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Abstract

Background: The comparison of samples, or beta diversity, is one of the essential problems in ecological studies. Next
generation sequencing (NGS) technologies make it possible to obtain large amounts of metagenomic and
metatranscriptomic short read sequences across many microbial communities. De novo assembly of the short reads can
be especially challenging because the number of genomes and their sequences are generally unknown and the coverage of
each genome can be very low, where the traditional alignment-based sequence comparison methods cannot be used.
Alignment-free approaches based on k-tuple frequencies, on the other hand, have yielded promising results for the
comparison of metagenomic samples. However, it is not known if these approaches can be used for the comparison of
metatranscriptome datasets and which dissimilarity measures perform the best.

Results: We applied several beta diversity measures based on k-tuple frequencies to real metatranscriptomic datasets from
pyrosequencing 454 and Illumina sequencing platforms to evaluate their effectiveness for the clustering of
metatranscriptomic samples, including three d2�type dissimilarity measures, one dissimilarity measure in CVTree, one

relative entropy based measure S2 and three classical lp�norm distances. Results showed that the measure dS
2 can achieve

superior performance on clustering metatranscriptomic samples into different groups under different sequencing depths
for both 454 and Illumina datasets, recovering environmental gradients affecting microbial samples, classifying coexisting
metagenomic and metatranscriptomic datasets, and being robust to sequencing errors. We also investigated the effects of
tuple size and order of the background Markov model. A software pipeline to implement all the steps of analysis is built and
is available at http://code.google.com/p/d2-tools/.

Conclusions: The k-tuple based sequence signature measures can effectively reveal major groups and gradient variation
among metatranscriptomic samples from NGS reads. The dS

2 dissimilarity measure performs well in all application scenarios
and its performance is robust with respect to tuple size and order of the Markov model.
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Introduction

The comparison of microbial communities is crucial for

understanding how environment factors affect the composition

and the function of the communities [1]. For the comparison of

microbial communities, effective similarity/dissimilarity measures

between the communities are urgently needed. Alignment-based

sequence comparison methods such as the Smith-Waterman

algorithm [2] and BLAST [3] have been the dominant approaches

for the comparison of individual genomes when their genome

sequences are available. However, microbial communities are

usually complex and contain mixtures of hundreds to thousands of

genomes with unknown genomic sequences. With the emergency

of next generation sequencing (NGS) technologies, whole

metagenome/metatranscriptome shotgun sequencing is becoming

a new powerful approach to investigate complex microbial

samples [4–13]. In metagenomic studies, the nucleotide DNA

sequences are sampled and the composition of different organisms

within the communities can be studied. On the other hand, in

metatranscriptome studies, RNA sequences are sampled from the

communities and the expression levels of various RNA molecules

can be estimated. For both metagenomic and metatranscriptomic

data, alignment-based approaches for the comparison of commu-

nities may not be applicable because the reads can be sampled

from different parts of the genomes or RNAs of the various

organisms. Alignment-based approaches are highly dependent on

reliable reference sequences of known gene and/or pathway

databases. However, most environmental microbial communities

contain uncultured microorganisms, which affect the accuracy and

completeness of alignment-based approaches. Therefore, align-

ment-free approaches provide attractive alternatives.

The k-tuple (k-word, k-gram) sequence signature of a community

is defined as the frequency of k-tuples among the reads from the

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e84348



community. Previous studies have shown that k-tuple frequencies

are similar across different regions of the same genome, but differ

between genomes [14], which offers the theoretical basis to

measure the dissimilarity between microbial communities with k-

tuple method. The sequencing result of one microbial community

is represented by a frequency vector of k-tuples, dependent only on

the sequencing data, free from sequence alignments and reference

genome information. Therefore, k-tuple based methods could

potentially be very useful for the comparison of short reads data

from NGS of microbial communities.

With the k-tuple sequence signature, each NGS data from a

genome is represented by the k-tuple frequency vector whose

elements are the number of occurrences of every k-tuple. With the

k-tuple vectors, measurements of the dissimilarity between two

genomic sequences were studied from different points of views,

goals and applications. For two genomic sequences, the un-

centered inner product of the two sequence signatures, D2, was

first proposed to measure the distance of two k-tuple vectors [15],

and then it was widely used in sequence database searches [16]

and clustering of expressed sequence tags (ESTs) [17]. Various

dissimilarity measures based on D2 were extensively studied with

different normalization, centralization and background models,

including DZ
2 [18], DS

2 [19],D�2 [20], S2 [21,22] and a measure in

CVTree [23] (called Hao in this paper). However, the above

measures were developed for evaluating the distance between two

long sequences (such as genomic sequences). For better perfor-

mance applying to NGS data, DS
2 and D�2 were further normalized

to dS
2 and d�2 [24], respectively, with a range from 0 to 1, in order

to reduce the effects of sequence length and different nucleotide

probabilities.

The k-tuple sequence signatures have been applied to compare

microbial communities based on metagenomic data [25]; study the

evolutionary relationships among genomic sequences [26]; identify

horizontal gene transfer among different genomes [27]; and bin

genomic fragments from metagenomic samples [4,28]. For the

comparison of microbial communities based on NGS metage-

nomic datasets, Rohwer et al. [29] analyzed the ability of di-, tri-

and tetra-nucleotide signatures to explain the variance between

biomes and identified metagenomes with anomalous content.

HabiSign [7] utilized patterns of tetra-nucleotide usage to cluster

metagenomes at biome, phenotypic and species levels. Further-

more, Jiang et al. [25] applied 13 k-tuple based dissimilarity

measures to compare metagenomic samples by clustering them

into different groups as well as recovering environmental gradients

affecting microbial samples, aiming to evaluate the performances

of these measures on comparing metagenomic samples. They

found that k-tuple sequence signatures can successfully reveal

major group and gradient relationships among metagenomic

samples from NGS reads without alignment to reference databases

and the dS
2 dissimilarity measure outperforms others in all

application scenarios.

With the development of experimental and sequencing tech-

niques, many metatranscriptomic datasets have been generated to

explore the expressed genes and their abundances in microbial

communities [5,6,9,11,13]. Metatranscriptomic data offers more

elaborate details about what genes are expressed and their

expression levels as well as the functions of the microbial

communities and thus, it is crucial to compare metatranscriptomes

among microbial environments. As far as we know, no alignment-

free approaches have been used to compare metatranscriptomic

data. Although our previous researches verified the effectiveness of

alignment-free approaches on distinguishing the metagenomic

datasets [25], it is built on the theoretical basis obtained by the

previous studies that k-tuple frequencies are similar across different

regions of the same genome, but differ between genomes [14].

When the target switches from DNA to RNA, the quantity and the

structure of sequences are significantly changed. At the same time,

the different characteristics of RNA from DNA, such as

degradation, stability, easiness to be broken and alternative

splicing, etc., bring different preferences and bias distributions to

the sequencing. When the expression abundance information is

imported and the sequences of intron and inter-genic regions are

taken out, whether the alignment-free approaches are valid to

distinguish the metatranscriptomic datasets is a critical question for

their further applications to the metatranscriptomic datasets.

Therefore, in this paper, we applied 16 k-tuple sequence signature

measures to 99 metatranscriptomic and 16 metagenomic datasets

from 13 communities/projects, among which 92 datasets from 12

communities were generated by the pyrosequencing 454 platform

and 7 datasets from 1 community were generated by the Illumina

Genome Analyzer IIx platform. The processing follows the same

steps with our previous work [25]: counting k-tuple vectors of each

dataset, calculating signature measures between dataset pair and then clustering

according to the dissimilarity matrix. We conducted a series of

computational experiments to study the effectiveness of the 16 k-

tuple based sequence signature measures in clustering metatran-

scriptomic or mixture of metagenomic and metatranscriptomic

datasets, identifying gradient relationships of microbial community

samples, clustering ability when sequencing depth is low and the

effect of sequencing errors on their performance. We also

investigated the effects of various tuple sizes and the order of

Markov model for the background genome sequences. We also

developed a software pipeline to implement the processing

procedures, which is more efficient in calculating, more compre-

hensive in function and more convenient to use compared to

d2Meta for calculating the three d2-type measures in previous work

[25] for analyzing metagenomic datasets.

Materials and Methods

Dissimilarity Measures based on k-tuple Sequence
Signature

The sequence signature of a NGS data set counts the number of

k-tuple occurrences within the reads. This representation makes

the direct comparison of two sequence datasets, for example, two

metatranscriptomic sequencing datasets, feasible. The comparison

is free from alignment of the reads to reference sequences, which

are often incomplete or unavailable. Therefore, in our paper, the

sequence signature represented by k-tuple frequency is applied to

compare metatranscriptomic datasets.

Without alignment to genome/transcriptome, the information

of the reads’ strand direction cannot be obtained. Hence, we take

both a read and its complement into consideration when counting

k-tuple frequencies. For metagenomic or metatranscriptomic

sequencing data, with four possible alphabet S~fA, C, G, Tg,
there are 4k possible tuples of length k in all reads. The numbers of

occurrences in the whole sample for the k-tuples form the k-tuple

frequency vector of the sample.

The k-tuple frequency vector represents the absolute number of

occurrences of each k-tuple. For the distance between two datasets,

proper normalization or centralization of the sequence signature is

required. Therefore, there are various dissimilarity measures with

different normalizations. In this paper, we studied various

dissimilarity measures based on k-tuple frequency vectors,

including three d2�type (d2,dS
2 ,d�2 ) [24] dissimilarity measures,

one dissimilarity measure in CVTree (called Hao in the paper)

[23], one relative entropy based measure S2 [22] and three

classical lp�norm distances, Manhattan (l1�norm), Euclidean

Metatranscriptomic Comparison on k-Tuple Measures
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(l2�norm) and Chebyshev (l?�norm). The detail of these

dissimilarity measures can be found in the corresponding reference

papers. For completeness, we briefly summarize the calculation for

each measure as follows.

Let cX ~(cX ,1,cX ,2, � � � ,cX ,4k ) and cY ~(cY ,1,cY ,2, � � � ,cY ,4k ) be

the k-tuple frequency vectors from two NGS sequencing datasets

X and Y , respectively. Let nS~
P4k

i~1

cs,i, S~X ,Y be the sum of

the counts of all k-tuples.

The d2 dissimilarity measure [24] is based on the D2

statistic [15] and is defined as:

D2(cX ,cY )~
X4k

i~1

cX ,icY ,i,

d2(cX ,cY )~
1

2
1{

D2(cX ,cY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i~1

c2
X ,i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i~1

c2
Y ,i

s
0
BBBB@

1
CCCCA: ð1Þ

The dS
2 and d�2 dissimilarity measures [24] are based on

the DS
2 and D�2 statistics [30] and they are defined as:

DS
2 (~cX ,~cY )~

X4k

i~1

~ccX ,i~ccY ,iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~cc2

X ,iz~cc2
Y ,i

q ,

dS
2 (~cX ,~cY )~

1

2
1{

DS
2 (~cX ,~cY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i~1

~cc2
X ,iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~cc2
X ,i

z~cc2
Y ,i

q
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i~1

~cc2
Y ,iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~cc2
X ,i

z~cc2
Y ,i

q
vuut

0
BBBBBB@

1
CCCCCCA

, ð2Þ

and

D�2(~cX ,~cY )~
X4k

i~1

~ccX ,i~ccY ,iffiffiffiffiffiffiffiffiffiffiffiffiffi
nX pX ,i
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

nY pY ,i
p ,

d�2 (~cX ,~cY )~
1

2
1{

D�2(~cX ,~cY )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i~1

~cc2
X ,i

nX pX ,i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i~1

~cc2
Y ,i

nY pY ,i

s
0
BBBB@

1
CCCCA: ð3Þ

For formulas (2) and (3), ~ccX ,i~cX ,i{nX pX ,i and

~ccY ,i~cY ,i{nY pY ,i are centralizations, where p.,i is the probability

of the i-th k-tuple under a probability model (Markov model of

order = 0–3) for the sequences. The ranges of dS
2 and d�2 are

between 0 and 1.

The Manhattan (Ma), Euclidean (Eu) and Chebyshev (Ch)

dissimilarity measures are classical lp�norm distances and are

defined as:

Ma(fX ,fY )~
X4k

i~1

fX ,i{fY ,ij j, ð4Þ

Eu(fX ,fY )~
X4k

i~1

fX ,i{fY ,ij j2
0
@

1
A1=2

, ð5Þ

Ch(fX ,fY )~ max
1ƒiƒ4k

fX ,i{fY ,ij j: ð6Þ

For formulas 4ð Þ, 5ð Þ and 6ð Þ, fX ~
cX
nX

and fY ~
cY
nY
:

The Hao dissimilarity measure is from [23] by Bailin

Hao’s group, so it is called Hao in our paper to simplify the

notation. Hao is defined as follows:

Hao~
1

2
1{

P4k

i~1

fX ,i

E fX ,i jMk{2½ �{1

� �
fY ,i

E fY ,i jMk{2½ �{1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i~1

fX ,i

E fX ,i jMk{2½ �{1

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i~1

fY ,i

E fY ,i jMk{2½ �{1

� �2
s

0
BBBB@

1
CCCCA:ð7Þ

where E f.,ijMk{2½ � is the expectation of f.,i under the (k22)-th

order Markov chain.

The S2 dissimilarity measure is a relative entropy based

dissimilarity measure developed by Tianming Wang’s group [22].

S2 is defined as:

HX ~
X4k

i~1
QX ,i ln

2QX ,i

QX ,izQY ,i

,HY ~
X4k

i~1
QY ,i ln

2QY ,i

QX ,izQY ,i

,ð8Þ

S2:k:r(qX ,qY )~
0 if qX ~qY

1

4k HX zHYð Þz2 ln 2 else

(
: ð9Þ

For formula (8), QX ,i~fX ,ipX ,i and QY ,i~fY ,ipY ,i, where, pX ,i

and pY ,i are the probability of the i-th k-tuple under an r-th order

Markov chain for X and Y , respectively.

The construction of Markov model [25]. Markov models

of different orders were used to model the background sequences

for the dS
2 , d�2 , S2 and Hao dissimilarity measures. Under Markov

model Mr of order r, the probability of a k-tuple w~w1w2 . . . wk,

namely the expected frequency, can be computed as:

p(wjMr)~

Qk
j~1

p(wj) r~0

p(w1w2 . . . wr)
Qk{r

j~1

p(wjzrjwjwjz1 . . . wjzr{1) 1ƒrƒk{2

8>>>><
>>>>:

where p(wj) is the probability of wj estimated by the ratio of the

number of occurrences of wj over all the number of nucleotides.

The value of p(w1w2 . . . wr) is estimated by the ratio of the number

Metatranscriptomic Comparison on k-Tuple Measures
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of occurrences of w1w2 . . . wr over all the number of r-tuple

occurrences. The value of p(wjzrjwjwjz1 . . . wjzr{1) is estimated

by the fraction of occurrences of wjzr conditional on the previous

occurrences of wjwjz1 � � �wjzr{1:

Evaluation Metrics and Implementing Codes
Symmetric difference was originally defined to compare two

sets. Robinson used symmetric difference as a criterion to evaluate

the consistence between two trees [31]. For two trees with the

same leaf nodes l1,l2, � � � ,ln, let A and B be the sets of nodes

including the internal nodes of the two trees, respectively. Each

node is denoted as a subset of their clustered leaves, that is,

np~(li1 ,li2 , � � � ,lip ). For tree nodes sets A~fnA1
,nA2

, � � � ,nAn{1
g

and B~fnB1
,nB2

, � � � ,nBn{1
g, the symmetric difference is the

number of nodes in ADB~(A\B0)|(B\A0), the union of nodes

that are present in one tree but not in the other one, where A0 is

the complement of set A. Actually, the symmetric difference is the

number of nodes that are in one tree and not in the other one.

Compared with Parsimony score [32,33], symmetric difference

takes the order of hierarchical clustering into consideration, which

offers more meticulous comparison. The symmetric difference

does not use branch length information, only the tree topologies.

Hence, symmetric difference is applied to evaluate the consistence

between the reference tree and the clustering tree in our study.

Symmetric difference is calculated with Treedist from Phylip

(http://evolution.genetics.washington.edu/phylip.html).

UPGMA (Unweighted Pair Group Method with Arithmetic

Mean) [34] is used for hierarchical clustering based on dissimi-

larity matrix. Firstly, the dissimilarity between any two clusters A

and B is calculated as the average of all dissimilarities between

pairs of objects x in A and y in B, written as: 1
Aj j: Bj j

P
x[A

P
y[B

d(x,y),

where d(x,y) is the dissimilarity between x and y. Then, at each

step, the nearest two clusters are combined into a higher-level

cluster. UPGMA is implemented with the function ‘upgma’ from

the ‘phangorn’ toolbox of R.

PCoA (Principal Coordinates Analysis) [35] is also known as

classical multidimensional scaling. If a dissimilarity matrix is denoted

asD~ dij

� �
n|n

, the objective of PCoA is to find X1,X2, � � � ,Xn, where

Xi is a vector in an N-dimensional Euclid space, N,n, to optimize the

function min
X1,X2,���,Xn

P
ivj

Xi{Xj

�� ��{dij

� �2
: The results of PCoA are a

set of eigenvalues and eigenvectors. The corresponding eigenvector of

the largest eigenvalue is the first principal coordinate. The Goodness

Of Fit (GOF) of PCoA reflects the accuracy that the coordinates

approximate the distance matrix. The PCoA is implemented with the

function ‘pcoa’ from the R ‘ape’ toolbox.

Spearman’s Ranking Correlation Coefficient (SRCC)
assesses how well the relationship between two variables can be

described using a monotonic function. If there are no repeated

data values, a perfect SRCC of +1 or 21 occurs when each of the

variables is a perfect monotone function of the other. In our study,

SRCC is applied to evaluate the relationship between the gradient

variable and the first principal coordinate of different measures.

The SRCC is calculated by the function ‘cor’ from the R toolbox

‘stats’ of R.

The implementation software pipeline. We developed

d2Tools with Python and R to count the k-tuple vectors, calculate

probabilities of k-tuples under various orders of the Markov

models and calculate the dissimilarity matrices under various

dissimilarity measures d2,dS
2 ,d�2 , Hao, S2, Ma, Eu and Ch. The tool

package can be downloaded from http://code.google.com/p/d2-

tools/. Compared with d2Meta, the tool to implement the same

processing steps for metagenomic comparison [25], d2Tools has the

following improvements: d2Meta only computes three d2-type

(d2,dS
2 ,d�2 ) dissimilarity measures. For d2Tools, besides the three

d2-type measures, Hao, S2, Euclidean, Mahattan, and Chebyshev

distance measures are also included. d2Meta only computes the

probabilities of 0-order Markov model for d2-type measures, while

d2Tools computes the probability and dissimilarity matrices on 0-

to 3-order Markov model for these measures. d2Meta accepts

only the reads files as input and d2Tools accepts the reads files or

the generated frequency and probability files by d2Tools as inputs.

Therefore, users only need to keep the frequency of k-tuple files for

future analysis. In addition d2Tools recognizes the input file format

with the suffix name automatically.

We tested the d2Tools on the dataset including four samples

(each sample is about 200 MB in size) in fasta format. There are a

total of 2,830,286 reads [mean = 707,5716164,498(SD) per

sample] and the read length is 1646102(SD) nt. It takes about 4

hours and 1.45 GB memory to finish the pipeline for 2–10 tuple

sizes and 4 samples serially for all measures. The tuple sizes can be

implemented simultaneously with simple shell command, which

will speed up the running time of the pipeline. The running time of

calculating the k-tuple frequency vector depends on the size of

input datasets and the tuple size. The running memory mainly

depends on the tuple size.

Real Metatranscriptomic and Metagenomic Datasets
We downloaded 99 metatranscriptomic and 16 metagenomic

datasets from 13 communities/projects in CAMERA (http://

camera.calit2.net/) and NCBI SRA (http://www.ncbi.nlm.nih.

gov/sra) databases. Ninety two metatranscriptomic and 16

metagenomic datasets from 12 communities were generated by

the pyrosequencing 454 platform and 7 datasets from one

community were generated by the Illumina Genome Analyzer

IIx. There are a total of 16,453,499 reads with length 198692 nt

in the 92 metatranscriptomic datasets and 6,031,133 reads with

length 4436212 nt in the 16 metagenomic datasets from the 454

sequencing platform. There are 11,447,063 reads with 76 nt in the

7 metatranscriptomic datasets from the Illumina platform. In the

previous study of metagenomic comparison [25], 39 mammalian

guts samples from 33 species (including omnivore, herbivore and

carnivore samples) were analyzed the grouping ability of the

sequence signature measures and 56 global ocean samples from 1

project were applied for grouping and gradient performance

analysis. All the data in the previous study were metagenomic

datasets generated with the pyrosequencing 454 platform. In our

study, 92 metatranscriptomic ocean samples from 12 projects

covering global ocean with different geographical locations,

collection times, seasons and depths were applied to detect

grouping and gradient performance for datasets from the

pyrosequencing 454 platform. We also analyze the grouping

characteristics when metagenomic and metatranscriptomic data-

sets co-exist using eight metagenomic and eight metatranscrip-

tomic datasets. Furthermore, in order to explore the performance

of sequence signature measures for different sequencing platforms,

seven metatranscriptomic datasets of cecum and colon from the

Illumina platform were analyzed.

The brief summaries of the datasets of the 13 projects are shown

in Table 1 and the locations of 11 marine communities are marked

in Figure 1.

Datasets in Experiment 1. All the 92 metatranscriptomic

datasets from the pyrosequencing 454 platform in Table 1 were

analyzed with the various dissimilarity measures. The objective is

to evaluate their performance of grouping different samples/

Metatranscriptomic Comparison on k-Tuple Measures
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communities. First, 19 metatranscriptomic datasets from 4

different geographical marine locations (Dataset 2,4,7,11 in

Table 1) were studied. There are 6,633,683 total reads

[mean = 349,1416258,620(SD) per sample]. The read length is

180694(SD) nt. These four communities are located on subtrop-

ical north Pacific (Hawaii), north Atlantic (West English Channel),

foot of north Atlantic (Sapelo Island) and East Pacific ocean (Gulf

of California). They are geographically separated distinctively and

sampled in May or August, from the surface or deep sea

hydrothermal plumes. Therefore, the reference cluster of their

grouping is clear. With k-tuple vectors, different measures are

applied to calculate the dissimilarity between sample-pairs. Based

Figure 1. Geographical distribution of 11 communities in our study. There are 92 samples from 12 marine communities used in our study.
‘SWGE’, the Dataset 10 in Table 1, were collected from different locations with two research cruises in the Equatorial North Atlantic ocean and South
Pacific Subtropical gyre. The locations of the other 11 communities are marked on the above map (using the DatasetID from Table 1), where we can
find that Datasets 1,2,3,9,12 are collected from nearby locations.
doi:10.1371/journal.pone.0084348.g001

Table 1. Description of datasets from 13 communities/projects used in this study.

Dataset ID & Name
Sequencing
Platform Database Accession number in Database Type and Number of Samples

1. Hawaii_Aug_DOM [10] 454 CAMERA CAM_P_0000715 7 MT (4 control &3 Amended)

2. Hawaii_Aug_DSW 454 CAMERA CAM_P_0000766 10 MT (5 control & 5 Amended)

3. Hawaii_Nov_Day Night [12] 454 CAMERA CAM_PROJ_DayNight 2 MT

4. Georgia [11] 454 CAMERA CAM_PROJ_CAM_P0000101 6 MT (2 control & 2 PUT & 2 SPD)

5. Mexico 454 CAMERA CAM_PROJ_DICE 4 MT (2 control & 2 Amended)

6. Eastern Equa Atlan_Amazon 454 CAMERA CAM_PROJ_AmazonRiverPlume 19 MT

7. California_Deep sea [5,6] 454 CAMERA CAM_P_0000545 4 MT

8. Norway 454 CAMERA CAM_PROJ_PML 4 MT (2 control & 2 Amended)

9. Hawaii_depth 454 CAMERA CAM_PROJ_HOT 4 MT

10. SWGE 454 CAMERA CAM_PROJ_GeneExpression 16 MT

11. WesternEnglish 454 CAMERA CAM_PROJ_WesternChannelOMM 8 MT & 8 MG

12. NPSG [13] 454 NCBI SRA SRA007802.3/SRA007804.3/ 4 MG62 replicates

SRA007806.3/SRA000263/ &

SRA007801.5/SRA000262/ 4 MT62 replicates

SRA007803.3/SRA007805.4

13. Mouse_Intestinal [36] Illumina NCBI SRA SRA051354 7 MT

*MT: Metatranscriptomic data; MG: Metagenomic data; PUT: Putrescine; SPD: Spermidine; DOM: Dissolved Organic Matter; DSW: Deep SeaWater. The 12 datasets are
collected from CAMERA and NCBI SRA datasets. Some of them have corresponding datasets, others are submitted to datasets. The first column indicates the symbol
name in this paper.
doi:10.1371/journal.pone.0084348.t001
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on the dissimilarity matrix, the different samples are hierarchically

clustered using UPGMA [34]. The symmetric difference scores

between the derived clusters and the reference cluster are

calculated. Second, with obtained optimal k, Markov model and

dissimilarity measures yielding the lowest symmetric difference, the

entire 92 metatranscriptomic datasets from 12 communities/

projects are clustered to see the performance of corresponding

measures.

To evaluate the effect of sequencing depth on the dissimilarity

between metatranscriptomic sample-pairs, the 19 metatranscrip-

tomic datasets of 4 communities were sampled with different rates.

For each sample, 10%, 1% and 0.1% of reads are sampled

randomly for 100 times, and the averaged symmetric differences

between the clustering results of the sampled reads and the

reference cluster are calculated to assess the effect of sequencing

depth under different dissimilarity measures.

Datasets in Experiment 2. The objective of Experiment 2 is

to evaluate the performance of these measures in recovering the

gradient relationships among the samples, that is, the change of

gene expression along a gradient such as ocean depth, tempera-

ture, or pH level. Eight metatranscriptomic data sets from 25 m,

75 m, 125 m and 500 m depth (Dataset 12 in Table 1, two

samples for each depth) of North Pacific Subtropical Gyre (NPSG)

in ALOHA stations are used. Except for the depth, other

collecting conditions are the same. Therefore, they are depth-

gradient metatranscriptomic datasets. There are a total of 451,482

reads [mean = 56,43567,701(SD) per sample]. The read length is

122617(SD) nt. Based on the dissimilarity matrices under different

settings and measures, PCoA is carried out to find the principal

coordinate. Then the SRCC is calculated between the first

principal coordinate and the pre-determined depth-gradient axis.

A higher SRCC indicates better performance in identifying the

gradient among the metatranscriptomic samples.

For these datasets, we also randomly sample them with 10%,

1% and 0.1% rates for 100 times. The PCoA and SRCC are also

calculated to evaluate the measures’ ability to identify the gradient

datasets under different sequencing depth.

Datasets in Experiment 3. The objective of Experiment 3 is

to evaluate the ability of the dissimilarity measures to separate

metagenomic from metatranscriptomic datasets. Eight metatran-

scriptomic and eight corresponding metagenomic datasets of two

communities, respectively (Datasets 11 and 12 in Table 1), are

used for this experiment. For dataset 11, there are 1,116,440

[mean = 139,555628,192(SD) per sample] reads from the 8

metatranscriptomic data and the read length is 2956176(SD) nt;

and there are 4,504,724 reads from the 8 metagenomic data

[mean = 563,0906126,132(SD) per sample] and the read length is

5556108(SD) nt. For dataset 12, there are 451,482 reads

[mean = 56,43567,701(SD) per sample] from the 8 metatran-

scriptomic data and the read length is 122617(SD) nt; and there

are 1,526,409 reads [mean = 190,801612,622(SD) per sample]

from the 8 metagenomic data, and the read length is 115612(SD)

nt. The separation characteristics of these measures are explored

based on the hierarchical clustering results.

To evaluate the effect of low sequencing depth, we sample the

16 metagenomic and metatranscriptomic datasets with 10%, 1%

and 0.1% rates for 100 times to see the corresponding clustering

results.

Datasets in Experiment 4. Currently, most metatranscrip-

tomic datasets are produced by the pyrosequencing 454 platform.

With the decrease of Illumina sequencing cost, some researchers

began to sequence metatranscriptomic datasets with the Illumina

platform. The objective of Experiment 4 is to evaluate the ability

of the dissimilarity measures to separate metatranscriptomic

communities from Illumina datasets. The datasets (Datasets 13

in Table 1) in this experiment are the metatranscriptomic samples

from mouse cecum and colon [36], generated by the Genome

Analyzer IIx (GaIIx) platform. There are 12 datasets from 7

samples with two RNA extraction protocols, Qiagen-based

protocol and Invitrogen protocol. In order to obtain clear

clustering ground truth, we extracted 7 samples produced with

the Qiagen protocol. They are NOD501CecQN, NOD501-

ColQN, NOD502CecQN, NOD502ColQN, NOD503CecQN,

NOD504CecQN and NOD504ColQN, where the digital num-

bers, such as ‘501’ are the mouse ID, ‘Cec’ means cecum and ‘Col’

means colon, QN means Qiagen-based protocol. In the seven

metatranscriptomic datasets, there are 11,447,063

[mean = 1,635,2946333,882(SD) per sample] and the read length

is 76 nt.

To evaluate the effect of low sequencing depth, we sample the

seven metagenomic datasets with 1%, 0.1% and 0.01% rates for

100 times to see the corresponding clustering results.

Datasets in Experiment 5. The objective of this experiment

is to study the effect of sequencing errors on the performance of

these measures. The same 19 metatranscriptomic datasets from 4

different geographical marine locations (Datasets 2,4,7, and 11 in

Table 1) in Experiment 1 were used in this experiment. The 19

datasets were considered as complete correct sequencing data.

According to the characteristics of pyrosequencing 454, 1% indel

and 0.1% substitution errors are imported to the datasets with

FlowSim [37], a simulation software, and output simulated reads

with pre-setting error rate and error models. Compared with the

clustering results of the original datasets, the effects of sequencing

errors on the performance of these dissimilarity measures are

studied.

Results

The real data are used to analyze the effectiveness of k-tuple

based sequence signature measures for the comparison of

microbial community samples. We studied the performance of

d2,dS
2 ,d�2 , Hao, S2, Ma, Eu and Ch dissimilarity measures.

Experiment 1: The Performance of Different Dissimilarity
Measures using Sequence Signatures for Clustering
Global Ocean Metatranscriptomic Datasets

Ninety-Two metatranscriptomic data collected from global

ocean by twelve different projects were sequenced with the

pyrosequencing 454 platform and were downloaded from

CAMERA and NCBI SRA. The data are from different

geographic locations including Hawaiian Ocean, Mexican Gulf,

California Gulf, Norwegian Fjord, North Atlantic ocean, South

Pacific ocean, Western English Channel and Eastern Equatorial

Atlantic Ocean mixed with Amazon river plume. The descriptions

and datasets ID can be found in Table 1.

First, 19 metatranscriptomic samples of 4 communities that

have clear grouping relationships were extracted. These four

communities are geologically separated distinctively, located on

subtropical north Pacific (Hawaii), north Atlantic (West English

Channel), foot of north Atlantic (Sapelo Island) and East Pacific

ocean (Gulf of California). So the 19 samples can be clustered into

4 groups distinctively. Furthermore, Dataset 4 (Georgia_May)

contains 2 control samples, 2 PUT-amended samples and 2 SPD-

amended samples. Therefore, within the same community, the

samples from the same condition should merge first. The reference

clustering tree for the 19 samples from the 4 communities is shown

in Figure 2, without distance information included. Based on the k-

tuple frequency vectors and the 16 dissimilarity measures, the
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dissimilarity between each sample-pair is obtained. With the

dissimilarity matrix, hierarchical clustering is implemented with

UPGMA. The symmetric differences between the clustering

results and reference cluster under various measures, tuple size

and order of Markov model are calculated as shown in Table 2.

In Table 2, the optimal symmetric difference score between the

reference tree and clustering results is 12. Almost all the

dissimilarity measures except S2, Eu and Ch can achieve this

optimum score with appropriate choices of tuple size k. However,

the range of the values k that yields the optimal results is different.

For d2 the optimal score is obtained for k = 8, 9, 10. For dS
2 , the

optimal results are obtained when k is between 6–9 with the order

of the Markov chain not significantly affecting the results. For d�2 ,

the optimal results are obtained for k between 6–10 for all orders

of the Markov chain. Thus, the results are robust with respect to

the length of k-tuples and the order of Markov chain. We observed

that big ranges of settings under dS
2 and d�2 measures and certain

settings under Hao yield the optimal value. For dS
2 and d�2 , the

optimal clustering trees are all obtained from k§6 for 0–3rd

orders of Markov model. The order of background Markov Model

has less effect on the clustering results. One of the optimal

clustering trees with k = 6 and 0-th order Markov model under dS
2

is shown in Figure 3. Except for the sub-classes of two control

samples from the Georgia_May data, all the basic groups of four

communities are clustered well. It is also observed that the

communities with close geographical locations are clustered first.

Because the latitudes of Hawaii and California are very close, they

are clustered first, and then the second closest Georgia May

channel is merged. The farthest West English Channel joins at

last. This clustering order reflects that the communities with

similar geographical conditions are more similar with respect to

their gene expression levels, which also fit the biological intuition.

To evaluate the effect of sequence depth on the performance of

the different dissimilarity measures, we randomly sample 10%, 1%

and 0.1% of the original reads from the 19 metatranscriptomic

datasets. The read numbers are shown in Table S1 in Supplement

S1. For 0.1% sampling rate, the minimum read number of the

samples is only 86. We repeat the sampling experiments 100 times.

The average symmetric difference scores between the clustering

and the reference cluster with different tuple size k and

dissimilarity measures are shown in Figure 4 and the detail scores

Table 2. Symmetric differences between clustering and
reference tree for the four communities in Experiment 1.

k 2 3 4 5 6 7 8 9 10

d2 16 16 16 16 14 14 12 12 12

d2
s|M0 18 14 16 16 12 12 12 14 14

d2
s|M1 14 16 16 16 12 12 12 12 14

d2
s|M2 NA 14 16 16 12 12 12 12 14

d2
s|M3 NA NA 14 16 12 12 12 12 14

d2*|M0 18 14 16 16 12 12 12 12 12

d2*|M1 14 14 16 16 12 12 12 12 12

d2*|M2 NA 14 16 16 12 12 12 12 12

d2*|M3 NA NA 14 12 12 12 12 12 12

S2|M0 22 22 18 18 18 18 18 18 16

S2|M1 22 20 18 18 18 18 18 18 16

S2|M2 NA 18 18 18 18 18 18 18 16

Hao NA 14 16 16 14 14 12 12 14

Ma 16 16 16 18 18 12 12 14 14

Eu 16 16 18 18 16 16 16 14 14

Ch 16 22 18 22 20 20 18 20 22

*For all scores, p-value,0.001. Each column is the symmetric differences when
tuple size is from 2 to 10. Each row gives the symmetric differences for a given
dissimilarity measure and d2

s|M0 means d2
s measure under 0-th order Markov

model. Others symbols have similar meaning.
doi:10.1371/journal.pone.0084348.t002

Figure 2. The reference tree of the four communities in Experiment 1 (without branch length information). The four communities are
located at four distinct geographical locations with clear clustering characteristics. For the Georgia data, there are two control and two PUT
(Putrescine) experimental and two SPD (Spermidine) experimental datasets.
doi:10.1371/journal.pone.0084348.g002
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are given in Tables S2, S3 and S4 in Supplement S1. For 10%

sampling rate, the optimal score is 12,the same as that for the

complete dataset. It shows that even under one-tenth sequencing

depth, the dS
2 can still obtain the same satisfactory results as with

the complete dataset. The performance of d2 and d�2 deteriorates

compared with their performance with complete data, which

indicates that their performances are significantly affected by the

sequencing depth. However, for d�2 , the clustering results are

affected by the order of Markov model. The scores close to

optimal can only be obtained under the 2nd order and 3rd order

Markov model. For 1% sampling rate, the optimal average score is

increased to about 14, and all measures cannot achieve the results

as good as that using the complete data. When sampling rate drops

to 0.1%, the dS
2 can still cluster the four basic communities

correctly, but cannot distinguish the subclasses in the Georgia May

community well, and the resulting clustering tree is shown in

Figure 5. The performance of Hao deteriorates significantly when

the tuple size increases. This trend is more obvious with the

decrease of sampling rate, that is, when the sequencing depth is

low. It might be caused by Hao’s attributions of the high number of

parameters that need to be estimated to fit a Markov model of

order k22. Ma can achieve pretty good symmetric difference

scores when the size k are between 8 to 10 at all sampling rates,

which may attribute to its summing up the difference between two

communities for all the 4k k-tuples, which can reduce the bias from

inefficient coverage when the sequencing depth is low. Other

measures, such as Ch, Eu, and S2, do not perform well in all cases.

It can be seen from Figure 4 that dS
2 outperformed all the other

measures under most situations.

For the outstanding performance of dS
2 in all sequencing depth,

dS
2 is applied to cluster all the 92 marine metatranscriptomic

datasets from 12 projects with k = 6, and the simplest 0-th order

Markov model. The clustering result is shown in Figure 6. Most

samples from the same community are clustered together, except

the Dataset 10 SWGE, which were collected from different

locations of Equatorial North Atlantic Ocean and South Pacific

Subtropical Gyre. Therefore, it is reasonable to see their samples

clustered with different communities. Moreover, Dataset 9

(Hawaii_depth) and Dataset 12 (NPSG) were actually collected

from the same location, ALOHA site, but using different

preprocessing procedures before sequencing. The two datasets

are merged first according to four different collecting depths, and

then clustered together. This result validates the effectiveness and

accuracy of dS
2 in samples clustering. It also reflects that the dS

2 is

robust to different sequencing platforms for dissimilarity measure-

ments. We also observe that the clustering have obvious

geographical tendency. The samples collected in Hawaii or close

to Hawaii are clustered first. The samples from Norway and West

English Channel, which are north latitudes in geographical

location, are closely clustered. Most control samples and amended

samples collected from the same locations are merged first

respectively. For example, Mexico E1 and E2; Mexico C1 and

C2 have a very clear hierarchical clustering order, and also the

control samples and amended samples from Hawaii_Aug_DSM

community. For Georgia community, except for the control

samples, the SPD and PUT amended samples are clustered first

respectively. For EasternEquaAtlan_Amazon community, the

samples are merged into two main clusters which are very close

to each other, which can be explained by the fact that the samples

were collected during an oceanographic research cruise across the

Amazon River plume to the eastern Equatorial Atlantic Ocean.

Figure 3. Clustering results of the four distinctive communities in Experiment 1 based on d2
s|M0 and k = 6. d2

s|M0 indicates using
dissimilarity measure based on 0-th order Markov chain model. All the basic clusters for the four communities are correct. For the sub-classes in the
Georgia communities, except for the two control samples, the SPD and PUT sub-classes are clustered correctly.
doi:10.1371/journal.pone.0084348.g003
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Experiment 2: The Performance of Different Dissimilarity
Measures in Recovering Gradient Relationships of
Metatranscriptomic Samples

The gene expression levels in microbial communities may be

controlled by a gradient such as ocean depth, temperature, and

pH levels. In order to see the performance of the different

dissimilarity measures in recovering the gradient relationships of

the microbial communities, we used eight metatranscriptomic

samples from 25 m, 75 m, 125 m and 500 m depth (two samples

for each depth) of North Pacific Subtropical Gyre (NPSG) in

ALOHA stations (datasets 12 on Table 1), which were sequenced

with the pyrosequencing 454 platform. Except for the collection

depth, other factors were the same for the eight communities.

Based on the k-tuple frequency vectors, the 16 dissimilarity

measures are applied to calculate the dissimilarity between any

pair of the eight samples. PCoA is then applied to assign for each

sample a location in a low-dimensional space based on the

dissimilarity matrix. The GOF value is the proportion of variance

explained by the first principal coordinate and indicates the

reliability of using the first principal coordinate to represent the

data. Since the major difference of the eight samples of interest is

collection depth, we expect that the principal coordinate can

explain most of the differences of the samples and thus the GOF

value is relatively high. The GOF of the first principal coordinates

under each measure was shown in Table 3. From the table, we can

see that, except for S2 and Ma, the GOF by the first principal

coordinate under most measures is higher than 0.70, indicating

that the first principal coordinate can represent the data

reasonably well. For a good dissimilarity measure, we expect that

the first principal coordinate is highly associated with the

Figure 4. Average symmetric difference scores for the four distinct communities under different sampling rates in Experiment 1. (A)
is the symmetric difference scores for complete data as a function of tuple size k for different dissimilarity measures. (B) (C) (D) are the average
symmetric difference scores as a function of tuple size k for different dissimilarity measures after 100 random samplings for 10%, 1% and 0.1%
sampling rates, respectively. The lower the score is, the closer the clustering results and reference tree are. It is clear that d2

s shows the best
performance under most of the conditions.
doi:10.1371/journal.pone.0084348.g004
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collection depth. Therefore we calculate the SRCC between the

first principal coordinate with the collection depth and the results

are shown in Table 4. The highest SRCC 0.9759 is obtained

under the dS
2 measure when k = 10 and 2nd order Markov model

indicating very high correlation between the first principal

coordinate and the collection depth. Note that the corresponding

GOF by the first principal coordinate is 0.77 indicating that the

first principal coordinate represents the sample data well.

The two-dimension PCoA ordinates plot and the corresponding

clustering results based on the dissimilarity matrix using the dS
2

measure with tuple size k = 6 and 2nd order Markov model are

shown in Figure 7. It can be seen from the figure that samples from

the same depth are very close while samples from different depths

are distant in the graph. The first principal coordinate explains

77% of variance among the eight samples. The zones of 25 m,

75 m and 125 m under the ocean belong to the photic zone and

500 m under the ocean belongs to the mesopelagic zone. Hence,

the samples from 25 m, 75 m and 125 m areas under the ocean

are clustered first, and the samples from 500 m are merged last,

which is reasonable from the biological standpoint of view. The dS
2

identified the depth-gradient variance better than other measures.

For d�2 , with 0-th order Markov model, the performance for all

tuple sizes is poor. While with first order Markov model, the

performance is significantly improved, which means that the order

of Markov model has a large effect on the performance of the d�2
measure. This tendency is consistent with the observation in

Experiment 1. For almost all other measures, the highest SRCC is

0.78, which means these measures can identify the gradient

variance to some extent. For d2, the performance is good when k is

at least 8. The performance of Hao is reasonably good for k

between 3 and 9, but deteriorates rapidly when k = 10. The

relative performance of Hao with respect to tuple size k is consistent

with that in Experiment 1. Similar to the results in Experiment 1,

the performance of Eu and Ch is poor, while the performance of

Ma is reasonable in recovering the gradient relationship between

samples.

To see the effect of sequencing depth on the performance of the

various dissimilarity measures in recovering gradient relationships

of the microbial communities, we sample the eight metatran-

scriptomic datasets from four depths with 10%, 1% and 0.1%

rates. The read numbers are shown in Table S5 in Supplement S1.

At 0.1% sampling rate, the minimum read number of the samples

is only 43. For each sampling rate, the random sampling is

repeated 100 times, and the average GOF values by the first

principal coordinate at each sampling rate are shown in Table S6,

S7, and S8 in Supplement S1. From Table S6, except for the

dissimilarity measures S2 and Ma and for large tuple size of k = 10,

the GOF values are all above 0.5. The average SRCCs are shown

in Table S9 in Supplement S1. For dS
2 , with 74% GOF, the

optimal SRCC is 0.98, the same as that with complete data, which

means dS
2 still maintains good performance using 10% of the

reads. The other dissimilarity measures also yield similar

performance using 10% of the data as with complete data, but

do not perform better than dS
2 . At 1% and 0.1% sampling rates,

most GOF values are much smaller than that obtained with the

complete data. With the increase of tuple size and the order of

Markov model, the GOF values decrease dramatically. So the first

principal coordinate does not explain the differences among the

communities well. Thus, the SRCC analysis between the principal

coordinate and the collection depth is not highly meaningful.

Experiment 3: Using the Dissimilarity measures to Cluster
Metagenomic and Metatranscriptomic Datasets

We next used the dissimilarity measures to cluster metagenomic

and metatranscriptomic samples. Our objective is to see if

metagenomic samples and metatranscriptomic samples separate

into two groups. The samples from collection depth of 25 m,

75 m, 125 m and 500 m (two samples for each depth) of North

Pacific Subtropical Gyre (NPSG) in ALOHA stations (Dataset 12

on Table 1) were sequenced as eight metagenomic and eight

metatranscriptomic datasets with the pyrosequencing 454 plat-

form. The dissimilarity measures based on sequence signatures are

Figure 5. Clustering results of four communities under 0.1% sampling rate based on d2
s|M0 and k = 6 in Experiment 1. d2

s|M0 indicates
using dissimilarity measure based on 0-th order Markov chain model. d2

scan still cluster the four basic communities correctly, but cannot distinguish
the subgroups in the Georgia community well.
doi:10.1371/journal.pone.0084348.g005
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applied to measure the beta diversity between these datasets. The

clustering results based on all the measures show obvious tendency

that the metagenomic and metatranscriptomic datasets are

clustered into two separate groups. However, the measures Ch,

Eu and Hao for large tuple size k cannot completely distinguish the

two types of data with some metatranscriptomic and metagenomic

datasets mixed together, which are shown in the Figure S1 in

Supplement S1. The observation of poor performance of Hao for

large tuple size validates the analysis in Experiments 1 and 2.

Except for k = 2 with 1st order Markov model for dS
2 and d�2 , and

small tuple size for d2 and Ma, all the other settings under d2, dS
2 ,

d�2 and Ma can distinguish the metagenomic and metatranscrip-

tomic datasets indicating metagenomic and metatranscriptomic

data have different sequence signature information. However, the

hierarchical clustering of sub-classes within either the metage-

nomic or the metatranscriptomic samples shows the performance

differences of these measures. As shown in Figure 8 (A) and (B), for

dS
2 , the samples from adjacent depths are merged first (25 m &

75 m, or 75 m & 125 m); while for all the other measures, such as

d�2 , from k = 4–10 with 2nd order Markov model, the samples from

non-adjacent depths (125 m and 25 m in MT) are merged first,

which is not reasonable based on basic biological knowledge.

Therefore, the dS
2 measure shows outstanding performance when

the metatranscriptomic and metagenomic datasets co-exist. Most

measures have the tendency to distinguish the metatranscriptomic

Figure 6. Clustering results of the 92 datasets from 12 communities based on d2
s|M0 and k = 6 in Experiment 1. d2

s|M0 indicates using
dissimilarity measure d2

s based on 0-th order Markov chain model. The dissimilarity measure d2
s can cluster most basic communities and subgroup

control and amended samples correctly, validating the effectiveness of d2
s.

doi:10.1371/journal.pone.0084348.g006
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and metagenomic datasets, but show performance difference in

subclass details.

The eight metatranscriptomic and eight metagenomic datasets

from four depths are also randomly sampled with 10%, 1% and

0.1% rates to evaluate the performance of the different dissimi-

larity measures when the sequencing depth is low. The read

numbers are shown in Table S10 in Supplement S1. For 0.1%

sampling rate, the minimum read number of the samples is only

43. The sampling rate affects the sub-classes within the

metagenomic and metatranscriptomic datasets. However, the

basis grouping of metagenomic and metatranscriptomic data can

still be well distinguished even under the 0.1% sampling rate. With

1% sampling rate, dS
2 still yields the same satisfactory results as

that with complete data when k = 6, as shown on figure 8(C).

While for Hao, the performance drops dramatically with low

sequencing depth, even the tuple size is medium (k = 6), shown on

figure 8(D). When the sampling rate is 0.1%, even the dS
2 cannot

achieve as good results as using the complete data. The clustering

results are also sensitive to tuple size, as shown on figure 8(EF). For

dS
2 , when k = 4, the clustering in metatranscriptomic dataset are

still correct, while when the tuple size increases from 4 to 6, the

clustering results become worse.

We also analyze eight metagenomic and eight metatranscrip-

tomic samples from the Western English Channel sequenced with

pyrosequencing 454 platform [9] (Dataset11 in table 1). We

investigate how well the dissimilarity measures cluster these

samples. Similarly, the metagenomic and metatranscriptomic

datasets are clearly clustered into two groups further validating

that the sequence signatures are different for metagenomic and

metatranscriptomic datasets. As shown in Figure 9, the clustering

of metatranscriptomic data from marine presents a clear pattern,

where 4 am of Aug.(dawning), 4 pm of April(dusk), 3 pm of

Jan.(dusk) and 10 pm of Aug.(dusk); 10 am of Aug. and 4 pm of

Aug.(both daytime) are clustered together, while 10 pm of April

and 7 pm of Jan. (both dark) are cluster together. This means that

photosynthesis might play an important role for the gene

expression of microbes. Therefore, dS
2 can reveal the differential

expression pattern among the metatranscriptomic datasets. At the

same time, the metagenomic data from the same location are

clustered with a season pattern, where the data collected in Aug.

are together and those from Jan. and April are together.

Table 3. The goodness of fit (GOF) value (times 100) by the
first principal coordinate of PCoA in Experiment 2.

k 2 3 4 5 6 7 8 9 10

d2 80 79 79 79 80 81 82 82 82

d2
s|M0 85 84 77 75 77 79 81 81 77

d2
s|M1 69 71 77 75 77 78 79 79 75

d2
s|M2 NA 40 81 78 78 78 79 79 75

d2
s|M3 NA NA 60 75 81 80 80 79 75

d2*|M0 82 82 79 74 70 68 63 59 56

d2*|M1 75 69 77 79 81 82 82 82 82

d2*|M2 NA 70 82 83 83 83 83 83 84

d2*|M3 NA NA 53 82 82 84 86 88 90

S2|M0 69 59 56 40 17 15 14 14 14

S2|M1 73 78 84 83 34 17 15 14 14

S2|M2 NA 88 89 92 75 39 30 29 29

Hao NA 62 80 80 85 89 88 74 42

Ma 78 65 60 62 66 68 68 67 63

Eu 84 84 90 94 95 96 96 96 95

Ch 98 98 99 99 99 99 99 99 99

*The values on the table are the goodness of fit for the first principal coordinate
times 100 for different tuple sizes and dissimilarity measures.
doi:10.1371/journal.pone.0084348.t003

Table 4. The SRCC of the first principal coordinate and collection depth of the samples in Experiment 2.

k 2 3 4 5 6 7 8 9 10

d2 0.7807 0.6831 0.3904 0.3904 0.3904 0.4880 0.7807 0.7807 0.7807

d2
s|M0 0.3904 0.3904 0.7807 0.7807 0.7807 0.7807 0.8295 0.7807 0.9759

d2
s|M1 0.5855 0.5854 0.7807 0.7807 0.7807 0.7807 0.8295 0.7807 0.7807

d2
s|M2 NA 0.5855 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807

d2
s|M3 NA NA 0.6831 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807

d2*|M0 0.3904 0.3904 0.3904 0.3904 0.3904 0.3904 0.3904 0.0976 0.1952

d2*|M1 0.5855 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807

d2*|M2 NA 0.2928 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807

d2*|M3 NA NA 0 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807

S2|M0 0.3904 0.1952 0.2440 0.3904 0.3904 0.4880 0.6831 0.7807 0.7807

S2|M1 0.1952 0.1952 0.3904 0.3904 0.3904 0.3904 0.3904 0.3904 0.3904

S2|M2 NA 0.1952 0.0976 0.2440 0.3904 0.3904 0.3904 0.3904 0.2440

Hao NA 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807 0.8783 0.0976

Ma 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807 0.7807

Eu 0.7807 0.6831 0.3904 0.3904 0.3904 0.3904 0.3904 0.7807 0.3904

Ch 0.7807 0.4880 0.3904 0.3904 0.3904 0.3904 0.3904 0.3904 0.5367

*The values on the table are Spearman’s Ranking Correlation Coefficients between the first principal coordinate and the collection depth of the samples for different
tuple sizes and dissimilarity measures.
doi:10.1371/journal.pone.0084348.t004
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Experiment 4: The Performance of Different Dissimilarity
Measures using Sequence Signatures for Clustering
Metatranscriptomic Datasets from the Illumina
Sequencing Platform

Seven metatranscriptomic datasets collected from cecum and

colon tissues of four mice were sequenced with the Ilumina

Genome Analyzer IIx (GaIIx) platform and they were downloaded

from NCBI SRA. The description can be found in Dataset13 of

Table 1.

According to the two tissues the datasets coming from, the seven

samples can be clustered into two distinct groups, as shown in

Figure 10, without distance information included. Based on the k-

tuple frequency vectors and the 16 dissimilarity measures, the

dissimilarity between each sample-pair is obtained. With the

dissimilarity matrix, hierarchical clustering is implemented with

UPGMA. The symmetric differences between the clustering

results and reference cluster under various measures, tuple size

and order of Markov models are calculated as shown in Table 5.

In Table 5, the optimal symmetric difference score between the

reference tree and clustering results is 5. dS
2 , S2, Hao and and Ma

can achieve this optimum score with appropriate choices of tuple

size k. However, the range of the values k that yields the optimal

results is different. For dS
2 , the optimal score is obtained for k = 4 to

10 for the 0-th order Markov chain and for relatively narrow

ranges of k with higher orders of Markov chain. For S2, the

optimal results are obtained when k is between 6–8 with the order

of the Markov chain playing no roles. For Hao and Ma, the optimal

results are obtained for k between 6–10. One of the optimal

clustering trees with k = 4 and 0-th order Markov model under dS
2

is shown in Figure 11. The four samples from cecum are clustered

together, and two of the colon samples are clustered together,

while the remaining colon sample is finally merged. The results

show that the sequence signature measures are valid for

sequencing data from the Illumina platform and dS
2 still keeps

the outstanding performance for all orders of Markov chains.

To evaluate the effect of sequence depth on the measures’

performance with Illumina datasets, we randomly sample 1%,

0.1% and 0.01% of the original reads from the seven metatran-

scriptomic datasets. The reason we sampled with 10% sampling

rate for 454, but not for Illumina, is due to the high sequencing

depth of Illumina data. The read numbers are shown in Table S11

in Supplement S1. For 0.01% sampling rate, the minimum read

number of the samples is only 115. We repeat the sampling

experiments 100 times. The average symmetric difference scores

between the clustering and the reference cluster with different

tuple size k and dissimilarity measures are shown in Figure 12 and

the detail scores are given in Tables S12, S13 and S14 in

Supplement S1. For 1% and 0.1% sampling rate, the dS
2 can still

obtain the same optimal results under the same range of k value as

the complete dataset. However, for d�2 and Hao, althougth they can

still obtain the optimal results, the range of optimal k value become

smaller compared with the complete datasets. The results show

that compared with other measures, dS
2 is robust to sequencing

depth. The performance of Ma deteriorates slightly with the

decrease of sampling rate, which can obtain the optimal clustering

results with slightly narrower range of tuple size k. However, the

performances of other measures, including Hao, Ma and S2,

become worse when coverage decreases, and except the Ma, other

measures cannot obtain the optimal clustering results, as shown on

Table S14 in Supplement S1. In this study, dS
2 shows its

outstanding performance for datasets from the Illumina sequenc-

ing platform.

Experiment 5: The Effects of Sequencing Errors on the
Performance of Different Dissimilarity Measures

The 19 metatranscriptomic samples of 4 communities having

distinct geographic locations used in Experiment 1 are used to

study the effect of sequencing errors on the performance of

sequencing signature measures. According to sequencing error

features of the 454 platform [37–39], we added 1% indel errors

and 0.1% substitution errors to the original sequencing data. The

simulated reads set with the preset error rates are generated with a

pyrosequencing 454 simulator, FlowSim [37]. The same clustering

procedures as in Experiment 1 are implemented. The symmetric

differences and the comparison with the results based on the

original data are shown in Table 6. The clustering results do not

change much under 1% indel and 0.1% substitution error rates.

For 0–3 orders of Markov chain of dS
2 and d�2 , only 2 among 36

Figure 7. The PCoA ordinates of the NPSG data are primarily driven by the collection depth in Experiment 2. (A) is the two dimensional
PCoA plots of the samples based on the dissimilarity measure d2

s for 0-th order Markov model and k = 10 (setting with highest SRCC); (B) is the
clustering tree with d2

s for 0-th order Markov model and k = 10.
doi:10.1371/journal.pone.0084348.g007
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values are changed for each measure compared with the results

based on the original data. Ma keeps the same symmetric

differences as the original data. Many more of the symmetric

differences, 3–7 among 9 values, for d2, S2, Hao, Eu and Ch, are

changed.

If a measure can obtain optimal clustering results based on the

original data, it keeps the performance on imported-error data. If

the measure cannot obtain the optimal results with the original

data, the measure will not achieve the best performance either

with added errors. Therefore, the relative performances of the

Figure 8. Clustering results of the metagenomic and metatranscriptomic datasets from the NPSG community in Experiment 3. (A) (B)
are the clustering results using d2

s the complete data under d2
s with k = 7 and d2* with k = 6 under 2nd order Markov chain model; (C) and (D) are the

clustering results based on average dissimilarity using d2
s with k = 7 under 0-th order Markov chain model and Hao with k = 6 based on 100 times of

1% sampling from the original data; (E) and (F) are the clustering results based on average dissimilarity using d2
s when k = 4 and k = 6 for the 0-th order

Markov chain based on 100 times of 0.1% sampling from the original data.
doi:10.1371/journal.pone.0084348.g008
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dissimilarity measures are not affected by the sequencing error

rates for the current sequencing technologies.

Discussion and Conclusions

In this study, we evaluated the performance of k-tuple based

sequence signature methods to compare microbial metatranscrip-

tomic samples with NGS reads data. We studied three d2�type
dissimilarity measures, one dissimilarity measure in CVTree, one

relative entropy based measure and three classical lp�norm

distances. These dissimilarity measures, together with tuple size

k = 2–10 and different Markov background models, were com-

pared on the basis of five experiments of real metatranscriptomic

datasets from global marine communities, with the objectives to

explore their performance on clustering metatranscriptomic

sequencing data from different communities generated by

pryosequencing 454 and Illumina platforms, identifying gradient

variance of metatranscriptomic datasets, clustering characteristics

when metagenomic and metatranscriptomic datasets co-exists and

robustness under sequencing errors.

For geographically well separated communities, all the measures

can classify the big groups correctly. With the complete data, for

certain range of tuple size k, d2, dS
2 , d�2 , Hao and Ma can classify

the subgroups and obtain the closest clustering results from the

reference cluster. When sequencing depth is low, only dS
2 still keep

the outstanding performance and other measures are more

sensitive to sequencing depth. Even for the 92 samples from 12

communities, most measures can cluster major groups correctly

and dS
2 can merge the communities according to similar

geographical locations. The k-tuple dissimilarity measures can

reflect the gradient tendency, and dS
2 can obtain the highest

correlation coefficient between the first principal coordinate and

Figure 9. Clustering results of the Western English Channel based on d2
s|M2 and k = 8 in Experiment 3. The datasets contains the

metagenomic and metatranscriptomic samples collected from different times. d2
s|M2 indicates using dissimilarity measure d2

sbased on 2nd order
Markov chain model. As shown in the parentheses after each data, there are clear diurnal variation and season patterns for MT and MG clustering,
respectively.
doi:10.1371/journal.pone.0084348.g009

Figure 10. The reference tree of the mouse datasets in Experiment 4. The seven samples are clustered according to their tissue types. The
sample ID, such as ‘NOD504ColQN’, where the digital numbers, ‘504’, are the mouse ID, ‘Cec’ means cecum and ‘Col’ means colon, ‘QN’ means
Qiagen-based protocol.
doi:10.1371/journal.pone.0084348.g010
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the gradient. When metagenomic and metatranscriptomic datasets

co-exist, all the measures can cluster the samples according to the

data type. We also evaluate the effects of tuple size and

background model. In this study, tuple size k = 2–10, and the

performance of different dissimilarity measures varies with

different tuple size. The order of background Markov model does

not affect the performance significantly.

Our results indicate that dS
2 performs satisfactorily for grouping

microbial communities, identifying their gradient relationships and

separating metagenomic and metatranscriptomic communities.

The dS
2 dissimilarity measure performs similarly in some scenarios

or outperforms other dissimilarity measures in many other

scenarios and its performance is not highly sensitive to tuple size,

which makes it easier to apply to real data. It is a powerful

approach for metatranscriptomic sample comparison based on

NGS shotgun reads. For d2, relationship between the sequences in

both samples plays less effects than the variation of the tuple

occurrences within one sample, which lead to its relative poor

performance. Hao’s attributions of the high number of parameters

that need to be estimated to fit a Markov model of order k22 leads

to the poor performance under low sequencing depth. Ch

considers the maximum difference between the tuple frequencies

for the samples only and does not make full use of the information

from all the tuples. On the other hand, Ma sums up the difference

between two communities for all the 4k k-tuples, which can reduce

the bias from low coverage when sequencing depth is low. The

normalization of the tuple counts by their corresponding

expectations plays an important role in the superior performance

of dS
2 and d�2 .

The performance of different dissimilarity measures varies with

the tuple size. We show that dS
2 and d�2 can achieve reasonable

clustering results for metatranscriptomic datasets. In particular,

the dS
2 dissimilarity measure outperforms others in most scenarios

and its performance is not highly sensitive to the tuple size. Thus, it

is a powerful approach for metatranscriptomic sample comparison

based on NGS shotgun reads. The dissimilarity measure d2

performs reasonably well when the tuple size is relatively high.

However, it does not perform well when the tuple size is low.

These observations are consistent with the results for the

comparison of metagenomic datasets. The Hao dissimilarity

measure performs reasonably well when sequence depth is high

and the tuple size is relatively low. One explanation is that it

compares the numbers of occurrences of k-tuples with their

corresponding expectations based on the k22 order of Markov

chain, which may not be accurate especially when the sequence

depth is low and the tuple size is high. Ch considers the maximum

difference between the tuple frequencies of the samples only and

does not make full use of the information from all the tuples. On

the other hand, Ma sums up the differences of all the k-tuple

frequencies between two communities, which can reduce the bias

from inefficient coverage when the sequencing depth is low. The

normalization of the tuple counts by their expectations plays an

important role in the superior performance of dS
2 and d�2 .

The study design in this paper is similar to that in Jiang et al.

[25]. The objective of this study is to see whether the conclusions

about the relative performance of alignment-free methods for

metagenomic comparison observed in Jiang et al. [25]are also true

for the comparison of metatranscriptomes. This conclusion is not

obvious due to the different characteristics of metatranscriptomic

from metagenomic data. Previous study of the effectiveness of

Table 5. Symmetric differences between clustering and
reference tree in Experiment 4.

k 2 3 4 5 6 7 8 9 10

d2 7 7 7 7 7 7 7 7 7

d2
s|M0 7 7 5 5 5 5 5 5 5

d2
s|M1 7 7 7 7 5 5 5 5 5

d2
s|M2 NA 7 7 7 7 5 5 5 5

d2
s|M3 NA NA 7 7 7 7 5 5 5

d2*|M0 7 7 7 7 7 7 7 7 7

d2*|M1 7 7 7 7 7 7 7 7 7

d2*|M2 NA 7 7 7 7 7 7 7 7

d2*|M3 NA NA 7 7 7 7 7 7 7

S2|M0 7 7 7 7 5 5 5 7 7

S2|M1 7 7 7 7 5 5 5 7 7

S2|M2 NA 7 7 7 5 5 5 5 7

Hao NA 7 7 7 5 5 5 5 5

Ma 7 7 7 5 5 5 5 5 5

Eu 7 7 7 7 7 7 7 7 7

Ch 7 7 7 7 7 7 7 7 7

*score = 5, p-value = 0.043; score = 7, p-value = 1.0.
doi:10.1371/journal.pone.0084348.t005

Figure 11. Clustering results of the mouse datasets based on d2
s|M0 and k = 4 in Experiment 4. d2

s|M0 indicates using dissimilarity measure
d2

s based on 0-th order Markov chain model. Clusters for the four cecum samples are correct. For the three colon samples, two of them are clustered
correctly, while the other one is merged at last.
doi:10.1371/journal.pone.0084348.g011
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alignment-free approaches on metagenomic datasets is built on the

theoretical basis [14] that k-tuple frequencies are similar across

different regions of the same genome, but differ between genomes.

However, in metatranscriptomic data, the genes within a genome

can have different expression levels and the intron and inter-

genetic region sequences are removed, while in metagenomic data,

all the genomic regions are the same. At the same time, RNA the

different characteristics from DNA, such as degradation, stability,

easiness to be broken and alternative splicing, etc., which bring the

different preferences and bias distributions to the sequencing

process. Therefore, under the situation that: the expression

abundance information is imported, the sequences of intron and

inter-genic regions are taken out, and different sequencing

preference and bias are introduced, whether the alignment-free

approaches are valid is a critical question for their further

applications to the metatranscriptomic datasets.

Similar conclusions about the relative performance of the

different dissimilarity measures on clustering microbial metage-

nomic and/or metatranscriptomic communities were obtained.

Our conclusion about the applicability of alignment-free statistics,

in particular dS
2 , for the comparison of metatranscriptomic

samples is of biological significance. In addition, we showed that

metagenomic and metatranscriptomic samples can be separated

by using alignment-free statistics as shown in Figure 9, which

cannot be achieved by studying metagenomic or metatranscrip-

tomic dataset alone. Since the sequencing data, sequencing

platform, and the microbial communities from the two studies

were widely different, we believe that dS
2 can be used to effectively

cluster both metagenomic and metatranscriptomic communities.

Therefore, k-tuple based sequence signature methods such as dS
2

and d�2 are simple and computationally efficient for the

comparison of metatranscriptomic data, and they provide

Figure 12. Average symmetric difference scores for the mouse datasets under different sampling rates in Experiment 4. (A) is the
symmetric difference scores as a function of tuple size k for different dissimilarity measures based on the complete data. (B), (C) and (D) are the
average symmetric difference scores as a function of tuple size k for different dissimilarity measures based on 100 random samplings of 1%, 0.1% and
0.01% sampling rates, respectively. The lower the score is, the closer the clustering results and reference tree is. It is clear that d2

s shows best
performance under most of the conditions.
doi:10.1371/journal.pone.0084348.g012
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attractive alternative approaches for microbial community com-

parison.
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of tetranucleotide frequencies for the assignment of genomic fragments. Environ

Microbiol: 938–947.

29. Willner D, Thurber R, Rohwer F (2009) Metagenomic signatures of 86

microbial and viral metagenomes. Environ Microbiol 11: 1752–1766.

30. Reinert G, Chew D, Sun F (2009) Waterman MS: Alignment-free sequence

comparison (I): statistics and power. J Comput Biol 12: 1615–1634.

31. Robinson DR, Foulds LR (1981) Comparison of phylogenetic trees. Math Biosci

53: 131–147.

32. Robinson DF, LR F (1981) Comparison of phylogenetic trees. Math Biosci 53:

131–147.

33. Schloss P, Handelsman J (2006) Introducing TreeClimber, a test to compare

microbial community structures. Appl Environ Microbiol 72: 2379–2384.

34. Murtagh F (1984) Complexities of hierarchic clutering algorithms: the state of

the art. Comput Stat 1: 101–113.

35. Anderson M (2003) PCO: a FORTRAN computer program for principal

coordinate analysis. New Zealand: Department of Statistics, University of

Auckland. 7 p.

36. Xiong X, Frank D, Robertson C, Hung S, Markle J, et al. (2012) Generation and

Analysis of a Mouse Intestinal Metatranscriptome through Illumina Based RNA-

Sequencing. PLoS ONE 7: e36009.

37. Balzer S, Malde K, Lanzén A, Sharma A, Jonassen I (2010) Characteristics of

454 pyrosequencing data–enabling realistic simulation with flowsim. Bioinfor-

matics 26: 420–425.

38. Margulies M, Egholm M, Altman WE, etc (2005) Genome sequencing in

microfabricated high-density picolitre reactors. Nature 437: 376–380.

39. Zeng F, Jiang R, Chen T (2013) PyroHMMsnp: a SNP caller for Ion Torrent

and 454 sequencing data. Nucl Acid Res 41: e136.

Metatranscriptomic Comparison on k-Tuple Measures

PLOS ONE | www.plosone.org 19 January 2014 | Volume 9 | Issue 1 | e84348


