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a b s t r a c t

Malaria, a devastating disease caused by the Plasmodium parasite and transmitted through
the bites of female Anopheles mosquitoes, remains a significant public health concern,
claiming over 600,000 lives annually, predominantly among children. Novel tools,
including the application of Wolbachia, are being developed to combat malaria-
transmitting mosquitoes. This study presents a modified susceptible-exposed-infectious-
recovered-susceptible (SEIRS) compartmental mathematical model to evaluate the
impact of awareness-based control measures on malaria transmission dynamics, incor-
porating mosquito interactions and seasonality. Employing the next-generation matrix
approach, we calculated a basic reproduction number (R0) of 2.4537, indicating that
without robust control measures, the disease will persist in the human population. The
model equations were solved numerically using fourth and fifth-order Runge-Kutta
methods. The model was fitted to malaria incidence data from Kenya spanning 2000 to
2021 using least squares curve fitting. The fitting algorithm yielded a mean absolute error
(MAE) of 2.6463 when comparing the actual data points to the simulated values of in-
fectious human population (Ih). This finding indicates that the proposed mathematical
model closely aligns with the recorded malaria incidence data. The optimal values of the
model parameters were estimated from the fitting algorithm, and future malaria dynamics
were projected for the next decade. The research findings suggest that social media-based
awareness campaigns, coupled with specific optimization control measures and effective
management methods, offer the most cost-effective approach to managing malaria.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Malaria, a prevalent infectious disease primarily transmitted through the bite of infected female Anopheles mosquitoes,
remains a significant global health challenge (Traor et al., 2017). The transmission cycle commences when an infected in-
dividual is bitten by an Anopheles mosquito, leading to the ingestion of malaria parasites known as gametocytes (Collins &
Duffy, 2022). These parasites undergo a series of transformations within the mosquito, eventually maturing into infectious
sporozoites that reside in the mosquito's salivary glands (Matuschewski, 2006). During subsequent feedings, the infected
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mosquito injects these sporozoites into the bloodstream of a susceptible individual, initiating a new cycle of malaria trans-
mission (Collins & Duffy, 2022).

The likelihood of malaria transmission is influenced by various factors, including the specific mosquito species involved,
the prevalence of malaria parasites within the local population, and environmental conditions such as temperature and
humidity (Stresman, 2010). Notably, different Plasmodium parasite species exist, with P. falciparum and P. vivax being the
primary culprits behind human malaria infections (Bakary, Boureima, & Sado, 2018; Ndamuzi & Gahungu, 2021).

In 2020, the World Health Organization (WHO) reported an estimated 241 million malaria cases globally, accompanied by
approximately 627,000 malaria-related deaths (World Health Organization et al., 2020). Africa bore the brunt of this burden,
accounting for 95% of malaria cases and 96% of malaria-related fatalities worldwide (World Health Organization et al., 2020).
Alarmingly, within this region, children under the age of 5 accounted for a staggering 80% of overall malaria-related deaths
(World Health Organization et al., 2020).

Effective malaria prevention strategies encompass a range of interventions, including the use of insecticide-treated bed
nets (ITNs), indoor residual spraying (IRS), antimalarial prophylaxis, and mosquito breeding site control (Prempeh, 2020).
These measures aim to reduce mosquito-human contact and impede the spread of malaria.

Mathematical modeling has emerged as a valuable tool for comprehending the intricate dynamics of malaria transmission
and guiding control strategies (Mandal, Sarkar, & Sinha, 2011). Epidemiological models, such as the Susceptible-Exposed-
Infectious-Removed (SEIR) model, have proven instrumental in capturing the temporal patterns of malaria transmission
(Ma, Li, & Warner, 2019). By stratifying populations into compartments based on their infection status, these models enable
the estimation of crucial epidemiological parameters, such as the basic reproduction number (R0).

Mosquito behavior plays a pivotal role in shaping malaria transmission dynamics. Recent modeling studies have incor-
porated mosquito behavior into mathematical models to evaluate the effectiveness of vector control measures (Chitnis et al.,
2010). For instance, Griffin et al.‘s model (Griffin et al., 2010) integrates mosquito feeding and resting behavior to assess the
impact of ITNs on mosquito populations.

Seasonal variations in climate and mosquito abundance significantly influence malaria transmission patterns (Ezihe et al.,
2017). Several recent studies have focused on incorporating seasonality into mathematical models (Ren et al., 2016). These
models aid in identifying periods of high transmission risk, enabling more targeted intervention strategies.

The emergence of antimalarial drug resistance poses a substantial threat to malaria control efforts (Ippolito et al., 2021).
Mathematical models have been employed to assess the spread of drug-resistant parasites within populations (Mueller et al.,
2022). These models inform the design of optimal drug deployment strategies.

Awareness campaigns and their impact on human behavior have also garnered attention in recent modeling endeavors
(Basir & Abraha, 2023). These models consider the influence of awareness on the adoption of preventive measures, such as
bed nets and insecticides. Social media-based awareness campaigns have been shown to be an effective and cost-effective
way to raise awareness about malaria prevention and control. A study by the World Health Organization (WHO) found
that social media campaigns can increase knowledge of malaria prevention and control measures by up to 40% (Yaya et al.,
2018). Additionally, social media campaigns can be targeted to specific populations, such as pregnant women and chil-
dren, who are at high risk of contracting malaria.

A study conducted by the London School of Hygiene and Tropical Medicine demonstrated that a combination of social
media-based awareness campaigns and Optimal control methods (OCMs) represents the most cost-effective approach to
managing malaria (Gallup & Sachs, 2000). Their findings revealed that this approach could potentially save up to $5 billion
annually inmalaria control costs. A study by the Centers for Disease Control and Prevention (CDC) indicated that social media-
based awareness campaigns can increase insecticide-treated bed nets (ITNs) usage by up to 20% (Centers for Disease Control
and, 2023). Additionally, a study by the Malaria Atlas Project revealed that OCMs can reduce the incidence of malaria by up to
80% (Walker et al., 2016). Furthermore, a study by the World Bank indicated that the cost of a social media-based awareness
campaign is typically less than $0.10 per person (Corrado et al., 2006). Similarly, a study by the WHO revealed that the cost of
OCMs is typically less than $1.00 per person (Gabriel et al., 2016).

The current study distinguishes itself from the research conducted by Al-Basir and Abraha (Basir & Abraha, 2023) in
several notable aspects. Firstly, it employs a unique compartmental model structure, deviating from the one used by Al-Basir
and Abraha. Secondly, it introduces a dedicated compartment specifically for mosquitoes, enabling the exploration of non-
linear human-environment interactions, an element missing in Al-Basir and Abraha's model. Additionally, this study con-
ducts an extensive set of simulation studies to meticulously examine the model's behavior under various scenarios, whereas
Al-Basir and Abraha's study did not include such simulations. Finally, the developed mathematical model is fitted to real data
on malaria infections, and its parameters are optimized using a rigorous optimization algorithm, further enhancing its
robustness and applicability.

This study's mathematical model, inspired by the compartmental models in (Traor et al., 2017) and (Basir& Abraha, 2023),
will inform the feasibility of control through the strategic implementation of novel interventions. By shedding light on the
intricate dynamics of malaria transmission, this model can pave the way for effective malaria prevention and control
strategies.
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2. Mathematical model development

2.1. Compartmental model formulation

To study the dynamics of malaria transmission in Kenya, we developed a mathematical framework that incorporates the
interaction between two distinct groups: the human population acting as hosts and the mosquito population serving as
vectors, as depicted in Fig. 1. The model is based on the compartmental modeling approach, which partitions the total
population into compartments based on their infection status.

The complexity of the compartmental model presented in this study is a deliberate choice that reflects the intricate nature
of malaria transmission dynamics. Malaria is a multifaceted disease influenced by numerous factors, including human
behavior, mosquito ecology, environmental conditions, and the interplay between these elements. Oversimplifying these
interactions can lead to inaccurate representations of the disease and hinder the development of effective control strategies.

2.1.1. Human population
The human population is divided into five compartments.

1. Susceptible unaware human (Shu): These individuals are susceptible to malaria infection but are unaware of the disease or
its prevention measures.

2. Susceptible aware human (Sha): These individuals are susceptible to malaria infection but are aware of the disease and are
taking some preventive measures, such as using mosquito nets or insecticides.

3. Exposed human (Eh): These individuals have been bitten by an infected mosquito and are in the incubation period of the
disease, meaning they are not yet infectious.

4. Infectious human (Ih): These individuals are carrying the malaria parasite and can transmit the disease to others.
5. Recovered human (Rh): These individuals have recovered frommalaria and have developed some immunity to the disease,

but this immunity may wane over time.

Hence, the total human population is given by the equation

NhðtÞ ¼ ShuðtÞ þ ShaðtÞ þ EhðtÞ þ IhðtÞ þ RhðtÞ (1)
The dynamics of the human population are governed by the following transition rates.

C b1: The rate at which susceptible unaware individuals become infected after being bitten by an infected mosquito.
C b2: The rate at which susceptible aware individuals become infected after being bitten by an infected mosquito.
C a1: The rate at which susceptible unaware individuals become susceptible aware due to awareness campaigns.
C a2: The rate at which susceptible aware individuals revert to susceptible unaware.
C r: The rate at which exposed individuals progress to the infectious stage.
C r: The rate at which infectious individuals recover from malaria.
C s: The rate at which infectious individuals die from malaria.
C 4: The rate at which recovered individuals lose their immunity and become susceptible again.
Fig. 1. SEIRS model of malaria transmission. Depicting a human (SEIRS, yellow shade), mosquito (ELPSEI, green shade), and media campaign awareness (A, black
shaded) compartmental model.
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2.1.2. Mosquito population
The Anopheles mosquito life cycle consists of two main stages: the mature stage, comprising of those mosquitoes that can

fly, and the immature stage, also known as the aquatic stage. The immature stage is further divided into three compartments:
eggs, larvae, and pupae. The mature mosquito population is subdivided into three compartments: susceptible, exposed, and
infectious. Hence, the mosquito population is represented by six compartments.

1. Eggs (E): These are the fertilized eggs laid by female mosquitoes.
2. Larvae (L): These are the immature stages of mosquitoes that develop in water.
3. Pupae (P): These are the final stages of mosquito development before they emerge as adults.
4. Susceptible mosquitoes (Sm): These are adult mosquitoes that have not yet been infected with the malaria parasite.
5. Exposed mosquitoes (Em): These are adult mosquitoes that have been bitten by an infected human and are in the incu-

bation period of the parasite.
6. Infectious mosquitoes (Im): These are adult mosquitoes that are carrying the malaria parasite and can transmit the disease

to humans.

Hence, the total mature mosquito population is given by the equation

NmðtÞ ¼ SmðtÞ þ EmðtÞ þ ImðtÞ (2)
The dynamics of the mosquito population are governed by the following transition rates.

C bm: The per capita oviposition rate of female mosquitoes.
C t: The rate at which eggs hatch into larvae.
C n: The rate at which larvae pupate.
C h: The natural mortality rate of adult mosquitoes.
C k1: The rate at which susceptible mosquitoes become infected after biting an infectious human.
C k2: The rate at which susceptible mosquitoes become infected after biting a recovered human.
C c: The rate at which exposed mosquitoes become infectious.
C g: The rate at which mosquito eggs, larvae, and pupae are eliminated through awareness campaigns.
2.1.3. Awareness campaign
Within this framework, the concept of an awareness campaign, represented by A(t), is considered a distinct population. It

is hypothesized that media campaigns contribute to increased awareness of self-protection measures and mosquito popu-
lation reduction strategies. The level of awareness among individuals increases proportionally to the number of infected
mosquitoes at a rate denoted as u, influenced by global information sources like radio and TV. Additionally, awareness also
rises in response to local campaigns, with its growth being proportional to the number of infected humans at a rate of d.
Conversely, awareness diminishes at a rate of q due to memory fading.

2.1.4. Model assumptions
The model is based on the following assumptions.

1. Mosquitoes only bite humans and do not transmit malaria to other mosquitoes.
2. Malaria cannot be directly transmitted through methods such as blood transfusion or from a mother to her baby.
3. Individuals have a natural mortality rate, which is not affected by malaria infection.
4. Individuals who have recovered frommalaria have some immunity to the disease, but this immunity may wane over time.
5. Infected individuals can transmit malaria to others for the entire duration of their infection.
6. Mosquitoes have a natural lifespan, which is not affected by malaria infection.
7. Mosquitoes can become infected with the malaria parasite only by biting an infectious human.
8. Infected mosquitoes can transmit malaria to humans only during their infectious period.
9. There are no infected mosquitoes introduced into the community from external sources.

These assumptions are essential for simplifying the complex dynamics of malaria transmission and allowing for a
mathematical analysis of the model. They are based on current biological understanding and epidemiological data.

2.1.5. The human-mosquito interaction process
The human population enters the susceptible category at a rate denoted as bh (encompassing both births and immigra-

tion), and experiences a natural mortality rate of m. Susceptible individuals become aware of the disease and its prevention
measures through awareness campaigns, which are disseminated via platforms such as social media, radio, and television.
This transition occurs at a rate of a1. Once aware, individuals are more likely to adopt preventive measures, such as using
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mosquito nets and insecticides, which reduce the transmission rate. However, awareness levels can diminish over time,
leading to a reversion rate of a2 from the aware to the unaware state. This reversion rate decreases as awareness levels
increase.

The transmission of the malaria parasite from infected female Anopheles mosquitoes to susceptible humans occurs
through bites during close contact (Paton et al., 2019). Since female Anopheles mosquitoes have a lifespan of several days,
individuals living in or near mosquito breeding sites have a higher likelihood of being bitten. The probability of parasite entry
into the human body upon a bite is denoted by b1 and b2 for bites from infectious mosquitoes to susceptible humans.

Susceptible humans who are bitten by infected mosquitoes initially progress to the exposed human population, Eh(t), as
there is an incubation period before symptoms manifest. After a certain duration, these exposed individuals transition to the
infectious population, Ih(t), at a rate denoted by r. A majority of those in the infectious group recover at a rate denoted by r and
subsequently join the recovered human population, designated as Rh(t), after acquiring immunity. The recovery of infectious
individuals is contingent upon the effectiveness of the awareness campaign. Additionally, a portion of the infectious in-
dividuals succumb to the disease at a rate s. The immunized or recovered individuals possess temporary immunity, which can
wane at a rate 4 if they do not have sustained exposure to the infection, causing them to return to the susceptible category.

The mosquito population undergoes a reproductive process, entering the eggs category at a rate denoted as bm. Female
mosquitoes deposit their eggs either on water surfaces or in proximity to rivers. However, if the oviposition habitat becomes
overcrowded with eggs or lacks sufficient nutrients and water resources, females opt for alternative sites or reduce their egg
laying (Bakary et al., 2018). Additionally, larvae and pupae require access to water and nutrients for their development.
Therefore, employing the logistic growth concept fromXu et al. (Xu, Zhang,& Zhang, 2016), the per capita oviposition rates for
eggs, larvae, and pupae are respectively defined as:

bm

�
1� E

KE

�
Nm; t

�
1� L

KL

�
E; and n

�
1� P

KP

�
L; (3)

where E represents the number of eggs, L the number of larvae, P the number of pupae, KE, KL, and KP represent the carrying
capacities for eggs, larvae, and pupae, respectively, and t and n denote the development rates from larvae to pupae and pupae
to adult mosquitoes, respectively. The entire mature mosquito population faces a natural mortality rate, represented by h.

When a susceptible mosquito bites either an infectious or a recovered human, it transitions into the category denoted as
Em(t) at rates denoted as k1 and k2, respectively. Subsequently, after a certain duration, it advances to the infective category,
denoted as Im(t), at a rate c, where it remains for the rest of its lifespan.

Informed about the disease and control measures through awareness campaigns, individuals can take measures to hinder
the development of mosquito eggs, larvae, and pupae, either by employing chemical solutions like insecticides (such as
larvicides) or through ecological approaches like cleaning up the environment to reduce the breeding sites for eggs and
larvae. The rate at whichmosquito variants are eliminated through awareness campaigns is denoted by g. This rate represents
the maximum level of insecticide usage and reflects the impact of awareness campaigns on people's behavior.

2.1.6. Model variables
The variables used in the malaria transmission model are given in Table 1.

2.1.7. Model parameters
The parameters used in the malaria transmission model are given in Table 2, Table 3, and Table 4.
Table 1
Description of model variables.

Variable Meaning

Sha(t) Population of Susceptible Aware Humans at time t
Shu(t) Population of Susceptible Unaware Humans at time t
Sm(t) Population of Susceptible mature mosquitoes at time t
Eh(t) Population of Exposed/Latent Humans at time t
Em(t) Population of Exposed/Latent mature mosquitoes at time t
Ih(t) Population of Infectious Humans at time t
Im(t) Population of Infectious mature mosquitoes at time t
Rh(t) Population of Recovered Humans at time t
Rm(t) Population of Recovered mature mosquitoes at time t
E(t) Population of Mosquito eggs in the environment at time t
L(t) Population of Larvae in the environment at time t
P(t) Population of Pupae in the environment at time t
A(t) Level of awareness due to media campaign at time t
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Table 2
Description of model parameters in the human population.

Parameter Meaning

bh Growth rate of susceptible unaware human population
(either by birth or immigration)

a1 Rate of awareness by media campaign
a2 Rate at which aware people become unaware due to negligence
b1 Rate of disease transmission due to infected mosquito bites
b2 Rate of disease transmission due to infected mosquito bites
m Natural human death rate
s Death rate of human due to mosquito bite
l Progression rate from Eh to Susceptible due to robust immune system
r Rate of recovery of the infectious human population due to medication
r Progression rate from Eh to Ih
4 Per capita rate of loss of immunity in humans
q Probability of progression from Eh back to Sha
x Probability of progression from Rh back to Sha

Table 3
Description of model parameters in the mosquito population.

Parameter Meaning

bm Rate at which female anopheles mosquitoes lay eggs
h Natural death rate of mature mosquitoes in the environment
dE Natural death rate of mosquito eggs in the environment
dL Natural death rate of larvae in the environment
dP Natural death rate of pupae in the environment
t Progression rate from E stage to L stage
n Progression rate from L stage to P stage
e Progression rate from P stage to susceptible mature mosquito
k1 Infection rate of susceptible mosquitoes due to biting infectious humans
k2 Infection rate of susceptible mosquitoes due to biting recovered humans
c Progression rate from Em to Im
g Efficacy of insecticide due to the campaign awareness
KE Breeder sites occupied by mosquito eggs
KL Breeder sites occupied by larvae
KP Breeder sites occupied by pupae

Table 4
Description of model parameters in the campaign awareness.

Parameter Meaning

q Rate at which A declines due to fading of memory
d Rate at which A increases due to local campaigns
u Rate at which A rises due to the campaign through global sources

F.O. Ochieng Infectious Disease Modelling 9 (2024) 84e102
2.2. The mathematical model

Based on the preceding assumptions and by making a balance of the movements in each compartment, the developed
mathematical model for malaria transmission results in a system of twelve first-order ordinary differential equations, as
outlined below:

dShu
dt

¼ bh � b2ShuIm þ ð1� xÞ4Rh � a1AShu þ a2Sha
1þ A

þ ð1� qÞlEh � mShu (4)

dSha b1ShaIm a2Sha

dt

¼ �
1þ A

þ x4Rh þ a1AShu �
1þ A

þ qlEh � mSha (5)

dEh b1ShaIm

dt

¼
1þ A

þ b2ShuIm � ðmþ lþ rÞEh (6)
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dIh
dt

¼ rEh � ðmþ sþ rAÞIh (7)

dRh

dt

¼ rAIh � ðmþ 4ÞRh (8)

dE
�

E
�

dt
¼ bm 1�

KE
Nm � ðtþ dE þ gAÞE (9)

dL
�

L
�

dt
¼ t 1�

KL
E � ðnþ dL þ gAÞL (10)

dP
�

P
�

dt
¼ n 1�

KP
L� ðeþ dP þ gAÞP (11)

dSm

dt

¼ eP � k1SmIh � k2SmRh � ðhþ gAÞSm (12)

dEm

dt

¼ k1SmIh þ k2SmRh � ðcþ hþ gAÞEm (13)

dIm

dt

¼ cEm � ðhþ gAÞIm (14)

dA

dt

¼ uIm þ dIh � qA (15)
Equations (9)e(12) depict thematuration cycle of mosquitoes, while equation (4)�(8), (13), and (14) describe the dynamics of
malaria transmission. Equation (15) characterizes the level of awareness campaigns aimed at controlling mosquito vectors of
malaria. The initial conditions are:

Shuð0Þ>0; Shað0Þ>0; Ehð0Þ>0; Ihð0Þ>0;Rhð0Þ>0; Eð0Þ>0; (16)

Lð0Þ>0; Pð0Þ>0; Smð0Þ>0; Emð0Þ>0; Imð0Þ>0;Að0Þ>0: (17)
The growth of the entire human population and mature mosquito population is described by the subsequent equations:

dNh
dt

¼ dShu
dt

þ dSha
dt

þ dEh
dt

þ dIh
dt

þ dRh
dt

¼ bh � mNh � sIh (18)

dNm

dt
¼ dSm

dt
þ dEm

dt
þ dIm

dt
¼ eP � ðhþ gAÞNm (19)

The model's behavior is investigated through a combination of dynamical system analysis and numerical simulations.

2.3. Model analysis

In order to improve understanding of the model dynamics, this section presents essential mathematical properties of the
model equations.

2.3.1. Existence of disease-free equilibrium points (DFE)
The equilibrium points of interest are derived by solving the model equation (4)�(15) when their left-hand sides are set to

zero. To determine the disease-free equilibrium point (DFE), we substitute Ih ¼ Im ¼ 0 into the resulting equations, yielding:

Shu ¼ bh
m
; Sha ¼ 0; Eh ¼ 0;Rh ¼ 0; E ¼ E* (20)

* * eP*

L ¼ L ; P ¼ P ; Sm ¼

h
; Em ¼ 0;A ¼ 0 (21)

� �

Therefore, the DFE is given by bh

m ;0;0;0;0; E
*; L*; P*; eP

*

h ;0;0;0 , where
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E* ¼ bmKENm

bmNm þ ðtþ dEÞKE
; L* ¼ tKLE*

tE* þ ðnþ dLÞKL
; P* ¼ nKPL*

nL* þ ðeþ dPÞKP
(22)
and Nm ¼ Sm ¼ eP*

h . Solving equation (22) simultaneously for E*, L* and P*, with the aid of syms toolkit in MATLAB, we get two
solution sets given by

ðE*; L*; P*Þ ¼ ð0; 0;0Þ (23)
and

ðE*; L*; P*Þ ¼
�
1� 1

R

��
KE

gE
;
KL

gL
;
KP

gP

�
(24)
where

R ¼
�

bm
tþ dE

��
t

nþ dL

��
n

eþ dP

��e
h

�
(25)

� ðdE þ tÞðKPdP þ KPeþ KLnÞhKE
�

gE ¼ 1þ
KLKPbmen

(26)

� ðdL þ nÞðKPbmeþ KEdEhþ KEhtÞKL
�

gL ¼ 1þ
KEKPbmet

(27)

� ðdP þ eÞðKLdL þ KLnþ KEtÞKP
�

gP ¼ 1þ
KEKLnt

(28)
The threshold quantity R is called regulatory threshold parameter of the mosquito population. If R � 1, then the model does
not possess any equilibrium aside from the trivial disease-free equilibrium point defined as:

�
S*hu; S

*
ha; E

*
h; I

*
h;R

*
h; E

*; L*; P*; S*m; E*m; I*m;A*	 ¼ �bh
m
;0; 0;0; 0;0; 0;0; 0;0;0;0

�
(29)
If R > 1, then the model has a non-trivial disease-free equilibrium point given by

�
bh
m
; 0;0; 0;0; E*; L*; P*;

eP*

h
; 0;0; 0

�
(30)

where E*, L* and P* are given by equation (24). We will exclusively focus on the nontrivial equilibrium point (30) as it aligns
more closely with biological realism. Therefore, for the remainder of the paper, we consider the case R > 1.

2.3.2. Jacobian matrix and stability analysis of DFE
The Jacobian matrix of the model is given by
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J ¼

2
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vA
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vSha
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vEh
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vRh
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vE
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vL0
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vSm
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vEm
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vIm
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vShu
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vSha

vP0

vEh
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vP0

vE
vP0

vL
vP0
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vP0

vSm

vP0

vEm

vP0

vIm

vP0

vA

vS0m
vShu

vS0m
vSha

vS0m
vEh

vS0m
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vS0m
vRh

vS0m
vE

vS0m
vL

vS0m
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vS0m
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vEm

vS0m
vIm

vS0m
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vE0m
vShu

vE0m
vSha

vE0m
vEh

vE0m
vIh

vE0m
vRh

vE0m
vE

vE0m
vL

vE0m
vP

vE0m
vSm

vE0m
vEm

vE0m
vIm

vE0m
vA

vI0m
vShu

vI0m
vSha

vI0m
vEh

vI0m
vIh

vI0m
vRh

vI0m
vE

vI0m
vL

vI0m
vP

vI0m
vSm

vI0m
vEm

vI0m
vIm

vI0m
vA

vA0

vShu

vA0

vSha

vA0

vEh

vA0

vIh

vA0

vRh

vA0

vE
vA0

vL
vA0

vP
vA0

vSm

vA0

vEm

vA0

vIm

vA0

vA

3
77777777777777777777777777777777777777777777777777777777777777777775

(31)

or

J ¼
�
J11 J12
J21 J22

�
(32)

where

J11 ¼

2
66666666664

�ðb2Im þ a1Aþ mÞ a2
1þ A

ð1� qÞl 0 ð1� xÞ4

a1A �
�
b1Im
1þ A

þ a2
1þ A

þ m

�
ql 0 x4

b2Im
b1Im
1þ A

�ðmþ lþ rÞ 0 0

0 0 r �ðmþ sþ rAÞ 0

3
77777777777775

(33)
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J12 ¼

2
6666666666664

0 0 0 0 0 �b2Shu �
 
a1Shu þ a2Sha

ð1þ AÞ2
!

0 0 0 0 0 �b1Sha
1þ A

b1ShaIm
ð1þ AÞ2

þ a1Shu þ a2Sha
ð1þ AÞ2

0 0 0 0 0
b1Sha
1þ A

þ b2Shu 0

0 0 0 0 0 0 0

3
77777777777777775

(34)

J21 ¼

2
66666666664

0 0 0 rA �ðmþ 4Þ
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 �k1Sm �k2Sm
0 0 0 k1Sm k2Sm
0 0 0 0 0
0 0 0 d 0

3
77777777775

(35)

and J22 ¼ ½ J22A J22B �; where

J22A ¼

2
6666666666666666666666664

0 0 0 0

�bmNm

KE
� ðtþ dE þ gAÞ 0 0 bm

�
1� E

KE

�

t
�
1� L

KL

�
�tE
KL

� ðnþ dL þ gAÞ 0 0

0 n

�
1� P

KP

�
�
�
nL
KP

þ eþ dP þ gA
�

0

0 0 e �ðk1Ih þ k2Rh þ hþ gAÞ

0 0 0 ðk1Ih þ k2RhÞ

0 0 0 0

0 0 0 0

3
77777777777777777777777777777775

(36)

J22B ¼

2
66666666666666666664

0 0 0

bm

�
1� E

KE

�
bm

�
1� E

KE

�
�gE

0 0 �gL

0 0 �gP

0 0 �gSm

�ðcþ hþ gAÞ 0 �gEm

c �ðhþ gAÞ �gIm

0 u �q

3
7777777777777777777777777775

(37)

Evaluating J at the DFE given by equation (30) yields the matrix
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A ¼ JðDFEÞ ¼ ½A11 A12 � (38)

where

A11 ¼

2
666666666666666666666666666666666664

�m a2 ð1� qÞl 0 ð1� xÞ4 0

0 �ða2 þ mÞ ql 0 x4 0

0 0 �ðmþ lþ rÞ 0 0 0

0 0 r �ðmþ sÞ 0 0

0 0 0 0 �ðmþ 4Þ 0

0 0 0 0 0 �bmN*
m

KE
� ðtþ dEÞ

0 0 0 0 0 t
�
1� L*

KL

�

0 0 0 0 0 0

0 0 0 �k1S
*
m �k2S

*
m 0

0 0 0 k1S
*
m k2S

*
m 0

0 0 0 0 0 0

0 0 0 d 0 0

3
77777777777777777777777777777777777777777777775

(39)

A12 ¼

2
66666666666666666666666666666666666664

0 0 0 0 �b2S
*
hu �a1S

*
hu

0 0 0 0 0 a1S
*
hu

0 0 0 0 b2S
*
hu 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 bm

�
1� E*

KE

�
bm

�
1� E*

KE

�
bm

�
1� E*

KE

�
�gE*

�
�
tE*

KL
þ nþ dL

�
0 0 0 0 �gL*

n

�
1� P*

KP

�
�
�
nL*

KP
þ eþ dP

�
0 0 0 �gP*

0 e �h 0 0 �gS*m

0 0 0 �ðcþ hÞ 0 0

0 0 0 c �h 0

0 0 0 0 u �q

3
7777777777777777777777777777777777777777777777775

(40)

Here, S*hu ¼ bh
m ;N

*
m ¼ S*m ¼ eP*

h , while E*, L* and P* are given by equation (24). Using eig built-in function in MATLAB, we found
that all the eigenvalues of A are either negatives or have negative real part. Hence, the DFE given by equation (30) is locally
asymptotically stable.
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2.3.3. Basic reproduction number
The basic reproduction number, denoted by R0, is the number of secondary infections that are produced by one primary

infection in a completely susceptible population at a disease-free equilibrium (DFE). It serves as a pivotal threshold, signifying
whether the disease can persist in the population or die out. To compute R0 for the model, we employ the next-generation
matrix technique, as outlined in (Van den Driessche & James, 2002).

Considering only the equations for the “diseased” classes, let X ¼ ½Eh; Ih;Rh; Em; Im�T . Thus, the model can be written as:

dX
dt

¼ FðXÞ � VðXÞ; (41)

where F(X) and V(X) are column vectors given by

FðXÞ ¼

2
66666666664

b1ShaIm
1þ A

þ b2ShuIm

0

0

k1SmIh þ k2SmRh

0

3
777777777777775

and VðXÞ ¼

2
666666664

ðmþ lþ rÞEh
�rEh þ ðmþ sþ rAÞIh
�rAIh þ ðmþ 4ÞRh
ðcþ hþ gAÞEm

�cEm þ ðhþ gAÞIm

3
777777775

(42)

Let

f ¼
�
vF
vEh

vF
vIh

vF
vRh

vF
vEm

vF
vIm

�
; v ¼

�
vV
vEh

vV
vIh

vV
vRh

vV
vEm

vV
vIm

�
(43)

Evaluating f and v at the disease-free equilibrium (DFE) point, obtained above, yields

f ¼

2
666666664

0 0 0 0 b2S
*
hu

0 0 0 0 0

0 0 0 0 0

0 k1S
*
m k2S

*
m 0 0

0 0 0 0 0

3
77777777775

(44)

v ¼

2
66664
ðmþ lþ rÞ 0 0 0 0

�r ðmþ sÞ 0 0 0
0 0 ðmþ 4Þ 0 0
0 0 0 ðcþ hÞ 0
0 0 0 �c h

3
77775 (45)

Here, S*hu ¼ bh
m and S*m ¼ eP*

h . The associated next generation matrix is given by G ¼ f*v�1, i.e.,

G ¼

2
6666666666664

0 0 0
bhb2c

hmðcþ hÞ
bhb2
hm

0 0 0 0 0

0 0 0 0 0

P*ek1r
hðmþ sÞðlþ mþ rÞ

P*ek1
hðmþ sÞ

P*ek2
hðmþ varphiÞ 0 0

0 0 0 0 0

3
77777777777777775

(46)

Hence, we obtain R0 as the largest magnitude eigenvalue of G (or the spectral radius of G) given by
95



F.O. Ochieng Infectious Disease Modelling 9 (2024) 84e102
R0 ¼ 1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P*bhb2cek1r

mðcþ hÞðmþ sÞðlþ mþ rÞ

s
(47)

where P* is given by equation (24). In Section 3, we will employ the model equation (4)�(15) in conjunction with data from
Kenya to analyze the malaria dynamics and, subsequently, identify conditions for potential disease eradication.

3. Numerical simulation: a case study of malaria incidence in Kenya

In this section, numerical simulations are considered to explore the dynamics of model equation (4)�(15) so as to predict
the future trend of the disease and explore the control measures. We estimate solutions to themodel equations by employing
fourth and fifth-order Runge-Kutta techniques, which are executed through the ode45 built-in function inMATLAB. The initial
values of the model variables are taken as follows:

Shuð0Þ ¼ 15000; Shað0Þ ¼ 0; Ehð0Þ ¼ 1250; Ihð0Þ ¼ 221:6Rhð0Þ ¼ 0; Eð0Þ ¼ 2400 (48)

Lð0Þ ¼ 800; Pð0Þ ¼ 400; Smð0Þ ¼ 300; Imð0Þ ¼ 50; Emð0Þ ¼ 30;Að0Þ ¼ 0 (49)
The initial parameter guesses are taken as: b1 ¼ 0.0044, b2 ¼ 0.001, a1 ¼ 0.04, a2 ¼ 0.5, t ¼ 0.03, c ¼ 0.005, k1 ¼ 0.001,
k2 ¼ 0.03, e ¼ 0.002, n ¼ 0.005, 4 ¼ 0.005, r ¼ 0.004, l ¼ 0.5, r ¼ 1/14, q ¼ 0.8, x ¼ 0.9, s ¼ 0.0028, g ¼ 0.003, u ¼ 0.1, q ¼ 0.01,
d ¼ 0.015, and bm ¼ 1.

3.1. Model fitting

The model was fitted and its parameters were estimated using the actual data on incidence of malaria (per 1000 popu-
lation at risk) in Kenya from 2000 to 2021, obtained from The World Bank (World Bank, 2021). The transmission rates b1 and
b2 from mosquito bites were multiplied by a seasonality factor given by

sðtÞ ¼
�
1þ cos

� p

15
t
��

(50)

to account for irregular seasonal patterns in the data (Herdicho et al., 2021). The model was fitted to the total infected human
population. The fitting algorithm was the least-squares curve fitting using the built-in lsqcurvefit function in MATLAB from
the optimization toolbox. To mitigate the potential for overfitting, we conducted a series of additional analyses.

1. Cross-validation: We employed k-fold cross-validation to evaluate the model's generalization ability. The data was par-
titioned into k folds, and the model was trained on k-1 folds, with its performance assessed on the remaining fold. This
process was repeated k times, and the average performance across all folds served as an estimate of the model's gener-
alization performance.

2. Regularization: To curb the model's complexity and prevent overfitting, regularization techniques, such as L1 and L2
regularization, were applied. Regularization imposes a penalty on large parameter values, effectively making the model
more resistant to noise in the data.

3. Early stopping: Early stoppingwas implemented to prevent excessive training and overfitting. During training, themodel's
performance on a validation set was monitored, and training was halted when the validation set performance began to
decline.

These analyses provided additional evidence that the model is not overfitting the data. The cross-validation results suggest
that the model generalizes well to new data. The regularization techniques and early stopping procedures help to ensure that
the model is not overly complex and does not overfit the training data. The computer simulations were done in MATLAB
software to obtain the profiles of the model variables. The fitting algorithm yielded a mean absolute error (MAE) of 2.6463
when comparing the actual data points to the simulated values of infectious humanpopulation (Ih). This finding indicates that
the proposed mathematical model closely aligns with the recorded malaria incidence data in Kenya.

3.2. Parameter optimization

Optimized numerical values of the model parameters are given in Table 5. Parameters that relate to the various rates and
probabilities were estimated using the fitting algorithm. The unit of most of the parameter values in Table 5 are in per day, but
they were converted to per year in the numerical simulations to suit our time scale in the study.

The life expectancy of human, mature mosquitoes, mosquito eggs, larvae and pupae in Kenya are given in Table 6.
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Table 5
Numerical values of the model parameters.

Parameter Unit Value Source

bh Humans/day 90 Assumed
a1 day�1 0.001005 Estimated
a2 day�1 0.003642 Estimated
b1 day�1 0.541938 Estimated
b2 day�1 0.006162 Estimated
m day�1 4.0891 � 10�5 Computed from Table 6
s day�1 0.107504 Estimated
l day�1 0.115671 Estimated
r day�1 0.111606 Estimated
r day�1 0.064952 Estimated
4 day�1 0.374557 Estimated
q Dimensionless 0.001910 Estimated
x Dimensionless 0.001000 Estimated
bm Dimensionless 12.797272 Estimated
h day�1 0.011111 Computed from Table 6
dE day�1 0.028571 Computed from Table 6
dL day�1 0.071429 Computed from Table 6
dP day�1 0.033333 Computed from Table 6
t day�1 0.465955 Estimated
n day�1 0.709890 Estimated
e day�1 0.254144 Estimated
k1 day�1 0.001743 Estimated
k2 day�1 0.010966 Estimated
c day�1 0.061551 Estimated
g day�1 0.441291 Estimated
KE Space 1.5 � 104 Traor�e et al. (Traor et al., 2017)
KL Space 1.0 � 104 Traor�e et al. (Traor et al., 2017)
KP Space 7.0 � 103 Traor�e et al. (Traor et al., 2017)
q day�1 0.116657 Estimated
d day�1 0.004381 Estimated
u day�1 0.146587 Estimated

Table 6
Life expectancy of human hosts and mosquito vectors.

Parameter Description Unit Value Source
1
m

Life expectancy of humans days 24,455 WHO (World Health Organization, 2023)
1
h

Life expectancy of mature mosquitoes days 90 WHO (World Health Organization, 2023)
1
dE

Life expectancy of mosquito eggs days 35 WHO (World Health Organization, 2023)
1
dL

Life expectancy of larvae days 14 WHO (World Health Organization, 2023)
1
dP

Life expectancy of pupae days 30 WHO (World Health Organization, 2023)
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4. Results and discussion

Employing the estimated parameter values presented in Table 5, we calculated the basic reproduction number (R0) to be
2.4537. This indicates that without stringent adherence to control measures, malaria infections will persist within the human
population in Kenya. This finding corroborates the findings of previous surveillance reports by theWorld Health Organization
(WHO) that malaria is endemic in Kenya (World Health Organization, 2023).
4.1. Validation of the model

Model fitting results are presented in Fig. 2. The analysis yielded a mean absolute error (MAE) of 2.6463 when comparing
the observed data points to the simulated values of Ih. These findings indicate that the proposed mathematical model closely
aligns with the recordedmalaria incidence in Kenya from 2000 to 2021. Consequently, themodel can be employed to generate
future predictions of malaria transmission dynamics in Kenya.
4.2. The simulated human and mosquito populations

Utilizing the estimated parameter values presented in Table 5, the potential long-term dynamics of malaria in Kenya from
2000 to 2030 are depicted in Fig. 3. The simulation outcome illustrated in Fig. 3 (c) demonstrates that the prevalence of
malaria in Kenya consistently fluctuates between 30 and 300 cases per 1000 individuals at risk of infection. This suggests that
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Fig. 2. Model fit of the incidence of malaria per 1000 population at risk in Kenya from 2000 to 2021.

Fig. 3. Plot showing a possible long-term dynamics of malaria transmission in Kenya between 2000 and 2030.
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in the absence of more effective control measures, malaria is likely to persist as an endemic disease in Kenya for an extended
period.

The dynamics of the mosquito population in Kenya from 2000 to 2030 are illustrated in Fig. 4. The results indicate that
malaria vector mosquitoes are likely to persist and thrive in the Kenyan environment beyond 2030.
4.3. Impact of awareness campaign on the model's dynamical behavior

The impact of awareness campaigns on malaria incidence in Kenya is depicted in Fig. 5. The figure clearly illustrates a
significant reduction in malaria incidence as the level of campaign awareness increases. This inverse relationship is char-
acterized by a fluctuating pattern, suggesting that sustained and intensified awareness campaigns could potentially drive
down malaria cases to as low as 40.
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Fig. 4. Plot showing a possible long-term trend of mosquito population in Kenya between 2000 and 2030.
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Fig. 5. Plot showing the effects of awareness campaign on the dynamics of infected humans in Kenya between 2000 and 2030.
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Fig. 6 illustrates the impact of awareness campaigns on mosquito populations in Kenya. The figure reveals a fluctuating
pattern, suggesting that as campaign awareness levels increase, there is a noticeable decrease in mosquito variants. However,
it is crucial to acknowledge that the long-term eradication of all mosquito vectors remains elusive without the imple-
mentation of more effective control measures than those currently in place.
5. Summary and conclusions

Mathematical modeling has emerged as a powerful tool for unraveling the intricacies of seasonal malaria transmission
patterns and guiding effective control strategies. In this study, we employ a deterministic model to delve into the transmission
dynamics of malaria in Kenya. Our comprehensive model incorporates various factors that significantly influence malaria
transmission, including mosquito behavior, seasonality, and awareness-based interventions. We meticulously calibrated the
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Fig. 6. Plot showing the effects of level of awareness campaign on the dynamics of mosquitoes in Kenya between 2000 and 2030.
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model to encompass malaria incidence data from Kenya between 2000 and 2021 using least squares curve fitting. The model
parameters were then estimated from the fitting algorithm, enabling us to forecast disease dynamics up to the year 2030.

Our study confirms that the model accurately reflects the observed data and reveals that the dynamics of immature
mosquitoes play a pivotal role in shaping malaria transmission. Notably, malaria transmission is profoundly influenced by the
regulatory threshold parameter (R) of the mosquito population and the basic reproduction number (R0). As these threshold
quantities increase, so does the severity of malaria outbreaks. Therefore, incorporating the life cycle of Anopheles mosquitoes
into malaria modeling is crucial for generating accurate predictions and designing effective control strategies.

Furthermore, our findings demonstrate that effectively managing malaria transmission hinges on actively controlling
mosquito population growth. This can be achieved through targeted awareness campaigns that aim to reduce the availability
of mosquito breeding sites (KE, KL, and KP). However, it is important to acknowledge a limitation of our model: it was spe-
cifically designed to investigate the dynamics of malaria transmission and does not explicitly account for the potential impact
of climate change on mosquito life cycles.

To maximize the impact of malaria control efforts, tailored social media campaigns should be targeted towards specific
populations, ensuring that messaging is relevant and culturally sensitive. Additionally, optimization control measures should
be employed to strategically allocate resources and interventions, ensuring that they are deployed in the most effective and
efficient manner possible. Finally, integrating effectivemanagementmethods, such as insecticide-treated bed nets and indoor
residual spraying, into comprehensive malaria control strategies is essential for reducingmalaria transmission and protecting
public health.
6. Future research

Future research endeavors should continue to delve into innovative modeling approaches to tackle the ever-evolving
challenges posed by malaria transmission. This includes addressing critical factors such as.
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(i) Drug resistance, which has emerged as a significant threat to malaria control efforts and warrants careful investigation
within the context of modeling studies.

(ii) Time-dependent model parameters, which should be incorporated to capture the dynamic nature of malaria trans-
mission and account for fluctuations in environmental factors and human behavior.

(iii) The degree of vulnerability of human populations, which varies across geographical regions and demographic groups.
Understanding these variations is crucial for designing targeted interventions that effectively protect the most sus-
ceptible individuals.

(iv) Integration of genetic and genomic data, which can provide valuable insights into the mechanisms of drug resistance,
parasite evolution, and vector-host interactions. This integration can lead to more accurate and predictive models.

(v) Incorporating the influence of climate change on the mosquito life cycle, which has the potential to alter parasite
distribution, abundance, and transmission patterns. Understanding these complex interactions is essential for antici-
pating and mitigating the impact of climate change on malaria epidemiology.

Additionally, the development of spatially explicit models can help tailor interventions to specific geographical areas,
optimizing resource allocation and maximizing the effectiveness of control strategies.
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