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Recently, long-non-coding RNAs (lncRNAs) have attracted attention because of their
emerging role in many important biological mechanisms. The accumulating evidence
indicates that the dysregulation of lncRNAs is associated with complex diseases.
However, only a few lncRNA-disease associations have been experimentally validated
and therefore, predicting potential lncRNAs that are associated with diseases become
an important task. Current computational approaches often use known lncRNA-disease
associations to predict potential lncRNA-disease links. In this work, we exploited
the topology of multi-level networks to propose the LncRNA rankIng by NetwOrk
DiffusioN (LION) approach to identify lncRNA-disease associations. The multi-level
complex network consisted of lncRNA-protein, protein–protein interactions, and protein-
disease associations. We applied the network diffusion algorithm of LION to predict
the lncRNA-disease associations within the multi-level network. LION achieved an
AUC value of 96.8% for cardiovascular diseases, 91.9% for cancer, and 90.2%
for neurological diseases by using experimentally verified lncRNAs associated with
diseases. Furthermore, compared to a similar approach (TPGLDA), LION performed
better for cardiovascular diseases and cancer. Given the versatile role played by
lncRNAs in different biological mechanisms that are perturbed in diseases, LION’s
accurate prediction of lncRNA-disease associations helps in ranking lncRNAs that could
function as potential biomarkers and potential drug targets.

Keywords: lncRNA, network medicine, interactome, network diffusion, disease, protein–protein interactions,
disease network

INTRODUCTION

Non-coding RNAs can be classified broadly in two types: small non-coding RNAs and long non-
coding (lnc) RNAs that are more than 200 nucleotides (Kapranov et al., 2007; Kung et al., 2013).
LncRNAs are discrete transcription units located in sequence space, which do not overlap protein
coding genes (Kung et al., 2013). Recently, lncRNAs have received widespread attention due to their
diverse roles in biological regulation, developmental processes, and diseases (Mercer et al., 2009;
Orom et al., 2010; Moran et al., 2012; Sun and Kraus, 2015; Ulitsky, 2016). With a wide array
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of regulatory functions in epigenetic, transcriptional, post-
transcriptional regulation including histone modification,
DNA methylation, and transcriptional co-regulation, it is
not surprising that the dysregulation of lncRNAs have been
reported in many diseases (Liu et al., 2013; Shi et al., 2013;
Chakravarty et al., 2014; Kataoka and Wang, 2014; Ma et al.,
2016). Furthermore, increasing evidence suggests that the
regulatory role of lncRNAs in biological processes often involves
interactions with proteins (Ferre et al., 2016; Xiao et al., 2017).
The impact of each lncRNA may be determined by its ability to
perform numerous tasks in the cell by interacting with proteins,
DNA and RNA molecules.

To assist in understanding the pathogenesis of complex
diseases, there have been efforts to infer potential associations
between lncRNAs and diseases using lncRNA-protein interaction
data (Chen and Yan, 2013; Li et al., 2014; Yang et al., 2014; Liu
et al., 2017). Computational approaches have been developed to
predict lncRNA-protein interactions, such as lncPro and RPI-
Pred (Suresh et al., 2015; Shi et al., 2017; Xiao et al., 2017; Zheng
et al., 2017). Several computation methods like LncRNADisease
(Wang et al., 2016), GrwLDA (Gu et al., 2017), TPGLDA (Ding
et al., 2018), and KATZLDA (Chen, 2015) uncover potential
lncRNA-disease associations by integrating lncRNA functional
similarities, lncRNA expression profiles, known lncRNA-disease
associations, disease semantic similarities, and gene-disease
associations. Studies seeking to predict non-coding RNAs in
disease by constructing heterogenous networks with multiple
types of biological interactions include ncPred, which uses
resource transfer on a tripartite network (Alaimo et al., 2014);
ComiRNet, which applies clustering to miRNA-gene regulatory
networks (Pio et al., 2015); and LP-HCLUS, which integrates
across interactions between lncRNAs, miRNAs, diseases, and
genes (Barracchia et al., 2018). Most of these approaches use
experimentally known lncRNA-disease associations as part of
their input data and infer new lncRNA-disease associations.

An emergent concept postulates that a disease reflects the
interplay of multiple biomolecules, and is rarely a straightforward
consequence of an abnormality in a single gene encoding
protein (Barabasi et al., 2011; Vidal et al., 2011; Sharma et al.,
2015; Tasan et al., 2015; Sonawane et al., 2019). Given that
each lncRNA may regulate multiple protein targets, and each
protein may interact with multiple lncRNAs and with other
proteins, it is crucial to integrate lncRNA-protein and protein–
protein interactions in a heterogeneous network model to
fully understand their dynamics at a molecular level. As the
prediction of lncRNA disease associations are at a very early
stage, known lncRNA-disease associations are limited. Here,
we use the information flow-based method that exploits the
connectivity structure among proteins and lncRNAs to predict
novel lncRNA-disease associations. Diffusion-based methods are
based on the notion that products of genes associated with
diseases have a strong tendency to interact with each other
in terms of the cumulative strength of paths that connect
the corresponding proteins. These methods estimate the most
redundant paths on the network, identifying the destination
nodes (lncRNAs) that are most likely to be reached when
starting from the seeds (disease proteins). When a node has

a high score it means that the paths leading to it are highly
redundant, which in turn implies that even if a portion
of the network edges were missing due to incompleteness
of data the results would be similar. This is in contrast
with shortest-path-based methods that can instead be very
sensitive to the removal of some critical links. We and
others have previously proposed network diffusion approaches
that model the information flow in molecular networks to
localize the disease network neighborhood (Sharma et al.,
2018), identify biomarkers in genome-wide studies (Qian et al.,
2014), find significantly mutated pathways in cancer (Vandin
et al., 2011), and prioritize disease genes (Navlakha and
Kingsford, 2010). These studies successfully exploit the topology
or structure of molecular interactions, called the interactome,
even in incomplete space. With the growing availability of
lncRNA-related interactome data, generalizing the guilt-by-
association principle to predict lncRNA candidates might help
in revealing the role of lncRNA in complex, interconnected
disease mechanisms.

In this work, we propose LncRNA rankIng by NetwOrk
DiffusioN (LION). LION is a network-diffusion method that
integrates lncRNA-protein, protein–protein, and disease-protein
networks to prioritize important lncRNAs for diseases. First,
we construct a multi-level complex network (tripartite network)
consisting of lncRNA-protein, protein–protein, and protein-
disease associations. Next, we apply a random walk network
diffusion algorithm. The random walk method exploits the local
network neighborhood of diseases to measure the proximity
of lncRNAs to the disease genes based on the probabilities
of the connecting edges. It is possible to identify which
lncRNA is connected to a given disease on the basis of the
probability of reachability in the heterogeneous network. To
evaluate LION, we utilize the available experimentally verified
lncRNA disease associations (Chen et al., 2013) to demonstrate
the performance of our method and compare with a similar
method (TPGLDA) to demonstrate the performance advantages
of our approach.

RESULTS

Predicting the LncRNA-Disease Network
The majority of current methods (Chen and Yan, 2013;
Liu et al., 2014; Sun et al., 2014; Yang et al., 2014; Lu
C. et al., 2018) use the known lncRNA-disease interactions
to compute the novel associations. Here, we predicted the
lncRNA-disease network without a priori lncRNA-disease
information. We first constructed a tripartite network from
28,488 protein-disease associations compiled from OMIM and
GWAS databases, 141,296 protein–protein interactions, and
3,998 lncRNA-protein interactions (Figure 1). Next, we applied
LION to prioritize lncRNAs, computing the probability of a
random walker moving from a disease protein to a lncRNA.
In the end, a final bipartite lncRNA-disease network was
constructed from the predictions of 747 diseases. This lncRNA-
disease network consisted of 304,868 weighted lncRNA-disease
edges, where each link represents a predicted association
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FIGURE 1 | Framework to create the lncRNA-Disease-Network (LDN). We first construct the lncRNA-gene-disease tripartite network and next apply network
diffusion method to rank lncRNA disease associations.

between a disease and lncRNA that is proximal to its
corresponding disease genes.

Evaluating LION Predictions
We used the LncRNADisease experimental lncRNA-disease
dataset to assess the predictive ability of LION, described in
materials and methods. The dataset contains 372 lncRNAs, 245
diseases, and 1,101 lncRNA-disease associations. We calculated
area under the receiver operating characteristic (ROC) curve
to evaluate the predictive performance of our method. For the
receiver operating characteristic curve, we plotted sensitivity and
specificity at different thresholds, using the predicted lncRNA-
disease edge weights as the thresholds. A predictor making
random guesses would have an AUC of 0.5 and a predictor with
perfect performance would have an AUC of 1. Typically, an AUC
above 0.85 is considered good performance and an AUC above
0.95 is considered excellent performance.

We assessed the relative performance of LION by computing
and analyzing three ROC curves: (1) LION method, (2)
a current state-of-the-art method called TPGLDA, (3) a
randomized network model as a negative control. TPGLDA uses
known lncRNA-disease associations and known gene-disease
associations, and makes predictions using a resource allocation
algorithm that creates interaction profiles at each lncRNA. We
generated the random network by starting with the lncRNA-
disease network predicted with LION, and randomly shuffling
node labels to create a random graph null model with the
same connectivity structure, enabling comparison with LION’s
predictions as a control.

To assess the overall performance of LION in predicting
lncRNA-disease associations, we first applied LION to predict
lncRNA-disease associations for three broad categories of
diseases: cardiovascular diseases, cancers, and neurological

diseases (Figure 2). LION yielded high performance for all
three with AUCs all above 0.9. In contrast, the randomized
network had a low AUC of approximately 0.5, which
corresponds to a predictor making random guesses when
the lncRNA-disease associations themselves are randomly
assigned. The high AUCs above 0.9 with LION indicates our
method is accurately predicting biologically relevant lncRNA-
disease associations by inferring them from interactome and
lncRNAome data. The AUC performance of TPGLDA was
0.809, 0.790, and 0.933 for cardiovascular disease, cancers,
and neurological disease, respectively. Compared to TPGLDA,
LION has improved performance in cardiovascular diseases
and cancers, and comparable performance in neurological
diseases. This confirms the ability of LION to make equivalent
or higher accuracy predictions with respect to TPGLDA; in
particular, LION does so without experimental lncRNA-disease
data as an input.

Having demonstrated high performance for three broad
disease groups, we next evaluated LION on four individual
cancers (Figure 3). The computed AUCs for LION were 0.957,
0.971, 0.954, and 0.967 for breast cancer, blood cancers, ovarian
cancer, and bladder cancer, respectively. With AUCs exceeding
0.95, LION demonstrated excellent performance in predicting
lncRNAs for individual cancers. Similar to the broad disease
groups of Figure 2, the random network ROC curve for the
cancers had much lower AUCs of around 0.5. When compared
against the TPGLDA method, we see that LION has an improved
or roughly equal performance to TPGLDA; AUCs for TPGLDA
were 0.959, 0.899, 0.812, and 0.714 for breast cancer, blood
cancers, ovarian cancers, and bladder cancers, respectively. For
breast cancer and blood cancers, performance was roughly equal
in both methods, while in the case of ovarian and bladder
cancer, LION outperformed TPGLDA. These results further
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FIGURE 2 | LION’s performance in predicting lncRNA-disease associations for three broad groups of diseases. For each, three receiver operating characteristic
(ROC) curves are shown: (1) LION, (2) TPGLDA, a current state-of-the-art method for lncRNA-disease association prediction, (3) randomized network generated with
node label shuffling as a negative control. Area under the ROC curve (AUC) values are listed for each ROC curve. (A) ROC plot for cardiovascular disease. (B) ROC
plot for cancers. (C) ROC plot for neurological and psychiatric diseases.

confirm the promise of LION to make accurate predictions from
interactome and lncRNA-protein data, without prior information
of lncRNA-disease associations.

We tested the statistical significance of differences in
predictions made by LION, the randomized network, and
TPGLDA methods using the Wilcox rank sum test. For each
of the 7 diseases in Figures 2, 3, we ran two Wilcox tests: (1)
comparing edge weights between LION and the randomized
network, (2) comparing edge weights between LION and
TPGLDA. We found statistically significant differences between
LION’s predictions and the randomized predictions (p < 0.01),
and between LION and TGPLDA (p < 0.01). The results of
the Wilcox test confirm that LION’s better performance, seen
in Figures 2, 3, arise from an improved ranking of disease-
associated lncRNAs that are significantly different from either the
TGPLDA rankings or from the randomized rankings.

Top LncRNAs for Breast, Blood, Ovarian,
and Bladder Cancer
We next conducted a qualitative evaluation of the top 50
predicted lncRNAs for four individual cancers to gain insight
into their biological relevance to the disease. We identified
biological roles of lncRNAs using the LncRNADisease database
and experimental studies in the literature. For breast cancer, the
top 50 predictions contained eight of the nine experimentally
validated lncRNAs for breast cancer reported in LncRNADisease.
The eight lncRNAs were MALAT1, XIST, HOTAIR, MEG3,
GAS5, H19, CDKN2B-AS1, and PVT1. Each of these lncRNAs
been validated by genetic profiling studies or in vivo and in vitro
experimental studies, reported in the LncRNADisease database.
For example, MALAT1 is a regulator of alternative splicing in
breast cancer (Moran et al., 2012; Qi and Du, 2013; Jiang and
Bikle, 2014); HOTAIR is overexpressed in a quarter of breast
cancers (Gupta et al., 2010; Hung and Chang, 2010); the role of
XIST in X chromosome inactivation is linked to BRCA1 tumors
(Vincent-Salomon et al., 2007); MEG3 suppresses breast cancer
through AKT (Zhang et al., 2017); GAS5 is downregulated in

breast cancer and can induce apoptosis (Mourtada-Maarabouni
et al., 2009). H19 is the direct target of a critical breast
oncogene that triggers tumorigenesis (Barsyte-Lovejoy et al.,
2006). CDKN2B-AS1 was identified through a GWAS study of
breast cancer susceptibility loci (Turnbull et al., 2010). PVT1 was
mechanistically linked to a common loci of breast cancer risk
through its role as an apoptotic inhibitor (Guan et al., 2007).
Apart from these eight, several additional predictions in the top
50 have been recently validated and reported in the literature, but
not yet added to the LncRNADisease database. These lncRNAs
include DANCR, NEAT1, RMST, and KCNQ1OT1 (Ke et al.,
2016; Sha et al., 2017; Feng et al., 2018; Wang et al., 2018).
One of the top ranked lncRNAs, HULC, has been linked to
other forms of cancer but not to breast cancer. HULC decreases
miRNA 15a, which in turn increases expression of p62, a critical
cancer signaling protein; both miR15a and p62 have been linked
to breast cancer (Patel et al., 2016; Xu et al., 2017). Given the
biological roles of HULC’s two known targets in breast cancer
pathways, HULC may be a potentially important lncRNA for
breast cancer.

For bladder cancer, we found six experimentally validated
lncRNAs in the LncRNADisease database, all of which were in the
top 50 LION predictions. Of these, XIST, H19, MALAT1, MEG3
play a role in tumor proliferation, suppression, and metastasis
of bladder cancer (Ariel et al., 2000; Ying et al., 2013; Martens-
Uzunova et al., 2014; Wu et al., 2014). UCA and TUG1 are both
known to promote cell proliferation and tumorigenesis in bladder
carcinomas (Wang et al., 2012; Han et al., 2013). A top ranked
lncRNA prediction, DBH-AS1 has not been linked to bladder
cancer experimentally, but it regulates the miRNA-138-5p, a key
inducer of bladder cancer carcinogenesis (Yang et al., 2016; Bao
et al., 2018). Thus, DBH-AS1 may be a potential novel lncRNA
target for bladder cancer.

A qualitative evaluation of ovarian cancer revealed the top 20
predictions by LION contained all four experimentally validated
lncRNAs: MALAT1, H19, HOTAIR, and PVT1. Via the MAPK
pathway, MALAT1 promotes ovarian cancer cell proliferation
and migration (Zou et al., 2016). H19 has been investigated as
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FIGURE 3 | Performance in predicting lncRNA-disease associations for four individual cancers. LION outperformed the random network on all four cancers, and had
higher or comparable performance than TPGLDA for all four. (A) ROC plot for breast cancer. (B) ROC plot for blood cancers. (C) ROC plot for ovarian cancer.
(D) ROC plot for bladder cancer.

a targeted therapy strategy for ovarian cancer and its inhibition
suppresses tumor growth (Mizrahi et al., 2009). HOTAIR is a
predictor of patient prognosis, including features such as tumor
grade and survival (Qiu et al., 2014). Inhibition of PVT1 is linked
to induction of an apoptotic response and proliferation inhibition
of ovarian cancer cell lines [17908964]. The lncRNA TERC
was highly ranked, but our literature search did not uncover a
study linking TERC and ovarian cancer. A component of the
telomerase enzyme complex, TERC is implicated in maintaining
telomere length and therefore genetic susceptibility to aging
related diseases, such as ovarian cancer (Grammatikakis et al.,
2014). Our ranking and literature search on the biological role
of TERC suggests it may be a new lncRNA that could be related
to ovarian cancer.

The top 50 ranked lncRNAs for blood cancer contained 4
of the 11 experimentally validated lncRNAs. Polymorphisms in
the gene encoding lncRNA CDKN2B-AS1 are associated with
lymphoblastic leukemia (Iacobucci et al., 2011). A chromosomal
translocation mutation implicated in B-cell lymphoma was linked
to the GAS5 lncRNA; the mutation causes fusion of the GAS5
transcript to the BCL6 gene (Nakamura et al., 2008). Similarly,

a common chromosome eight breakpoint mutation in Burkitt’s
lymphoma was linked to the PVT1 locus in a mouse model,
implicating PVT1 in disease tumorigenesis (Graham and Adams,
1986). In a genetic profiling study of acute myeloid leukemia
patients, hypermethylation of the imprinted gene MEG3 was
linked to significantly reduced survival (Benetatos et al., 2010).
Similar to breast cancer, our literature search uncovered several
high ranked lncRNAs that are linked to blood cancers but yet
not been added to the LncRNADisease database, such as MIAT,
MALAT1, XIST, CRNDE (Ellis et al., 2012; Yildirim et al.,
2013; Sattari et al., 2016; Ahmadi et al., 2018). One of the top
ranked lncRNAs, SNHG15, has not been experimentally linked to
blood cancer; however, its regulation of the ubiquitin-proteasome
system and its established oncogenic role in osteosarcoma suggest
it may be a promising lncRNA for blood cancers (Ireland, 1986;
Jiang et al., 2018).

Case Study of Myocardial Infarction
As the role of lncRNAs in myocardial infarction has been well
studied, we examined predictions for myocardial infarction as a
case study to further validate our lncRNA-disease predictions.
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TABLE 1 | Top five lncRNA predictions by LION for Myocardial Infarction.

Rank Disease LncRNA Validation (PMID) Study description

1 Myocardial infarction (MI) HOTAIR 29258067, 30468490 HOTAIR expression is decreased in serum of MI patients.
Overexpression of HOTAIR prevents myocyte apoptosis

2 Myocardial infarction PTCSC3 28982122 SNP in PTCSC3 is a genetic risk variant for CVD and MI in
patients with autoimmune diseases

3 Myocardial infarction GAS5 30099044, 29267258 GAS5 ameliorates cardiomyocyte apoptosis induced by MI,
by down-regulating sem3a protein. GAS5 is downregulated
in serum of patients with coronary artery disease, a risk
factor for MI

4 Myocardial infarction XIST 29226319 XIST is overexpressed in post myocardial cells. XIST
promotes MI by regulating miR-130a-3p

5 Myocardial infarction NEAT1 30924864 NEAT1 is suppressed in MI patients. NEAT1 knockout in a
mouse model disrupted immune functions and caused
myocardial inflammation

All five have been validated by genetic profiling studies or experimental studies on cell lines and animal models. The PMID and a brief summary of each validating study
are listed for each lncRNA.

Myocardial infarction is one of the world’s leading causes of
death (Benjamin et al., 2017). As shown in Table 1, all top five
lncRNAs are not only validated in the experimental lncRNA-
disease dataset, but also by experimental studies in the literature,
providing further validation for our method. For example,
clinical studies have found HOTAIR is downregulated in serum
of patients and in vivo experiments revealed HOTAIR has a
cardioprotective role (Gao et al., 2017; Lu W. et al., 2018). This
indicates that HOTAIR is a promising candidate as a clinical
biomarker for non-invasive diagnosis and potential therapeutic
target for myocardial infarction.

Novel LncRNAs for Respiratory Diseases
Since LION does not rely on known, experimentally verified
lncRNA-disease associations to make predictions, it is
not restricted to only diseases for which experimental
data is available. We applied LION to predict potential
novel lncRNAs for respiratory diseases, where the role of
lncRNAs is least explored. Respiratory diseases are a class
of genetically complex diseases where the molecular and
regulatory genomic underpinnings, and particularly the role
of lncRNAs, are not well understood. In particular, we focused
on respiratory tract infections (RTIs) and chronic obstructive
pulmonary disease (COPD).

Lower RTIs are the most common infection and one of
the leading causes of death in the United States by infection
(File, 2000). COPD is the third leading cause of death in the
United States, with about 15 million cases per year in the
United States (Doney et al., 2014). Tables 2, 3 show the top five
predictions for RTIs and COPD, respectively. None of the top
predicted lncRNAs have been linked to RTIs. Of the lncRNAs
predicted for COPD, only MEG3 has been associated with
COPD in the literature. The unconfirmed lncRNAs present novel
potential lncRNAs that could be further studied as regulatory
drivers of the disease, clinical biomarkers, and therapeutic targets.
MEG3, a top lncRNA for both COPD and RTIs, is differentially
expressed in pulmonary fibrosis and in COPD (Tang et al.,
2016; Gokey et al., 2018), indicating it may play a key role
in the pathology of multiple respiratory diseases. IFNG-AS1,

a top lncRNA for only RTIs but not COPD, has been linked
to T helper cell responses (Peng et al., 2015), suggesting it
may play a role in the immune response component of RTIs.
RTIs, COPD, and myocardial infarctions all have HOTAIR
in the top five predictions. This suggests HOTAIR’s roles in
gene methylation and epigenetic differentiation may contribute
to it being strongly implicated in many diseases caused by a
combination of environmental and genetic factors.

DISCUSSION

Motivated by the success of network based methods in
extrapolating information from the interactome (Navlakha and
Kingsford, 2010; Vidal et al., 2011; Menche et al., 2015; Sharma
et al., 2018), we develop a lncRNA-gene-disease tripartite graph
and collapse it into a weighted lncRNA-disease bipartite graph
using a random walk. The powerful predictive ability and
applicability of LION for virtually any disease arises from

TABLE 2 | Top five lncRNA predictions by LION for respiratory tract infections.

Rank Disease LncRNA

1 Respiratory tract infections DBH-AS1

2 Respiratory tract infections MEG3

3 Respiratory tract infections IFNG-AS1

4 Respiratory tract infections HOTAIR

5 Respiratory tract infections MALAT1

TABLE 3 | Top five lncRNA predictions by LION for Chronic obstructive
pulmonary disease (COPD).

Rank Disease LncRNA PMID

1 Chronic obstructive pulmonary disease H19

2 Chronic obstructive pulmonary disease XIST

3 Chronic obstructive pulmonary disease HOTAIR

4 Chronic obstructive pulmonary disease GAS5

5 Chronic obstructive pulmonary disease MEG3 27932875
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its unique method of multi-layer network construction and
ranking with a network diffusion algorithm. Accumulating
evidence suggests the importance of lncRNA’s role in various
biological processes and in predicting novel lncRNAs for
diseases has significant medical and biological implications.
Most of the current methods infer potential lncRNA disease
associations based on existing knowledge of lncRNA-disease
relationships (Chen and Yan, 2013; Chen, 2015; Gu et al.,
2017; Ding et al., 2018). In contrast to current state-of-
the-art methods (Chen et al., 2017), we predicted lncRNA-
disease associations by using the topology of a heterogeneous
network comprising lncRNA-proteins, protein–protein, and
protein-disease interactions. Moreover, LION is not restricted
to predicting lncRNAs for diseases with known lncRNAs, it can
make predictions for any disease by using their known disease
proteins. To our knowledge, this approach is the first of its
kind to make accurate predictions from protein interactome
and lncRNA-protein data, without requiring known lncRNA-
disease associations.

Making lncRNA-disease predictions without a priori
information does not impact the performance of LION.
When compared against experimental lncRNA-disease
associations, LION accurately predicted lncRNAs for both
broad disease categories (cancers, cardiovascular diseases, and
neurological/psychiatric diseases) and individual cancers (breast,
blood, ovarian, and bladder), with AUCs all over 0.85. In contrast,
the negative control, a lncRNA-disease network randomized with
node label shuffling, had AUCs of only 0.5. In comparison to the
current state-of-the-art method for lncRNA-disease prediction,
TPGLDA, LION had improved or equal performance. LION
had improved performance for cardiovascular diseases, cancers,
ovarian cancer, and bladder cancer. LION performed equally
well as TPGLDA on neurological/psychiatric diseases, breast
cancer, and blood cancers. LION has potential value for
predicting novel lncRNAs, demonstrated through analysis
of case studies in COPD and respiratory tract infections.
LION has potential applications in biomedical research to
shed light on molecular underpinnings of disease, prioritize
putative therapeutic targets and biomarkers, and elucidate
disease-disease relationships.

Despite its promise, the limitations that influence the
prediction of LION include the literature biases in the protein-
disease, lncRNA-proteins, and protein–protein interactions
datasets. In particular, as lncRNA-protein associations are likely
quite incomplete owing to the recent discovery of lncRNAs,
the lncRNA-protein dataset may be skewed toward a few
well studied lncRNAs. Furthermore, the missing links could
bias the predictions toward the well-studied lncRNAs, such
as HOTAIR, which we found in the top five predictions for
myocardial infarction, COPD, and respiratory tract infections.
A second limitation is the unweighted and incomplete GWAS
and OMIM gene-disease datasets used to build the tripartite
network; LION would be improved by weights that enable
distinguishing crucial disease genes, such as through using
differential gene expression data. We plan to include more
complete interaction datasets to improve the accuracy of
prediction in the future.

MATERIALS AND METHODS

Data Sources and Construction of
Multi-Level Complex Network
To obtain genome-wide lncRNA and protein-coding gene
associations, we combine three sources:

LncRNA-Protein Interaction Data
We downloaded known lncRNA-protein interaction datasets
from the following databases. (i) lncRInter, a reliable and high
quality lncRNA interaction database containing experimentally
validated data whose lncRNA interaction datasets are extracted
from peer-reviewed publications (Liu et al., 2017). (ii) NPInter
v3.0 contains experimentally verified interactions between non-
coding RNAs, especially lncRNAs, and other molecules (proteins,
mRNAs, genomic DNAs) (Hao et al., 2016). (iii) EVLncRNAs,
a high-quality and integrated database that manually curates
all types of experimentally validated lncRNAs (Supplementary
Table S1; Zhou et al., 2018).

RNA-Binding Protein (RBP)-LncRNA Interactions
By analyzing millions of RBP binding sites from 117 CLIP-
Seq datasets generated by 50 independent studies, starBase
V2.0 has identified 22,735 RBP–lncRNA regulatory relationships
(Supplementary Table S1; Li et al., 2014).

Protein–Protein Interactions Network
We combine several sources of protein interactions: (i)
regulatory interactions derived from transcription factors
binding to regulatory elements; (ii) binary interactions from
several yeast two-hybrid high-throughput and literature-
curated datasets; (iii) literature-curated interactions derived
mostly from low-throughput experiments; (iv) metabolic
enzyme-coupled interactions; (v) protein complexes; (vi)
kinase-substrate pairs; and (vii) signaling interactions. The
union of all interactions from (i) to (vii) yields a network of
15,949 proteins that are interconnected by 217,140 interactions
(Supplementary Table S2; Menche et al., 2015).

Disease-Protein Interactions Network
A total of 28,488 associations between protein-coding genes
and diseases in the OMIM and GWAS were downloaded from
DisGeNET (Supplementary Table S3; Pinero et al., 2017).

Network Diffusion Algorithm to Infer Key
Candidate LncRNAs
To predict and rank disease associated lncRNAs, we first
constructed a tripartite lncRNA-protein-disease network from
the datasets described in section “Data Sources and Construction
of Multi-Level Complex Network” (Figure 1).

Next, we utilized a random walk with restart to rank lncRNAs
for each disease using network based proximity between a
lncRNA and a disease’s known proteins (Kohler et al., 2008).
For this, we constructed a subnetwork of the tripartite network,
comprised of all the disease genes and their nearest neighbors, as
well as the lncRNAs regulating the proteins. We performed this
step to localize the lncRNA predictions to each disease network
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neighborhood in the interactome. Indeed, based on the local
impact hypothesis, molecular entities involved in similar diseases
have an increased tendency to interact with each other and to
localize in a specific network neighborhood (Sharma et al., 2015).

For example, with myocardial infarction (MI), we created a
subnetwork with (1) 1228 protein–protein interactions between
the 27 known MI genes and their nearest neighbors, and (2)
2,175 lncRNA-protein interactions involving 1235 lncRNAs. The
MI seed genes are included in Supplementary Table S4 and
the adjacency matrix representing the MI subnetwork is in
Supplementary Table S5.

We then executed a random walk process to predict the
lncRNA associated to the 27 known MI genes. The basic idea
of LION is a walker starting from a single or group of disease
genes and visiting other genes and lncRNAs (nodes) in the multi-
level network by taking a series of random walking steps. On
every moving step, the walker moves from its current node to the
neighboring nodes and therefore a distribution value is calculated
for every node in the network, which denotes the probability that
a walker is at a given node at the current step. At each step, the
walker has a probability r = 0.5 to be relocated on the starting
genes. The probability distribution at step k + 1 is described by
the iterative form:

pk+1
= (1− r)Wpk

+ rp0

where, pk is a vector where the i-th element is the probability
of being at node i at step k. p0 is the uniform distribution over
all starting disease genes. W is the column normalized graph
adjacency matrix. By iterating the process until convergence
(|| pk+1

− pk || L1 < 10−6) we obtained the steady state
probability p∞, and 1235 lncRNAs were ranked according to their
values in p∞. Pseudocode for the network diffusion algorithm is
included in the Supplementary Information.

This process was repeated for all of the 747 diseases for which
a non-bipartite and connected subnetwork could be constructed.
These conditions are required for the random walk probabilities
to converge to a unique limiting probability distribution.

The final predicted lncRNA-disease network contains 304,868
weighted lncRNA-disease associations between 747 diseases and
1,346 lncRNAs. Each association represents a predicted link
between a disease and a lncRNA proximal to the disease’s genes.
The number of lncRNAs ranked for each disease has a median of
156 and the number of diseases targeted by each lncRNA has a
median of 195. Supplementary Table S6 contains the predicted
lncRNA-disease associations for the 4 types of cancer (breast,
bladder, blood, and ovarian) and 3 cardiovascular diseases
(myocardial infarction, respiratory tract infections, and chronic
obstructive pulmonary disease), analyzed in the section “Results.”

Validation of LION Using LncRNADisease
Experimental Dataset
To validate the lncRNA-disease predictions by LION, we use
the LncRNADisease dataset (Chen et al., 2013), a manually
curated database of 1,101 experimentally validated lncRNA-
disease associations between 245 diseases and 372 lncRNAs.
Using the LncRNADisease experimental dataset as ground

truths and predicted lncRNA-disease edge weights from LION,
we create receiver operating characteristic (ROC) curves and
compute area under the ROC curve (AUC). We created ROC
curves first for broad disease categories – cancers, cardiovascular
diseases, and neurological/psychiatric diseases – and next for
specific diseases – breast, bladder, ovarian, and blood cancers.
As a negative control, we created a random graph null model by
shuffling node labels on the bipartite lncRNA-disease network.
To assess if LION is performing as well as current methods, we
compare with the TPGLDA method (Ding et al., 2018). Using the
same experimental LncRNADisease dataset, we also create ROC
curves for both TPGLDA and the randomized network.
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