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Marco Antônio PeixotoID
1, Rodrigo Silva Alves2, Igor Ferreira Coelho1, Jeniffer Santana

Pinto Coelho Evangelista1, Marcos Deon Vilela de Resende3, João Romero do Amaral

Santos de Carvalho Rocha1, Fabyano Fonseca e Silva1, Bruno Gâlveas Laviola4,
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Abstract

Random regression models (RRM) are a powerful tool to evaluate genotypic plasticity over

time. However, to date, RRM remains unexplored for the analysis of repeated measures in

Jatropha curcas breeding. Thus, the present work aimed to apply the random regression

technique and study its possibilities for the analysis of repeated measures in Jatropha cur-

cas breeding. To this end, the grain yield (GY) trait of 730 individuals of 73 half-sib families

was evaluated over six years. Variance components were estimated by restricted maximum

likelihood, genetic values were predicted by best linear unbiased prediction and RRM were

fitted through Legendre polynomials. The best RRM was selected by Bayesian information

criterion. According to the likelihood ratio test, there was genetic variability among the Jatro-

pha curcas progenies; also, the plot and permanent environmental effects were statistically

significant. The variance components and heritability estimates increased over time. Non-

uniform trajectories were estimated for each progeny throughout the measures, and the

area under the trajectories distinguished the progenies with higher performance. High accu-

racies were found for GY in all harvests, which indicates the high reliability of the results.

Moderate to strong genetic correlation was observed across pairs of harvests. The genetic

trajectories indicated the existence of genotype ×measurement interaction, once the trajec-

tories crossed, which implies a different ranking in each year. Our results suggest that RRM

can be efficiently applied for genetic selection in Jatropha curcas breeding programs.

Introduction

Jatropha curcas L. ranks among the most relevant crops for biofuel production [1,2]. Its high

adaptability, which allows its cultivation under different environmental conditions, tolerance

to drought, longevity and high oil quality are some desirable characteristics which highlight

Jatropha curcas as an excellent alternative for renewable energy production [1,3,4].

It has a high oil content in its seeds (up to 35%), with a high oil-to-biofuel conversion effi-

ciency, compared to other species [4,5]. After extracted, the oil is composed by 47% crude fat
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and 25% crude protein; and, when compared to other vegetable oils, it presents better oxida-

tion stability and lower viscosity [6].

Jatropha curcas is a perennial plant that produces during several years, and in its breeding

process, genetic selection has been carried out considering only one harvest [7], several har-

vests independently [8] or several harvests simultaneously [9,10].

It is worth to highlight some specific issues in perennial plant breeding that affect genetic

selection. Once repeated measures are taken in the same individuals over time, analyses must

consider: the permanent environmental effects and genetic and residual covariance among

harvests. Thus, for quantitative traits, genetic selection must consider several harvests to maxi-

mize the selective accuracy [11].

In this context, random regression models (RRM) can be a very efficient alternative for

repeated measures analyses in Jatropha curcas breeding because they consider the genetic and

residual covariance among harvests and allows fitting the genetic and non-genetic trajectories

(plot and permanent environment) over time [11,12]. Besides that, RRM allow assessing geno-

type persistence, i.e., the capacity to maintain the yield performance over the years, which can

be affected by biotic and abiotic effects [13–15]. Thus, this work aimed to apply the random

regression technique and study the possibilities it offers for the analysis of repeated measures

in Jatropha curcas breeding.

Material and methods

Experimental data

Seven hundred and thirty individuals from 73 half-sib families of Jatropha curcas were evalu-

ated for grain yield (GY) trait (kg plant-1), in six harvests (2010 to 2015) (Supplementary mate-

rial–S3 Table). The experiment was carried out in a randomized complete block design with

two replications, five plants per plot, and spacing of 4 m between rows and 2 m between trees.

The experiment was conducted in the experimental field of Embrapa Cerrados, located in Pla-

naltina, Distrito Federal—Brazil (15˚35’30” S and 47˚42’30” W; 1007 m asl). All management

practices were based on [16].

Statistical analyses

The time of the harvests must be scaled to range from -1 to +1 in order to use Legendre poly-

nomials. The scaling formula is given below [12]:

tx ¼ � 1þ 2½ðhx � hminÞ=ðhmax � hminÞ�;

where hx refers to the time of the harvest x; hmin is the time of the first harvest (2010); and,

hmax is time of the last harvest (2015).

Variance components were estimated by restricted maximum likelihood [17], and genetic

values were predicted by best linear unbiased prediction [18], according to [19]. Random

regression models were fitted through Legendre polynomials, considering all possible degrees

of fit for each random effect, using the following general model:

Yijkl ¼ Rk þ bM�ijM þ
PM

m¼0
gim�ijm þ

PM
m¼0

pikm�ijm þ
PM

m¼0
sik�ijm þ εijkl;

where Yijkl is the ith individual (i = 1, 2, . . ., 730) on the jth harvest (j = 1, 2, . . ., 6) on the kth

replication (k = 1, 2) on the lth plot (l = 1, 2, . . ., 146); Rk is the fixed effect of replication;. bM is

the fixed regression coefficient fitted through the fifth degree of Legendre polynomials to the

common average trajectory of progenies. The random effects, gim, pikm, and sik are the random

regression coefficients for the Legendre polynomials of degree m for the genetic, permanent
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environment, and plot effects, respectively. ϕijm is the mth Legendre polynomial for the jth har-

vest from the ith individual; m is the fit degree, ranging from M = 0 to M = 5, of the Legendre

polynomial for the genetic, permanent environment, and plot effects, respectively; and εijkl is

the residual random effect associated with Yijkl.

In the matrix notation, the above model is described as follows:

y ¼ Xbþ Zg þWpþ Qsþ e;

where y is the phenotypic data vector; b is the vector of the effects of measurement-replication

combinations (assumed to be fixed) added to the overall mean; g is the vector of the individual

genetic effects (assumed as random); p is the vector of the permanent environmental effects

(assumed as random); s is the vector of the plot effects (assumed as random); and e is the vector

of residuals (random). X, Z, W and Q refer to the incidence matrices for these effects.

In this model, g~N(0, Kg�I), p~N(0, Kp�I), s~N(0, Ks�I), and e~N(0, R); where Kg, Kp, and

Ks are the covariance matrices for genetic, permanent environment, and plot effects, respec-

tively;� denotes the Kronecker product; I is an identity matrix with appropriate order to the

respective random effect; and R refers to the matrix of residual covariances. Different residual

covariance structures (homogeneous, diagonal, and unstructured) were tested.

The polynomial order in random regression models was selected using the Bayesian infor-

mation criterion (BIC) [20], as follows:

BIC ¼ � 2LogLþ pLog½n � rðxÞ�

where LogL is the logarithm of the maximum (L) of the residual likelihood function, p is the

number of estimated parameters, n is the number of observations, and r(x) is the rank of the

incidence matrix of fixed effect.

The significance of the genetic, permanent environment and plot effects was tested using

the likelihood ratio test (LRT) [21], as follows:

LRT ¼ � 2ðLogL � LogLRÞ;

where LogLR is the logarithm of the maximum (LR) of the residual likelihood function of the

reduced model (without genetic or permanent environmental or plot effects).

Variance components estimates (ŝ2
x) and the predicted genetic values (~g ij), on the original

scale, were obtained by the following expressions [22]:

s2

x ¼ �ijmKx�ijm
0
; and

~g ij ¼
PM

m¼0
aim�ijm;

where x refers to the genetic or permanent environmental or plot covariance matrices.

Phenotypic variance (ŝ2
phen), individual heritability between progenies (h2

g) and selective

accuracy (rĝ g) were obtained by the following expressions [23]:

ŝ2

phen ¼ ŝ
2

g þ ŝ
2

p þ ŝ
2

s þ ŝ
2

res;

h2

g ¼ ŝ
2

g=ŝ
2

phen; and

rĝ g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ð�ijmPEV�ijm

0
=ŝ2

gÞ
q

;
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where ŝ2
res is the residual variance and PEV is the prediction error variance extracted from the

diagonal of generalized inverse of the coefficient matrix of the mixed model equations.

The eigenfunction (Cf) of the genetic coefficient covariance matrix, aiming to evaluated the

genotype x measurement interaction, was calculated by the following expression [22]:

Cf ¼
PM

m¼0
ðcCf
ÞmFm;

where ðcCf
Þm is the mth element of the fth eigenvector of Kg, and Fm is the normalized value of

the mth Legendre polynomial.

The areas under the genetic trajectories (A), aiming to rank the clones, were obtained by

the following expression [24,25]:

A ¼ mþ
R 1

� 1

PM
m¼0
aim�ijmx

m dx;

where μ is the phenotypic mean and where xm is the is the harvest scaled. Genetic correlations

(ρg) between each pair of harvests were obtained by the following expression:

rg ¼
ŝgðijÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

gðiÞŝ
2
gðjÞ

q ;

where ŝgðijÞ, is the genetic covariance between progenies for the pair of harvests i and j; ŝ2
gðiÞ

and ŝ2
gðjÞ are the genetic variance between progenies for the harvests i and j, respectively.

Statistical analyses were performed using the ASReml 4.1 [19] and R [26] software.

Results

According to the BIC, the best RRM was the one of order two for the genetic effects, order five

for the plot effects, and order one for the permanent environment effects; with diagonal resid-

ual variance structure (Table 1 and Supplementary material—S1 Table). Thus, this model was

adopted to estimate the variance components and predict the genetic values. When the models

without genetic, plot or permanent environmental effects were tested by the LRT, the

Table 1. ASReml output for some models that converged for the grain yield trait evaluated in 73 half-sib Jatropha curcas progenies.

Polynomial degree df It LogL Parameters BIC

Gen. Plot Perm. Gen. Plot. Perm. Res.

0 5 0 4298 39 2570.4 1 21 1 6 -4980.9

1 5 0 4298 35 2578.52 3 21 1 6 -4989.9

2 5 0 4298 37 2585.77 6 21 1 6 -4993.5

3 5 0 4298 43 2590.15 10 21 1 6 -4987.7

4 5 0 4298 46 2596.27 15 21 1 6 -4981.8

0 5 1 4298 14 2683.74 1 21 3 6 -5207.6

1 5 1 4298 23 2691.81 3 21 3 6 -5216.5

2 5 1 4298 41 2699.04 6 21 3 6 -5220.1

3 5 1 4298 41 2703.27 10 21 3 6 -5214

4 5 1 4298 46 2709.36 15 21 3 6 -5208

0 0 0 4298 8 1021.81 1 1 1 6 -1956.4

The selected model by Bayesian information criterion (BIC) was indicated in bold. Gen: Genetic effect; Plot: Plot effect; Perm: Permanent environmental effect; Res:

Residual effect; df: Degrees of freedom; Ite: Number of iterations; and, LogL: Logarithm of the restricted maximum likelihood function. The complete list of models that

converged are presented in the S1 Table–Supplementary material.

https://doi.org/10.1371/journal.pone.0244021.t001
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significance of genetic, plot, and permanent environmental effects (p-value < 0.01) was

detected (LRT equal to -43.19, -1450.28, and -361.98, respectively).

The genetic variance was not constant through the harvests (Table 2). The estimates

increased from the first harvest (0.0034) to the last harvest (0.3232). Similar patterns were

found for permanent environmental variance (0.0035 to 0.1064) and plot variance (0.0042 to

0.2165). In addition, the residual variance rate in the first harvest was 0.0020. After a steady

increase, it reached 0.2154 in the last harvest. Consequently, the phenotypic variance presented

a steady increase from the first harvest (0.0133) to the sixth harvest (0.8616). In addition, the

individual heritability estimates ranged from 0.05 (2012) to 0.37 (2015) (Table 1). The selective

accuracy presented high magnitudes in all harvests, and demonstrated an upward trend over

time, ranging from 0.79 in the first harvest to 0.86 in the last harvest (Table 2).

The genetic trajectories exhibited a non-linear form and genotypic plasticity for the 73 half-

sib Jatropha curcas progenies (Fig 1). They presented a continuous deviation in the first three

harvests and then, different forms of deviation until the sixth harvest.

The first eigenfunction presented a concave crescent trajectory and accounted for more than

99% of the genetic variance (eigenvalue = 0.1460) (Fig 2). The second and third eigenfunctions

explain only 0.6% (eigenvalue = 0.0008) and 0.4% (eigenvalue = 0.0005) of the genetic variabil-

ity, respectively. The trajectory of the second eigenfunction was continuously over the third har-

vest and then decreased, whereas the third eigenfunction showed a concave deviation, with

decreasing values until the third harvest and rising values until the last harvest (Fig 2).

The area under the genetic trajectories was calculated for genotype ranking, and the highest

values represent those progenies with the best overall performance over time. In this case, dif-

ferent values of areas were found for the 73 half-sib Jatropha curcas progenies. They ranged

from -0.5879 to 2.0520, and the top ten families (those with larger area under the genetic tra-

jectories, from the first to the tenth families selected) were: 6, 70, 48, 16, 10, 1, 34, 39, 15, 29,

and 54. The complete rank are presented in the supplementary material (S2 Table). In addi-

tion, the genetic correlations between pairs of harvests presented moderate magnitudes (0.33

< ρg< 0.66) in the 2010–2012, 2010–2013, 2010–2014, 2010–2015; high magnitudes (0.67<

ρg< 0.89) in the 2010–2011, 2011–2014, and 2011–2015; and very high magnitudes (ρg>
0.90) in the remaining pairs of harvests (Fig 3).

Discussion

Among the various criteria for selection of models, the BIC is prominent, because it is a consis-

tent criterion. The selected model fit diagonal residual variance structure (i.e., one residual

Table 2. Estimates of variance components and genetic parameters for the grain yield trait evaluated in 73 half-sib Jatropha curcas progenies.

Harvest σ̂ 2
g σ̂ 2

s σ̂ 2
p σ̂ 2

res σ̂ 2
phen h2

g
�rĝ g� μ

2010 0.0034 (0.0045) 0.0042 (0.1061) 0.0035 (0.0002) 0.002 (0.0006) 0.0133 0.25 0.79 0.201

2011 0.0042 (0.0029) 0.0338 (0.0094) 0.0083 (0.0006) 0.0231 (0.0015) 0.0696 0.06 0.81 0.528

2012 0.0172 (0.0059) 0.1879 (0.0043) 0.0209 (0.0018) 0.1079 (0.0068) 0.3341 0.05 0.83 1.488

2013 0.0565 (0.0151) 0.2736 (0.0213) 0.0415 (0.0038) 0.0988 (0.0068) 0.4705 0.12 0.85 1.314

2014 0.1466 (0.0390) 0.2406 (0.0124) 0.0700 (0.0067) 0.1368 (0.0100) 0.5942 0.24 0.85 2.050

2015 0.3232 (0.0927) 0.2165 (0.7173) 0.1064 (0.0104) 0.2154 (0.0159) 0.8616 0.37 0.86 2.656

ŝ2
g : Genetic variance between families; ŝ2

s : Plot variance; ŝ2
p : Permanent environmental variance; ŝ2

res: Residual variance; ŝ2
phen: Phenotypic variance; h2

g : Individual

heritability; �rĝ g�: Mean selective accuracy; and μ: Phenotypic mean.

Values between parentheses represents the standard errors for the variance components.

https://doi.org/10.1371/journal.pone.0244021.t002
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variance for each harvest). Considering the other random effects of the model (genetic, perma-

nent, and plot), a total of 36 covariance components were estimated. The RRM are equivalent

to the covariance functions and can be considered a reduced and simplified multiple-trait

model, which allows the same parameters of interest (heritability and genetic correlation

among all pairs of harvests) to be obtained, but with lower parameterization and with less

computational effort [23,27].

Since there are reliable estimates of variance components, they allow the prediction of

genetic values of individuals evaluated at different ages (and with different numbers of ages

evaluated) and the projection of these genetic values for a common age, for ordering and selec-

tion purposes. Besides that, Legendre polynomials have been used to model growth curves in

perennial plant breeding [14,28].

According to the LRT, there was genetic variability among the Jatropha curcas families.

Besides that, the plot and permanent environmental effects are statistically significant (p-

value < 0.01), i.e., they differ from zero. The significance of genetic effects shows the potential

of this population and allow the selection of superior families, even with a restricted genetic

basis explored in Jatropha curcas breeding in Brazil [6,29]. It is worth mentioning that the

RRM allows fitting the permanent environmental effect. On the other hand, the multiple-trait

model does not allow fitting this effect, since it assumes that the same trait in different harvest

is a different trait [10].
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Fig 1. Trajectories for the 73 half-sib Jatropha curcas progenies evaluated for the grain yield trait.

https://doi.org/10.1371/journal.pone.0244021.g001
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The RRM is mainly focused on visualizing trajectories and covariance functions over time.

Therefore, the variance components and genetic parameters can vary over the harvests. In this

study, it is generally observed an increasing trend in the variance components and genetic

parameters over time. Such pattern was also observed by [1,10,30].

The individual heritability estimates decreased from the first to the third harvest. Then,

there was an upward trend until the sixth harvest, which indicates that the third harvest is

more affected by the environmental conditions. According to [31], the heritabilities are classi-

fied as low (h2
g < 0:30Þ, except for the last one, which was classified as moderate

(0:30 < h2
g < 0:50). Similar results were reported in other studies with Jatropha curcas [10,30].

Besides that, the variation in the individual heritability estimates was like the variation in the

variance components estimates.

Upward trend in genetic variances and heritabilities along the time, are biologically consis-

tent. Such trends can be related to the fact that Jatropha curcas genotypes are more sensitive to

environmental variations in the early stages of growth [1,30], due to the higher

genotype × measurement interaction. Indeed, in this work, the genotype × measurement inter-

action effect was significant. Further, it is related with the fact that the metabolism of young

perennials often privilege vegetative rather than reproductive growth [32], which leads to an

uneven production in the early harvests. Then, given the temporal trend of the genetic parame-

ters and genetic values, the selection for the GY trait should consider several harvests (three to

six, according to [11] for an accurate genetic selection).
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Fig 2. Eigenfunctions for the 73 half-sib Jatropha curcas progenies evaluated for the grain yield trait. Their proportional eigenvalues for the genetic covariance

function are in parentheses.
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According to [33], the selective accuracies were classified as high in all harvests (0.70< rĝ g
< 0.90). In fact, when compared with other models, including the multiple-trait models, the

selective accuracy by RRM has presented values considered higher [34]. This is probably

because RRM does not require pre-adjustment of weights at standard ages, which may provide

gains in selective accuracy [35].

The genetic trajectories describe the genetic values of each family over time and encompass

the six harvests evaluated in this study. The RRM can predict the genetic value for any family

in any time (between the first and sixth harvest). The trajectories demonstrated that the fami-

lies presented similar performance in the first harvests, which reveals that a precocious selec-

tion tends to be less efficient. The genetic correlations reinforce the inefficiency in earlier

selection. The genetic correlations between the pairs of harvest presented very high values

(> 0.90) only between the last harvests. In addition [9], showed that ten harvests are necessary

for an accurate genetic selection for the GY trait in Jatropha curcas.
The RRM fitted through Legendre polynomials allows obtain the eigenfunctions and eigen-

values [22]. According to those authors, the eigenfunctions are similar to the eigenvectors of

the principal component analyses and can be interpreted as proportional to the amount of

genetic variation in the population corresponding to that eigenfunction. The first eigenfunc-

tion clustered general adaptability genes equally expressed in all harvests [14]. This can be

interpreted as the genetic correlation among the harvests. The second and third eigenfunctions

showed small eigenvalues and represent deformations for which there is little (or no) genetic

variation [22]. Perennial plants usually present great variations in productivity in the initial

harvests, since many genes expressed in that period are associated with the formation of vege-

tative organs [32]. This fact is typical of perennials and is indicated to occur in Jatropha curcas
[30].

The genetic trajectories of the 73 Jatropha curcas progenies reinforced the presence of

genotype × measurement interaction, once their trajectories are non-linear and intersect each
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Fig 3. Genetic correlations between pairs of harvests (2010–2015) for the 73 half-sib Jatropha curcas progenies evaluated for the

grain yield trait.
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other, which implies a different ranking in each harvest. In addition, the trajectories could also

be interpreted as genetic variability. The more distant the genetic trajectories from each other,

the more genetically distinct are the progenies [23].

In this study, genotype ranking was performed based on the areas under the genetic trajec-

tories. Therefore, genetic selection was based on the higher area under the genetic trajectories.

The advantage of this strategy is that selection response can be predicted not only in the geno-

typic expression in any harvest but also in quantifying the environmental sensitivity of the trait

through the genetic trajectories (robustness or responsiveness to changes in the environment).

Besides that, it can be used for any number of harvests [36].

The RRM can be used to help describing the observed phenotypic over time efficiently and

allows genetic selection based on adaptability, stability and yield performance [14,36–38]. The

main advantage of the RRM is the fact that it is biologically realistic through their emphasis on

dynamic aspects of the phenotype and for allowing breeding questions on plasticity, adaptabil-

ity, stability and yield performance to be answered [36]. Thus, our results suggest that RRM fit-

ted through Legendre polynomials can be efficiently used in Jatropha curcas breeding

programs.
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PLOS ONE Yield genetic trajectories in Jatropha curcas

PLOS ONE | https://doi.org/10.1371/journal.pone.0244021 December 23, 2020 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244021.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244021.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244021.s003
https://doi.org/10.1371/journal.pone.0244021
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mistos, multivariados, categóricos e generalizados (REML/BLUP), inferência bayesiana, regressão
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