PT

-1
1)

 o
r o

xa
lip

la
tin

 
(O

H
P)

. G
en

et
ic

 p
ol

ym
or

ph
is

m
s w

er
e 

ev
al

ua
te

d 
as

 p
re

se
nc

e 
or

 a
bs

en
ce

 o
f t

he
 v

ar
ia

nt
 a

lle
le

 fo
r t

he
 S

N
Ps

 V
25

78
 (V

EG
FA

, r
s6

99
94

7)
, V

11
54

 (V
EG

FA
, r

s1
57

03
60

), 
V

63
4 

(V
EG

FA
, r

s2
01

09
63

), 
IC

A
M

46
9 

(I
CA

M
1,

 rs
54

98
) a

nd
 

IC
A

M
24

1 
(I

CA
M

1,
 rs

17
99

96
9)

. T
he

 e
nd

as
h 

(–
) m

ea
ns

 n
ot

 a
va

ila
bl

e 
as

 e
ith

er
 n

o 
co

va
ri

at
e 

or
 m

ul
tip

le
 c

ov
ar

ia
te

s w
er

e 
in

cl
ud

ed
 in

 th
e 

re
sp

ec
tiv

e 
m

od
el

.
A

bb
re

vi
at

io
ns

: A
N

O
V

A
, a

na
ly

si
s o

f v
ar

ia
nc

e;
 IC

A
M

, i
nt

er
ce

llu
la

r a
dh

es
io

n 
m

ol
ec

ul
e;

 O
FV

, o
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e.



1336  |      KARATZA et al.

low with the highest being 0.699. This magnitude of C-
index is rather common in the highly variable space of on-
cology, as shown in a study including 136,719 patients.36

The results showed no marked differences among the 
algorithms tested except for the survival tree analysis. 
All the other models achieved adequate performance as 
determined by their prediction error (Brier scores). This 
finding is in line with a study that showed that penalized 
regression methods have a similar performance in small 
sample sizes.13 In this prior study, a prospective cohort of 
patients with coronary artery disease was used to perform 
simulations and study the predictive accuracy, calibration, 
and discrimination of various Cox regression models by 
varying the events per variable ratio (i.e., the observations 
vs. covariates to evaluate). However, this study did not ex-
plore survival trees and survival forests, whereas the anal-
yses were performed in simulated data. In our analysis, 
the survival tree identified only ICAM241 as a predictor of 
OS, whereas none of the available covariates had an effect 
strong enough to be identified as a predictor of PFS, indi-
cating that probably a larger sample would be needed for 
this method.37

Despite the above, the LASSO method, which ap-
plies a penalty to shrink toward zero the coefficients of 
the covariates with minor contribution, showed the best 

predictive performance compared to the other ML mod-
els tested. This feature can be helpful when it is known 
that many of the covariates explored do not significantly 
impact the hazard ratio, helping to reduce the complexity 
of the model. This finding is in line with previous studies 
comparing the performance of ML algorithms in various 
settings.12,17,19,20 Other penalized regression models were 
tested, namely the ridge regression and the elastic net. The 
ridge-regression penalty forces the covariates with a minor 
contribution to have their coefficients close to zero but 
never precisely zero, which can be helpful in cases where 
many of the covariates tested exert a significant effect 
on the outcome. The elastic net combines both types of 
penalty, a particularly useful feature in cases where some 
covariates explored are known to be correlated.13,17,20,21 
In this study, using the survival tree, it was not possible 
to obtain a model for PFS, and therefore for comparative 
purposes, it was not included in the subsequent compari-
sons. Despite being a very powerful and popular tool, the 
survival forest algorithm showed a modest performance, 
which might be due to the small sample size of the dataset 
or the shape of our survival curves.18,38

Population parametric TTE models were developed 
for the two end points explored, and a stepwise covari-
ate search was performed. Three different tests were 

T A B L E  3   Comparison of the covariate models obtained with likelihood ratio test and machine learning-guided covariate selection

Progression-free survival

Covariate model based on LRT Covariate model LASSO guided

OFV 516.41 C-index 0.972 OFV 521.67 C-index 0.979

Condition number 1200 Condition number 6.5

RSE (%) IIV (CV%) RSE (%) RSE (%) IIV (CV%) RSE (%)

p 13.9 66.4 246.97 17.8 p 2.33 29.3 46.10 39.1

Te (days) 139 67.2 87.20 29.6 Te (days) 321 18.1 52.70 23.6

ICAM241 on Te 0.492 77.4 V2578 on Te 0.561 44.9

Weight on Te 0.0115 66.4

Overall survival

Covariate model based on the LRT Covariate model based on the LASSO

OFV 414.5 C-index 0.727 OFV 414.65 C-index 0.754

Condition number 9.8 Condition number 3.6

RSE (%) IIV (CV%) RSE (%) RSE (%) IIV (CV%) RSE (%)

Te (days) 1163 22.9 47.73 61.8 Te (days) 1320 20.2 41.43 34.6

ICAM241 on Te 0.778 95.5 ICAM241 on Te 1.11 42.3

V1154 on Te 0.71 62.4 V1154 on Te 0.909 46.2

V2578 on Te 0.476 63.1

Note: CV%, coefficient of variation expressed as a percentage; IIV, interindividual variability term; LASSO, least absolute shrinkage and selection operator; 
LRT, likelihood ratio test; OFV, objective function value; p, shape parameter of a Weibull distribution; RSE, relative standard error expressed as a percentage; 
Te, scale parameter or characteristic time of a Weibull distribution for the progression-free survival models and scale parameter (time at which the survival 
probability is 0) or characteristic time of a Uniform distribution for the overall survival models.
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performed to assess the influence of SNPs, demographics, 
and treatment on the scale factors of the hazard models de-
veloped (i.e., LRT, Wald test, and an ANOVA or a Pearson 
test between survival effects and covariates). A similar ap-
proach has been previously suggested by Bertrand et al.39 
for detecting the influence of genetic polymorphisms on 
pharmacokinetic parameters, with the only difference 
that, in that study, the ANOVA was performed on the EB 
estimates of the parameters. It was interesting to note that 
depending on the statistical test applied, different covari-
ates were identified as significant, which suggests a need 
for more data to inform better the distribution of the pa-
rameters.16 As the LRT is considered the most reliable test 
for including covariates in population TTE models,16,40 the 
final covariate model was based on its results, which re-
sulted in overparametrized models (Table 3). This finding 
was in line with the survival analysis literature, suggesting 
that in the setting of small sample sizes, parametric mod-
els can be sensitive to misspecifications as it is challeng-
ing to have an adequate characterization of the hazard 
function.9,41

Using the covariates suggested as significant by the 
LASSO, the model improved significantly (Table 3). This 
indicates that despite combining the inference from two 
differently conditioned models, it was more effective to 
identify the factors significantly affecting the interindivid-
ual variability on the outcome in the setting of small sam-
ple sizes. This is due primarily to the fact that the penalty 
shrinks nonimportant covariates to zero, helping to avoid 
overparameterization. In addition, it is a semiparametric 
technique, like Cox regression, which means that no dis-
tribution for the hazard is assumed, making it more robust 
to misspecifications due to the limited data.9,12,17,20

In terms of C-index (Tables 1 and 3), the NLME mod-
els were superior to the ML models, indicating that de-
spite the limited data this technique can still offer a model 
with more accurate predictions. Comparing the results 
obtained with the LASSO with the tests performed during 
the stepwise covariate selection (Table 2), it was noted that 
the interindividual variability term after inclusion of the 
covariate (ΔωTe) and the Wald test were in line with the 
LASSO for PFS. In contrast, for the OS, the ANOVA test 
and the Wald test were in line with the LASSO. This in-
dicates that for small sample sizes it would be helpful to 
perform additional tests in addition to LRT.

This study is not without limitations. We could not use 
training and test datasets to further evaluate the ML algo-
rithms because of the small dataset. However, it should 
be noted that it has been suggested, especially for smaller 
datasets, that splitting the original data into training and 
test datasets is not the most appropriate approach for vali-
dation as it reduces sample sizes of both training and test-
ing datasets, and the results can be different by different 

splitting processes.42 In addition, due to the limited data 
available, we could not perform an external evaluation of 
population TTE models developed with the stepwise ap-
proach and with the LASSO guidance. Moreover, many 
more ML algorithms could have been tested.43,44 However, 
the present analysis included the methods known for 
their ability to work well in small sample sizes. In addi-
tion, many other covariates have been described in the 
literature to affect the outcome of patients with mCRC 
receiving bevacizumab treatment that was not evaluated 
in this study and could have a larger effect, such as other 
VEGF-A SNPs, primary tumor site, tumor histology, num-
ber of metastasis sites, albumin, disease control rate, and 
the baseline value of some angiogenic biomarkers.3,5,8,45,46

The LASSO penalty has been applied previously, to 
maximum likelihood and proposed as a solution for pre-
dictive covariate model building in NLME models in cases 
of small sample sizes. This covariate search method has 
been implemented in PsN to help covariate search using 
NONMEM.47 If NONMEM had been used for this analy-
sis, it would have been interesting to see if the covariates 
identified as significant using the penalized maximum 
likelihood are comparable to those obtained using the pe-
nalized Cox regression model or to those obtained with 
the stepwise covariate method.

The data used in this analysis have been previously 
analyzed by Papachirstos et al.22 The effect of the SNPs 
on PFS and OS was studied using Kaplan–Meier estimate 
and log-rank test, whereas the effect of sex and age were 
studied using Cox regression. Each SNP was considered 
a categorical variable in this prior study with three cat-
egories, one for each possible genotype. Each SNP was 
treated as a dichotomous variable (variant or wild type) 
in the present study. V2578 was associated with increased 
PFS and ICAM241 with prolonged OS in both analyses. 
Bevacizumab and VEGF concentrations were also re-
corded in the same population and analyzed using NLME 
modeling. The study showed that patients with a variant 
ICAM241 allele have lower bevacizumab clearance, and 
patients with variant V2578 have lower free VEGF base-
line levels,2 possibly providing an explanation for the im-
proved clinical outcome in these patients.

Even though deviations from the HWE were identi-
fied in this study (Table S5), indicating that one or more 
of the Hardy–Weinberg conditions are being violated or 
that there is a genotyping error, other studies have also 
shown the importance of these SNPs in patients under 
bevacizumab treatment. Interestingly, improved clinical 
outcomes in patients with a variant V2578 allele have 
also been reported in patients with glioblastoma,4 non-
squamous non-small cell lung cancer,48 and metastatic 
breast cancer.49 Similarly, patients with metastatic breast 
cancer with a variant V1154 allele were shown to have 
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significantly longer OS,49 whereas in another study in-
cluding patients with mCRC, a variant V1154 allele was 
associated with reduced OS.50

In conclusion, the present study showed that the 
LASSO Cox regression model performed the best when 
analyzing data collected from a small sample of real-
world patients receiving bevacizumab treatment. The 
LASSO method provided reliable results while avoiding 
model overparameterization. Interestingly, in the setting 
of small sample sizes, it might help guide covariate selec-
tion of parametric TTE models due to its ability to discern 
the significant effect without making assumptions on the 
underlying distribution. Finally, variant SNPs in V1154, 
V2578, and ICAM241 were associated with favorable clin-
ical outcomes in patients with mCRC under bevacizumab 
treatment. As this methodology was applied only in the 
present study, further research is needed to evaluate the 
usefulness of ML models to guide covariate selection of 
population models in the setting of small sample sizes.
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