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Abstract
Relationships between sex-specific floral traits and endogenous phytohormones as-
sociated with altitude are unknown particularly in dioecious trees. We thus examined 
the relationships between floral morphology or biomass and phytohormones in male 
and female flowers of dioecious Populus cathayana populations along an altitudinal 
gradient (1,500, 1,600, and 1,700 m above sea level) in the Xiaowutai Nature Reserve 
in northern China. The female and male flowers had the most stigma and pollen at 
1,700 m, the largest ovaries and least pollen at 1,500 m, and the smallest ovaries and 
greater numbers of anthers at 1,600 m altitude. The single-flower biomass was signifi-
cantly greater in males than in females at 1,600 or 1,700 m, but the opposite was true 
at 1,500 m altitude. The biomass percentages were significantly higher in anthers than 
in stigmas at each altitude, while significantly greater gibberellin A3 (GA3), zeatin ribo-
side (ZR), indoleacetic acid (IAA), and abscisic acid (ABA) concentrations were found in 
female than in male flowers. Moreover, most flower morphological traits positively 
correlated with IAA in females but not in males. The biomass of a single flower was 
significantly positively correlated with ABA or IAA in males but negatively with ZR in 
females and was not correlated with GA3 in both females and males. Our results dem-
onstrate a distinct sexual adaptation between male and female flowers and that phy-
tohormones are closely related to the size, shape, and biomass allocation in the 
pollination or fertilization organs of dioecious plants, although with variations in 
altitude.

K E Y W O R D S

abscisic acid, female and male flowers, floral morphology, gibberellin A3, indoleacetic acid, 
zeatin riboside

1  | INTRODUCTION

As the defining organ of the angiosperms, the flower performs a repro-
ductive function and exhibits relatively high variability in response to 

environmental changes (Espírito-Santo et al., 2003; Humeau, Pailler, & 
Thompson, 2000; Malaspina et al., 2007). For example, calyx lengths 
vary significantly along a latitudinal transect (Olsson & Ågren, 2002), 
and petal size and ovary weight greatly increase under higher soil 
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temperatures (Poerwanto & Inoue, 1990). Furthermore, the staminal 
column and standard petal lengths markedly decrease with increased 
UV-B radiation (Koti, Reddy, Reddy, Kakani, & Zhao, 2005). These find-
ings indicate that floral morphology is sensitive to abiotic factors.

Altitude is an important abiotic factor associated with tempera-
ture, precipitation, light, and soil physicochemical properties (Körner, 
2007), and studies have shown that floral characteristics are signifi-
cantly affected by altitude (Bodson & Outlaw, 1985; Nagano et al., 
2014). For instance, Duan, He, and Liu (2005) demonstrated that the 
floral display in Gentiana straminea increased with increasing altitude, 
and Baonza and Malo (1997) found that the floral size of Cytisus sco-
parius showed a clinal variation with larger flowers at higher altitudes 
ranging from 700 m to 1,500 m. Kudo and Molau (1999) observed that 
the floral size (as well as anthesis) in Astragalus alpinus was significantly 
greater in higher population. In contrast, Nagano et al. (2014) found 
that the floral size of Campanula punctata var. hondoensis decreased 
with increasing altitude. These inconsistent variations in the floral 
characteristics of different species at different altitudes may be re-
lated to changes in biomass allocation (Li, Xu, Zang, Korpelainen, & 
Berninger, 2007; Pickering, 2000; Zhao, Du, Zhou, Wang, & Ren, 2006) 
as plants may allocate more carbon to reproductive organs (i.e., the 
flower; Fabbro & Körner, 2004; Hautier, Randin, Stöcklin, & Guisan, 
2009) or to flower physiological traits at higher altitudes (Chandler, 
2011; van Doorn & van Meeteren, 2003).

On the other hand, endogenous phytohormones or plant growth 
regulators (e.g., abscisic acid [ABA], auxins, cytokinins) are able to 
regulate floral initiation and development, and changing the level 
of any phytohormone could affect floral formation during the tran-
sition from vegetative to reproductive growth (Chandler, 2011; Law, 
Lebel-Hardenack, & Grant, 2002; van Doorn & van Meeteren, 2003; 
Villacorta, Fernández, Prinsen, Bernad, & Revilla, 2008). For example, 
ABA has a molecular effect on downstream events in the autono-
mous floral pathway and, consequently, on the transition to flowering 
(Razem, El-Kereamy, Abrams, & Hill, 2006; Su, Huang, Shen, & Chen, 
2002); thus, ABA concentrations are dramatically increased during the 
flower development (Domagalska, Sarnowska, Nagy, & Davis, 2010). 
Gibberellic acid, or gibberellin A3 (GA3), plays an essential role in the 
development of floral organs (Goto & Pharis, 1999; Sawhney, 1983) 
and increases the numbers of petal, stamens, carpels and locules 
(Carrera, Ruiz-Rivero, Peres, Atares, & Garcia-Martinez, 2012), and 
flowers (Chen, Henny, McConnell, & Caldwell, 2003). The variation in 
indoleacetic acid (IAA) correlates with early floral initiation (Ding et al., 
1999), and the application of IAA may induce flowering (Brcko et al., 
2012; Wang & Guo, 2015). As a high activity of the cytokinin, zeatin 
riboside (ZR) can promote cell division, stimulate floral formation, 
and prevent leaf senescence by activating gene expression and meta-
bolic activity (Galoch, Czaplewska, Burkacka-Łaukajtys, & Kopcewicz, 
2002; Singh, Palni, & Letham, 1992; Subbaraj, Funnell, & Woolley, 
2010), and its concentrations are significantly increased in the leaf, 
leaf exudate, and shoot apical meristem during early floral transition 
events (Corbesier et al., 2003). However, the function of these phyto-
hormones in regulating floral formation in dioecious plants is less well 
known, particularly along an altitudinal gradient.

Dioecious plants constitute 6% of the total angiosperm species 
worldwide and play important roles in maintaining the sustainability 
of terrestrial ecosystems (Renner & Ricklefs, 1995). In general, more 
and larger flowers are produced in the male plants of Diospyros pen-
tamera, Litsea leefeana, and Neolitsea dealbata than in female plants 
(House, 1992). Meanwhile, the male plants of Borderea pyrenaica also 
display significantly greater variation in flower size during flowering 
(Thomas & Lafrankie, 1993). In contrast, female plants allocate more 
biomass to growth during the early flowering period than male plants 
(Delph, 1990; Gross & Soule, 1981; Korpelainen, 1992) and also con-
tribute more carbon to floral performance (Laporte & Delph, 1996). 
Furthermore, the male and female plants of dioecious trees exhibit sig-
nificant differences in sex ratio, physiological processes, or antioxidant 
defense enzymes under changes in numerous environmental condi-
tions, including altitude elevation (Lei, Chen, Jiang, Yu, & Duan, 2017; 
Li et al., 2007), increased temperature (Xu et al., 2008), elevated CO2 
concentration (Wang & Griffin, 2003; Zhao, Xu, Zhang, Korpelainen, 
& Li, 2011), enhanced UV-B radiation (Chen et al., 2016; Xu et al., 
2010), nitrogen status (Chen, Dong, & Duan, 2014; Li, Dong, Guo, & 
Zhao, 2015; Li & Korpelainen, 2015), and competition (Chen, Duan, 
Wang, Korpelainen, & Li, 2014), but limited information is available on 
how sexual differences in floral traits in woody species are affected 
by altitude.

Populus cathayana Rehd., a dioecious woody tree, is widely dis-
tributed in northern, central, and southwestern China, including 
mountainous areas at altitudes from 1,000 to 3,000 m above sea level 
(a.s.l.). Our previous studies addressed the different growth and floral 
performance responses to elevated temperatures and UV-B radiation 
(Xu et al., 2008, 2010) and relationships among twig components be-
tween male and female P. cathayana saplings (Yang, He, Xu, & Yang, 
2015). To further address whether sexual differences in the floral 
traits of P. cathayana could vary with altitude, this study aimed to de-
termine (1) how sex-related differences in the morphology, biomass, 
and phytohormones of flowers could respond to altitude changes and 
(2) what the possible intrinsic relationships between morphological 
traits or biomass and phytohormone levels could be in male and fe-
male flowers. The expected results could provide insights into the 
adaptive physiological responses of flowers or reproductive organs to 
variations in altitude and the contribution of phytohormones to the 
morphological traits and biomass production of flowers in dioecious 
trees.

2  | MATERIALS AND METHODS

2.1 | Study site

The study site is located in the Xijin River Valley of Xiaowutai 
Mountain Nature Reserve in Hebei, China (39°50′–40°07′N, 
114°47′–115°30′E; 1,142–2,882 m a.s.l.). This site area is character-
ized by a warm-temperate continental monsoon climate with mean 
annual precipitation of 528 mm and a mean annual temperature of 
3.5°C. The major soil types are Alfisols, Aridisols, and Inceptisols 
(USDA soil taxonomy). There are five distinct forest zones along the 
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western slope of Xiaowutai Mountain: the deciduous shrub zone, the 
deciduous broad-leaved forest zone, the mixed coniferous and broad-
leaved forest zone, the conifer forest zone, and the subalpine meadow 
zone (Liu, Zheng, & Fang, 2004). The forest vegetation is dominated 
by species in the Acer, Birch, Cerasus, Corylus, Quercus, Populus, Tilia, or 
Ulmus genus. The natural secondary P. cathayana population is gener-
ally distributed throughout the deciduous broad-leaved forest zone 
(1,400–1,800 m a.s.l.), but it has been gradually replaced by Betula 
platyphylla above 1,700 m a.s.l. (Yu, Liu, & Cui, 2002).

2.2 | Plant sampling

Five sampling sites were established at each altitude of 1,500, 1,600, 
and 1,700 m a.s.l. along the Xijin River Valley where the natural P. ca-
thayana population density is relatively high over the northern China, 
and in the middle of April (the beginning of the P. cathayana flowering 
season) 2013, 10 (five males and five females) mature trees of simi-
lar size were randomly selected at each sampling site. The selected 
trees were (1) healthy with full-grown crowns reaching the average 
tree crown height (canopy); (2) located away from the forest edge on 
a ridge or next to a previously sampled tree; (3) more than 30 years 
old, approximately 20–25 m high, and 80–100 m apart. During the 
first 5–7 days after anthesis, five male or female inflorescences (in the 
same flowering period) on the south or sunny side of trees were ran-
domly chosen from the outer surface of the crown for the measure-
ment of floral traits.

2.3 | Measurements of floral morphological traits

The inflorescence length was measured with a micrometer, and the 
number of flowers per inflorescence was then counted before the 
flowers were removed from the inflorescence. Five randomly selected 
male or female flowers (one middle, two terminal, and two basolateral 
flowers) per inflorescence were then dissected with the aid of a ste-
reoscope (Leica, M205C; Leica Microsystems, Wetzlar, Germany), and 
the pedicel, sepal, floral disk, anther, and filament (or pedicel sepal, 
floral disk, stigma, and ovary) of each flower were then dissected 
under a stereoscopic microscope equipped with a charge-coupled 
device (CCD) camera (MoticamPro285A; Motic, Xiamen, China). The 
number of anthers per flower, pollen grains per anther, and ovules per 
ovary was recorded, and the sizes (length, width, or diameter) of the 
individual parts (pedicel, sepal, ovary, and stigma) were measured to 
the nearest 0.01 mm using an ocular reticle.

To calculate the number of pollen grains, 50 randomly selected un-
dehisced anthers (one anther per flower) were soaked in 1.0 mol HCl 
solution for 1 hr at 60°C to dispose of the anther wall, and 10.0 ml 
0.9% NaCl solution was added after grinding (method modified from 
Guo, Wang, and Weber (2013)). A 2.0-μl suspension was plated on a 
hemocytometer (with a blood-cell counting chamber with 400 small, 
square grids in a central 1.0-mm square), and the pollen grains per 
anther was calculated. After dissecting the ovary on a slide, ovules 
were counted under the above-mentioned stereoscopic microscope 
equipped with a CCD camera.

2.4 | Measurement of flower biomass traits

The biomass production of the male and female flowers measured for 
their morphological traits was recorded. The samples were oven-dried 
at 70°C for 48 hr to a constant weight. The biomass of the individual 
anther, stigma, or flower was then determined, and the weight of the 
anthers or stigma per single flower was accordingly calculated as a 
percentage.

2.5 | Phytohormone measurements

The five male or female inflorescences measured for their morpho-
logical traits were also used to measure the concentrations of ABA, 
GA3, IAA, and ZR. The samples were homogenized in liquid nitrogen 
and extracted in cold 80% (v/v) methanol with butylated hydroxytolu-
ene (1 mmol/L) overnight at 4°C. The extracts were collected after 
centrifugation at 10,000 g (4°C) for 20 min, and the extracts were 
passed through a C18 Sep-Pak cartridge (Waters, Milford, MA) and 
dried in N2 to prepare for an enzyme-linked immune absorbent assay 
according to the method of Yang, Xu, Wang, and Jia (2001). Prior to 
the phytohormone measurements and after the removal of their floral 
axis and pedicels, the inflorescences were wrapped with aluminum foil 
and immersed in liquid nitrogen. The phytohormone measurements 
were performed in the Key Laboratory of Molecular Plant Pathology, 
Ministry of Agriculture, Beijing, China.

2.6 | Statistical analysis

Data (means ± SE, n = 5) analyses were performed using SPSS 17.0 
(SPSS Inc., Chicago, IL, USA). One-way ANOVA was used to deter-
mine differences in the flower morphological traits among altitudes, 
and Duncan’s multiple range tests were employed to detect significant 
differences among means at p ≤ .05. Two-way ANOVAs were used to 
separate the effects of sex, altitude, and their combination. Pearson’s 
correlation coefficients were calculated to determine the relationships 
between the biomass and phytohormone concentrations of male or 
female flowers, and a simple linear regression was used to examine 
these relationships.

3  | RESULTS

3.1 | Variations in the morphological traits of female 
and male flowers

Almost all tested flower morphological traits were significantly af-
fected by altitude (Table 1, Figure 1). Among the female flowers, the 
number of flowers per inflorescence and stigma width increased with 
altitude elevation, while flowers at 1,600 m had the lowest values for 
inflorescence length, pedicel length, sepal size, ovary diameter, and 
number of ovules per ovary compared to their counterparts at other 
two altitudes (Table 1). Among the male flowers, the sepal size, single-
anther biomass, and number of pollen grains per anther significantly 
increased with altitude (p < .05), and plants at 1,700 m had the highest 
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values for these traits (Table 1). However, no significant effects of 
altitude were observed on the number of male flowers per inflores-
cence (p = .17). In addition, compared with other altitudes, male plants 
at 1,600 m had the shortest inflorescence length, the longest pedicel, 
and the greatest number of anthers per flower (Table 1). Moreover, 
compared with the females, male flowers had a significantly larger 
sepal size at the same altitude, a longer pedicel length at 1,600 or 
1,700 m, and a higher number of flowers per inflorescence at 1,500 m 
(p < .05; Table 1).

3.2 | Variations in single-flower biomass and its 
allocation in the two sexes

Significantly greater single-flower biomass was observed among al-
titudes in the order of 1,500 m > 1,700 m ≈ 1,600 m for the female 
flowers, whereas the order was 1,700 m ≈ 1,600 m > 1,500 m for 
the male flowers (Figure 2a). Moreover, males had greater single-
flower biomass than females at altitude of 1,600 or 1,700 m but 
less biomass at 1,500 (p < .05). In addition, a significantly greater 

stigma biomass percentage was observed among altitudes in the 
order of 1,600 m > 1,700 m > 1,500 m, whereas the biomass per-
centage of the anthers was similar among altitudes (Figure 2b). 
The anther biomass percentage was always significantly higher 
than the stigma biomass percentage at all altitudes (p < .001; 
Figure 2b).

3.3 | Variations in flower phytohormone 
concentrations in the two sexes

For both male and female flowers, ABA concentrations were 
significantly increased with altitude (p < .001) in the order of 
1,700 m > 1,600 m > 1,500 m (Figure 3a), while flowers at 
1,600 m had the highest GA3 and ZR concentrations compared 
to the other two altitudes (Figure 3b,d). As a general rule, there 
were sex-related differences in the tested phytohormones as the 
concentrations of ABA, GA3, IAA, and ZR were significantly higher 
(p < .001) in female than in male flowers at each of the three alti-
tudes (Figure 3).

F IGURE  1 The morphological and 
anatomical structures of male and female 
flowers of Populus cathayana at three 
altitudes (1,500, 1,600, and 1,700 m 
a.s.l.) in the Xiaowutai Nature Reserve, 
northern China (the steel ruler beside the 
photographs is just for the scale indication 
as structures had been actually measured 
by a micrometer) Note: a, c, e for female 
flowers at 1500 m, 1600 m and 1700 m, 
respectively; b, d, f for male flowers at 
1500 m, 1600 m and 1700 m, respectively
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3.4 | Relationships between morphological traits and 
phytohormone concentrations in the two sexes

In female flowers, significantly positive correlations were observed 
between ABA concentrations and the sepal size or the number of 
ovules per ovary as well as between IAA concentrations and the pedi-
cel length, sepal size, ovary length, ovary diameter, or the number of 
ovules per ovary (bold values in Table 2). In contrast, significantly 
negative correlations were exhibited between ZR concentrations 
and the pedicel length or ovary length, and no correlations were ob-
served between GA3 and any of the female flower trait examined 
(Table 2). In male flowers, significantly positive correlations were 
found between ABA concentrations and sepal size, between GA3 
concentrations and pedicel length, and between ZR concentrations 
and the pedicel length or number of anthers per flower (bold values 

in Table 3). However, no correlations were observed between IAA 
and any of the tested female flower traits (Table 3). In addition, GA3 
significantly positively correlated with ZR in both female and male 
flowers (Tables 2 and 3). In female flowers, ABA significantly posi-
tively correlated with IAA (Table 2) but significantly negatively cor-
related with GA3 or ZR in male flowers (Table 3).

3.5 | Relationships between flower biomass and 
phytohormone concentrations in the two sexes

The biomass of a single flower was significantly positively related 
to concentrations of ABA and IAA in male but not in female flowers 
(p < .01; Figure 4a or c), while was negatively related to ZR concentra-
tions in female but not in male flowers (p < .05; Figure 4d). In addi-
tion, no relationships were observed between the biomass of a single 

F IGURE  2  (a) Single flower biomass and (b) pollination organ (stigma or anther) percentage biomass in male and female flowers of Populus 
cathayana at three altitude sites (1,500, 1,600, and 1,700 m a.s.l.) in the Xiaowutai Nature Reserve, northern China. Different letters above the 
bars following the data (means ± SE, n = 5) denote significant differences between altitudes among females (a, b, c) and males (α, β, γ) or between 
sexes for the same altitude (x, y), according to Duncan’s multiple range test at p ≤ .05. The significance values of the factorial analysis (ANOVA) 
for pS, sex effect; pA, altitude effect; and pS&A, sex and altitude interaction effects
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flower and GA3 concentrations in the flowers of both sexes (p > .05; 
Figure 4b).

4  | DISCUSSION

In the present study, the variations in floral morphology between male 
and female P. cathayana plants were quite different along an altitudi-
nal gradient (Tables 1 and 2, Figure 1). For example, the number of 
flowers per P. cathayana inflorescence significantly increased with 
increasing altitude in female but not in male plants. The longest inflo-
rescences were observed on female plants at an altitude of 1,700 m 
but in male plants at 1,500 m, while the pedicel and sepal sizes were 
largest in female but smallest in male plants at 1,500 m. These results 
indicated that there were no consistent responses to an increase in 
altitude in floral morphology between sexes (Table 1, Figure 1). As a 
general rule, the sexual dimorphism in floral display is a consequence 
of selection for sex-specific optimal strategies and resource allocation 
(Delph, 1990; Obeso, 2002; Pickering & Hill, 2002). We assume that 
a longer inflorescence and more flowers would be beneficial to high-
altitude female plants for receiving more pollen in wind-pollinated 
plants (such as Populus spp.). Similar results were reported in the wind-
pollinated plant Acetosella vulgaris that females had larger flower and 
more flowers per inflorescence than males in the Kosciuszko alpine 
region of Australia (Pickering, Kirkwood, & Arthur, 2003). However, 
few studies have summarized the sex-specific responses of floral 
morphology to altitude (except for Pickering, 2000; Van Drunen & 
Dorken, 2014).

On the one hand, compared with the females at the single-flower 
level, male plants produced both significantly greater flower biomass 
at higher altitudes (1,600 and 1,700 m) and pollination organ (anthers) 
biomass percentage at all three altitudes (Figure 2). These results 
suggested that male P. cathayana plants at a higher altitude invest 
more mass in flower and allocate more biomass to the anthers than 
the females, and these may be beneficial to enhance pollen dispersal. 

Also compared with females as a wind-pollinated plant, most and/
or more male P. cathayana plants are distributed at higher-altitude 
sites (Wang, Xu, Li, Yang, & Yuan, 2011), which would benefit their 
exposure to higher wind speeds and longer pollen dispersal distances 
(Hesse & Pannell, 2011; Van Drunen & Dorken, 2014). Consequently, 
maintaining an adequate quantity of pollen could improve the rate of 
successful fertilization. Similar results from Dombeya ciliata showed 
that the flower size was larger in males than in females at a higher 
altitude (Humeau et al., 2000). On the other hand, the female plants 
had a greater single-flower biomass at 1,500 m altitude than at the 
two other higher altitudes (Figure 2a), indicating that a female plant at 
a lower altitude might invest more resources in the development of re-
productive organs or have a higher biomass accumulation. Consistent 
with this phenomenon, male plants at the 1,500 m altitude had a rela-
tively small amount of pollen than at a higher altitude (Figure 2a). As a 
result, a well-developed reproductive organ in a female flower would 
capture more pollen at a lower altitude. These results are consistent 
with the view that the sexual allocation in wind-pollinated plants in-
volves an evolutionary strategy for promoting effective pollen disper-
sal and capture (Burd & Allen, 1988; Friedman & Barrett, 2009).

Meanwhile, it is noteworthy that P. cathayana plants at 1,600 m 
exhibited obvious changes in floral morphology when compared with 
their counterparts at either the lower 1,500 m or higher 1,700 m al-
titude (Table 1, Figure 1). At this middle-altitude site, the plants pre-
sented the smallest inflorescence length, female flower, and ovule 
number per ovary but the highest stigma biomass percentage and 
number of anthers per flower (Table 1, Figure 2b). This phenomenon 
suggested that other abiotic or biotic environment factors, such as 
population density or intraspecific competition, could also affect the 
morphological development of flowers. For example, studies have re-
ported that population density could affect plant reproductive out-
puts and survival by increasing resource competition (Knight, 2003; 
Oleques & de Avila, 2014), and plants in high-density populations have 
fewer ovules per flower and smaller inflorescences (Weber & Kolb, 
2011). At the same experimental sites, our previous work showed that 

TABLE  3 Correlation coefficients among morphological traits and phytohormone concentrations (ng/g FW) in male flowers of Populus 
cathayana

Pedicel length Sepal size
No. of anthers per 
flower

No. of pollen grains per 
anther GA3 ZR IAA ABA

Pedicel length — .212 .891** −.114 .759** .852** −.469 −.271

Sepal size — .522* .554* −.303 −.084 .044 .546*

No. of anthers per 
flower

— .109 .464 .633* −.465 .030

No. of pollen grains per 
anther

— −.479 −.320 .247 .469

GA3 — .902** −.214 .679**

ZR — −.283 −.656**

IAA — −.050

ABA —

ABA, abscisic acid; GA3, gibberellin A3; IAA, indoleacetic acid; ZR, zeatin riboside. The bold values is mentioned in the text.
*.01 < p ≤ .05; **.001 < p ≤ .01.
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P. cathayana plants could best reproduce and survive at the middle 
altitude of 1,600 m (Wang et al., 2011), resulting in a higher popula-
tion density. We thus assumed that these distinctively morphological 
traits in flowers at this altitude might result from adaptive evolution to 
achieve maximal reproductive efficiency under high-intensity compe-
tition in the population.

Moreover, consistent with the observed morphological changes, 
the concentrations of ABA, GA3, IAA, and ZR in the male and female 
flowers of P. cathayana plants varied with altitude, and different re-
sponse patterns were presented between the two sexes (Figure 3). 
These results suggested that intrinsic relationships between floral mor-
phology and endogenous phytohormones could lead to sex-specific 
morphological changes in response to altitude. As low-molecular 
mass-signaling substances in plants, phytohormones (e.g., ABA, GA3, 
IAA, and ZR) are known to function in intercellular regulation in mul-
ticelled organisms (Sonnewald, 2013). Studies have reported that the 
levels of these endogenous hormones in flower tissues vary during 
flowering (Chen, Du, Zhao, & Zhou, 1996; Villacorta et al., 2008) and 
are related to the initiation and development of floral organs (Arrom 
& Munné-Bosch, 2012; Meilan, 1997). Consistent with these findings, 
morphological traits were closely related to phytohormone contents 
in both male and female flowers (e.g., between sepal size and ABA or 
between pedicel length and ZR, see Tables 2 and 3), which indirectly 
confirmed the role of phytohormones in flower development.

Sexual differences were also detected between phytohormones 
and biomass of flowers or a number of morphological traits (Tables 2 
and 3, Figure 4). Our results indicated that phytohormones might be 
involved in the formation of male or female flowers, and changes in 
the concentration of these phytohormones would significantly af-
fect the development of flower organs. Indeed, sexual organogenesis 
in dioecious plants is realized through the action of genes that use 

phytohormones as modulators to initiate the development of flower’s 
generative structures (Gerashchenkov & Rozhnova, 2013; Khryanin, 
2002). Hence, sexual differences in the phytohormone concentra-
tions as well as the relationships among phytohormones, morpholog-
ical traits, and flower biomass were observed in this study (Figure 3, 
Tables 2 and 3). Similar results were reported in plant Populus tomen-
tosa that genes related to phytohormone synthesis were significantly 
differentially expressed between the sexes and resulted in quite differ-
ent endogenous GA, IAA, ABA, and CT (cytokinins) contents during all 
of floral development (Song et al., 2013).

In conclusion, as a general rule, our results demonstrated that 
morphological traits, biomass allocation, and phytohormone levels of 
the flowers of both male and female P. cathayana plants significantly 
differed with altitude. Along the investigated altitudinal gradient from 
1,500 m to 1,700 m, the floral morphology of dioecious plants exhib-
ited sex-specific differentiation, such as the largest stigma and greater 
pollen at the highest altitude, the smallest ovaries and higher number 
of anthers at the middle altitude, and the largest ovaries and lowest 
quantity of pollen at the low altitude. Additionally, the phytohormone 
levels in male and female flowers varied with altitude and were closely 
related to flower morphology, resulting in different morphological re-
sponses of flower organs to altitude between sexes. Our findings thus 
provided direct evidence of reproductive adaptation to altitude by di-
oecious plants.
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F IGURE  4 Relationships between 
single-flower biomass and (a) abscisic 
acid (ABA), (b) gibberellin A3 (GA3), (c) 
indoleacetic acid (IAA), or (d) zeatin riboside 
(ZR) concentrations in male (open dots) 
and female (filled dots) flowers of Populus 
cathayana. Regression lines are fitted to the 
data (n = 15)
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