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Chest diseases are very serious health problems in the life of people. These diseases include chronic obstructive pulmonary disease,
pneumonia, asthma, tuberculosis, and lung diseases. The timely diagnosis of chest diseases is very important. Many methods have
been developed for this purpose. In this paper, we demonstrate the feasibility of classifying the chest pathologies in chest X-rays
using conventional and deep learning approaches. In the paper, convolutional neural networks (CNNs) are presented for the
diagnosis of chest diseases. The architecture of CNN and its design principle are presented. For comparative purpose, back-
propagation neural networks (BPNNs) with supervised learning, competitive neural networks (CpNNs) with unsupervised
learning are also constructed for diagnosis chest diseases. All the considered networks CNN, BPNN, and CpNN are trained and
tested on the same chest X-ray database, and the performance of each network is discussed. Comparative results in terms of

accuracy, error rate, and training time between the networks are presented.

1. Introduction

Medical X-rays are images which are generally used to diagnose
some sensitive human body parts such as bones, chest, teeth,
skull, and so on. Medical experts have used this technique for
several decades to explore and visualize fractures or abnor-
malities in body organs [1]. This is due to the fact that X-rays
are very effective diagnostic tools in revealing the pathological
alterations, in addition to its noninvasive characteristics and
economic considerations [2]. Chest diseases can be shown in
CXR images in the form of cavitations, consolidations, in-
filtrates, blunted costophrenic angles, and small broadly dis-
tributed nodules [3]. By analyzing the chest X-ray image, the
radiologists can diagnose many conditions and diseases such as
pleurisy, effusion, pneumonia, bronchitis, infiltration, nodule,
atelectasis, pericarditis, cardiomegaly, pneumothorax, frac-
tures, and many others [4].

Classifying the chest X-ray abnormalities is considered as
a tedious task for radiologists; hence, many algorithms were
proposed by researchers to accurately perform this task [5-7].
Over the past decades, computer-aided diagnosis (CAD)
systems have been developed to extract useful information

from X-rays to help doctors in having a quantitative insight
about an X-ray. However, these CAD systems could not have
achieved a significance level to make decisions on the type of
conditions of diseases in an X-ray [2-4]. Thus, the role of
them was left as visualization functionality that helps doctors
in making decisions.

A number of research works have been carried out on the
diagnosis of chest diseases using artificial intelligence
methodologies. In [1], multilayer, probabilistic, learning
vector quantization, and generalized regression neural
networks have been used for diagnosis chest diseases. The
diagnosis of chronic obstructive pulmonary and pneumonia
diseases was implemented using neural networks and arti-
ficial immune system [8]. In [9], the detection of lung
diseases such as TB, pneumonia, and lung cancer using chest
radiographs is considered. The histogram equalization in
image segmentation was applied for image preprocessing,
and feedforward neural network is used for classification
purpose. The above research works have been efficiently used
in classifying medical diseases; however, their perfor-
mance was not as efficient as the deep networks in terms of
accuracy, computation time, and minimum square error
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FIGURE 1: Chest X-ray diseases. (a) Atelectasis. (b) Cardiomegaly. (c) Consolidation. (d) Edema. (e) Effusion. (f) Emphysema. (g) Fibrosis.
(h) Infiltration. (i) Mass. (j) Nodule. (k) Pneumonia. (1) Pneumothorax.

achieved. Deep learning-based systems have been applied to
increase the accuracy of image classification [10, 11]. These
deep networks showed superhuman accuracies in per-
forming such tasks. This success motivated the researchers to
apply these networks to medical images for diseases clas-
sification tasks, and the results showed that deep networks
can efficiently extract useful features that distinguish dif-
ferent classes of images [12-15]. Most commonly used deep
learning architecture is the convolutional neural network
(CNN). CNN has been applied to various medical images
classification due to its power of extracting different level
features from images [11-15].

Having gone through the related research studies, in this
paper, a deep convolutional neural network (CNN) is employed
to improve the performance of the diagnosis of the chest dis-
eases in terms of accuracy and minimum square error achieved.
For this purpose, traditional and deep learning-based networks
are employed to classify most common thoracic diseases and to
present comparative results. Backpropagation neural network
(BPNN), competitive neural network (CpNN), and convolu-
tional neural network (CNN) are examined to classify 12
common diseases that may be found in the chest X-ray, that is,
atelectasis, cardiomegaly, effusion, infiltration, mass, nodule,
pneumonia, pneumothorax, consolidation, edema, emphysema,



Journal of Healthcare Engineering

and fibrosis (Figure 1). In this paper, we aim at training both
traditional and deep network using the same chest X-ray dataset
and evaluating their performances. The data used in the paper
are obtained from the National Institutes of Health—Clinical
Center [16]. The dataset contains 112,120 frontal-view X-ray
images of 30,805 unique patients.

This paper is structured as follows: Section 2 presents
the methodologies used for diagnosis chest diseases. A brief
explanation of the BPNN, CpNN, and CNN is given. A de-
scription of the convolutional neural network used for diagnosis
chest diseases and its operating principles are presented. Section
3 discusses the results of simulations of the networks used, in
addition to the database description. A comparison of the
performances of the networks used in simulations is given in
Section 4, and Section 5 is the conclusion part of the paper.

2. Machine Learning for Diagnosis of
Chest Diseases

2.1.  Backpropagation  Neural =~ Network  (BPNN).
Backpropagation neural network (BPNN) is a multilayer
feedforward neural network that uses a supervised learning
algorithm known as error back-propagation algorithm.
Errors accumulated at the output layer are propagated back
into the network for the adjustment of weights [16-19].
Figure 2 depicts a conventional BPNN which consists of
three layers: input, hidden, and output. As seen in Figure 2,
there is no backward pass of computation except the op-
erations used in training. All the functioning operations
proceed in the forward direction during simulation.

The pseudocode algorithm for BPNN is given below [20].

(i) Network initialization: randomly choose the initial
weights

(ii) Select first training pair

(iii) Forward computation that includes the following
steps:

(a) Apply the inputs to the network

(b) Calculate the output for every neuron from the
input layer, through the hidden layer(s), to the
output layer

(c) Calculate the error at the outputs

(iv) Backward computation

(a) Use the output error to compute error signals
for preoutput layers

(b) Use the error signals to compute weight
adjustments

(c) Apply the weight adjustments

(v) Repeat Forward and Backward computations for
other training pairs.

(vi) Periodically evaluate the network performance.
Repeat Forward and Backward computations until
the network converges on the target output.

To calculate outputs for each neuron based on the input
pattern, the equations below can be used. The output of the
J-th neuron for the pattern p is O, :

Input layer
Output layer

Hidden layer

FIGURE 2: Backpropagation neural network.
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where k ranges over the input indices, Wy; is the weight on
the connection from k-th input to j-th neuron, and b; is the
bias weight for the j-th output neuron.

To calculate the error signal at the output, the equations
below can be used:

1Y 2
E b Z (ij_opj) ’ (2)

where T, is the target value of the j-th output neuron for
pattern p and O,; is the actual output value of the j-th output
neuron for pattern p.

The backpropagation algorithm is based on the gradient
descent optimization method [20-22]. By determining the
derivative of error, we can update the network parameters.
The output neuron error signal d ,; is determined as follows:

dp; =(Tp;=0p)0,;(1-0,;). (3)

To calculate the error signal for each hidden neuron, the
equations below can be used.
The hidden neuron error signal §,; is given by

Opj = Opj(l - Opj) Zk: OpkWij» (4)

where §,; is the error signal of a postsynaptic neuron k and
W is the weight of the connection from j-th hidden neuron
to the k-th postsynaptic neuron [21].

To calculate and apply weight adjustments, the equations
below can be used:

Wi (t+1) =W (1) — yAW (1)

(5)
+B(Wji () -W;(t-1)),

where y is the learning rate and f3 is the momentum. Here,
AW ;; (1) = 6,,0,;. (6)

2.2. Competitive Neural Network. The competitive neural
network is a simple neural network that consists of two
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FIGURE 3: Competitive neural network.

layers and uses an unsupervised learning algorithm for
training. The inputs of the network are features, and the
outputs are the classes. The input layer is fully connected to
the output layer. Each connection between input and output
layers is characterized by weight coeflicients. In every epoch,
the neurons in the output layer compete among themselves
when input features are applied to the network input
[23-25]. The competitive neural network (Figure 3) relies
fundamentally on the Hebbian learning rule. The distinction
is the following: in competitive learning, output neurons
have to compete among themselves to get activated, and only
one neuron is activated at any time, as compared to Hebbian
learning where more than one neuron can be activated or
fired at any time.

These networks use a “winner-takes-all” strategy, where
only the weights connected to the winner neuron are updated
in a particular epoch, while other weights are not updated
[24, 25]. This learning process has the resultant effect of
increasingly strengthening the correlation between the inputs
and the corresponding winner neurons during learning.

When the patterns are supplied to the input layer, the
neurons in the output layer compete among themselves to be
activated [23-25]. The rules used to update the weights of
these networks are given below. For output winner neuron k,
we have

Awyj = 1(x; - wy), (7)

where 7 is the learning rate, x; is the j-th input pattern, wy; is
the weight connection between j-th and k-th neurons, and
Awy; is the computed weight change.

If k-th output neuron loses at epoch p, then

Aw; = 0. (8)

Weight update for k-th neuron at epoch (p+1) is
achieved using the following equation:

wj (p+1) = wy; (p) + Awy;. (9)

2.3. Convolutional Neural Networks. Deep learning is
a machine learning method inspired by the deep structure of
a mammal brain [26]. The deep structures are characterized
by multiple hidden layers allowing the abstraction of the
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different levels of the features. In 2006, Hinton et al. de-
veloped a new algorithm to train the neuron layers of deep
architecture, which they called greedy layerwise training
[12]. This learning algorithm is seen as an unsupervised
single layer greedily training where a deep network is trained
layer by layer. Because this method became more effective, it
has been started to be used for training many deep networks.
One of the most powerful deep networks is the convolu-
tional neural network that can include multiple hidden
layers performing convolution and subsampling in order to
extract low to high levels of features of the input data
[27-30]. This network has shown a great efficiency in dif-
ferent areas, particularly, in computer vision [28], biological
computation [29], fingerprint enhancement [30], and so on.
Basically, this type of networks consists of three layers:
convolution layers, subsampling or pooling layers, and full
connection layers. Figure 4 shows a typical architecture of
a convolutional neural network (CNN). Each type of layer is
explained briefly in the following sections.

2.3.1. Convolution Layer. In this layer, an input image of size
Rx*C is convolved with a kernel (filter) of size a*a as shown in
Figure 4. Each block of the input matrix is independently
convolved with the kernel and generated a pixel in the output.
The result of the convolution of the input image and kernel is
used to generate n output image features. Generally, a kernel
of the convolution matrix is referred to as a filter while the
output image features obtained by convolving kernel and the
input images are referred to as feature maps of size ixi.

CNN can include multiple convolutional layers, the
inputs and outputs of next convolutional layers are the
feature vector. There is a bunch of n filters in each con-
volution layer. These filters are convolved with the input, and
the depth of the generated feature maps (1) is equivalent to
the number of filters applied in the convolution operation.
Note that each filter map is considered as a specific feature at
a certain location of the input image [31-33].

The output of the I-th convolution layer, denoted as C](D,
consists of feature maps. It is computed as

el

c=B"+ Y KV xC, (10)
=1

where Bi(l) is the bias matrix and Ki(,lf Y is convolution fil-
ter or kernel of size axa that connects the j-th feature map
in layer (I—1) with the i-th feature map in the same layer.
The output C,»(l) layer consists of feature maps. In (10), the
first convolutional layer C,-(H) is input space, that is,
¥ =X,
1 1
The kernel generates feature map. After the convolution
layer, the activation function can be applied for nonlinear

transformation of the outputs of the convolutional layer:

v =v(c?), (11)

where Y is the output of the activation function and C" is
the input that it receives.

Typically used activation functions are sigmoid, tanh,
and rectified linear units (ReLUs). In this paper, ReLUs
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Ficure 4: Convolutional neural network.

which is denoted as Y” = max(0, Y") are used. This
function is popularly used in deep learning models due to its
help in reducing the interaction and nonlinear effects. ReLU
converts the output to 0 if it receives a negative input, while
it returns the same input value if it is positive. The advantage
of this activation function over other functions is the faster
training because of the error derivative, which becomes very
small in the saturating region; therefore, the updates of the
weights almost vanish. This is called the vanishing gradient
problem.

2.3.2. Subsampling Layer. The main aim of this layer is to
spatially reduce the dimensionality of the features maps
extracted from the previous convolution layer. To do so,
a mask of size b*b is selected as shown in Figure 4, and the
subsampling operation between the mask and the feature
maps is performed. Many subsampling methods were
proposed such as averaging pooling, sum pooling, and
maximum pooling. The most commonly used pooling is the
max pooling, where the maximum value of each block is the
corresponding pixel value of the output image. Note that
a subsampling layer helps the convolution layer to tolerate
rotation and translation among the input images.

2.3.3. Full Connection. The final layer of a CNN is a tradi-
tional feedforward network with one or more hidden layers.
The output layer uses Softmax activation function:

7= f(&"),
D (12)

Z wz]yl(l 1’

where w;’; are the weights that should be tuned by the
complete tully connected layer in order to form the rep-
resentation of each class and f is the transfer function which

where Z

O]

represents the nonlinearity. Note that the nonlinearity in the
tully connected layer is built within its neurons, not in
separate layers as in convolutions and pooling layers.

After finding output signals, the training of the CNN is
started. Training is performed using the stochastic gradient
descent algorithm [34]. The algorithm estimates the gradi-
ents using a single randomly picked example from the
training set. As a result of training, the parameters of CNN
are determined.

3. Simulations

In this section, the simulations of the above networks are
described. Note that the BPNN and CpNN networks are
trained using 620 out of 1000 images, and the rest is used for
testing. The CNN is trained using 70% of 120,120 available
data, and 30% are used for testing. The input images are of
size 32 x 32 for the sake of reducing computation cost.

3.1. Simulation of Chest Diseases Using BPNN.
Backpropagation neural network is based on a supervised
learning algorithm, and they are very important and useful in
pattern recognition problems [17, 19, 35]. The training of
backpropagation networks includes the update of parameters
in order to produce good classification results. Hence, in this
paper, several experiments were conducted such that signif-
icantly accurate results can be obtained. For this aim, different
number of hidden neurons, learning rate, and momentum are
applied for obtaining better classification result.

The architecture of the designed backpropagation neural
network for the image of size 32 x 32 is described in Figure 5.

Since the backpropagation network uses a supervised
learning algorithm, it is, therefore, necessary that the training
data could be labelled. The used training data have been
labelled according to the 12 classes presented in the classi-
fication task. In training stage, different number of hidden
neurons, learning rate, and momentum were experimented
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FIGURE 5: Backpropagation neural network.

TaBLE 1: Training parameters for backpropagation networks
(32 x 32 input pixels).

Networks BPPN1  BPNN2 BPNN3 BPNN4
Training samples 620 620 620 620
Hidden neurons 20 35 45 60
Learning rate 0.010 0.0045 0.300 0.15
Momentum rate 0.040 0.0072 0.0504 0.0619
Activation function  Sigmoid Sigmoid Sigmoid = Sigmoid
Epochs 1000 1000 1256 1374
Training time (sec) 148 156 184 193
Mean squared error  0.0077 0.0025 0.0056 0.0096

for obtaining better classification result. Table 1 presents the
used architectures of BPNN, denoted as BPNN1, BPNN2,
BPPN3, and BPNN4.

Since there are 12 classes, 12 neurons have been used in
the output layer of the network. The learning curve of
BPNN2, which is the network with lowest achieved MSE
(Table 1), is shown in Figure 6.

3.2. Simulation of Chest Diseases Using Competitive Neural
Network (CpNN). In this section, a competitive neural
network using an unsupervised learning algorithm is used
for classification of chest diseases. Leveraging on the fact that
such networks do not need manual labelling of training data,
they save time for the labelling process. Figure 7 shows the
architecture of the network used in this paper.

The competitive neural network has two layers desig-
nated for the input and output signals. The images are fed as
input to the network, and the output neurons learn unique
attributes or patterns of the images that differentiates one
class from the others. The number of input neurons is 1024
(input image pixels), and the number of output neurons is 12
(number of output classes).

The training parameters of the networks used in this
paper are given in Table 2. These competitive networks are
trained using 32 x 32 pixels images. Since the network uses
an unsupervised learning algorithm, there is no mean
squared error goal to minimize.
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10° ¢ T T : : : 5
B
T 10t .
<
by
o
L
3
=
102} -
= T s SO _
I+
L
=
1073 £ . . . . . -
0 200 400 600 800 1000
1110 epochs
—— Train
--- Best
--- Goal

FIGURE 6: Learning curve for BPNN2.

3.3. Simulation of Chest Diseases Using Convolutional Neural
Networks. In this section, the design of the convolutional
neural network employed for the chest X-ray medical images
are presented. The suitable values of learning parameters of
the network are determined through experiments. Note that
out of the obtained 120,120 images, 70% are used for training
and 30% are used for validating the network.

The input images of the network are of size 32 x 32. The
outputs are 12 classes. The proposed CNN includes 3 hidden
layers. Table 3 shows the structure of the CNN and its
learning parameters. Here, “Conv” represents a convolution
layer, “BN” represents batch normalization, “FM” represents
feature maps, and “FC” represents fully connected layer.
Note that the filters of size 3 x 3 are used in all convolution
operations with padding, while all pooling operations are
performed using max pooling windows of size 2 x 2.

During simulation, the size of available training data and
system specifications for constructing a model were taken into
consideration. Thus, dropout training schemes and a batch
normalization were employed, and the improvement in model
generalization was achieved [24, 25]. Note that a minibatch
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Ficure 7: Competitive neural network.

TaBLE 2: Training parameters for competitive neural network
(32 x32 input pixels).

Networks CpNN1 CpNN2 CpNN3
Training samples 620 620 620
Learning rate 0.0036 0.05 0.1
Maximum epochs 1000 2000 4000
Training time (sec) 300 secs 434 secs 468

optimization of size 100 via stochastic gradient descent is
employed [34] for training. In addition, a learning rate of 0.001
and 40,000 iterations are used for training of the CNN model.

The extraction of different levels of features of chest
X-ray images in both convolution and pooling layer 1 is
given in Figure 8. Figure 8(a) shows the learned filters (or
kernels) at convolution layer 1 and Figure 8(b) at the pooling
layer of the CNN.

4. Discussion of Results

The overall performances of the BPNN and CpNN are tested
using 380 images. Table 4 shows the recognition rates ob-
tained for the backpropagation networks using 32 x 32 pixels
as the input image size.

It can be seen from the table that all the trained back-
propagation neural networks (BPNNs) have different
training and testing performances. BPNN2 achieved the
highest recognition rate for both training and testing
datasets compared to the other networks, that is, 99.19% and
89.57%, respectively.

Competitive neural networks that use an unsupervised
learning algorithm were also trained and tested using the
same images. These networks are faster to train, considering
that they have no desired outputs and therefore no error
computations and back-pass of error gradients for weights
update. The simulation results of the competitive networks
using different learning rate and the number of maximum
epochs are given in Table 5.

TaBLE 3: CNN training parameters.

Layers Description Values

32x32x1 images with

Input layer .
P Y “zerocenter” normalization

Input image

Convl +BN + 16 feature maps of
. ReLu size 10 x10
Hidden layer 1 Pooll 2 x 2 kernel size with
stride of 2
Conv2 + BN + 32 feature maps of
Hidden layer 2 Relu size 10 X.lO .
Pool2 2 x 2 kernel size with
stride of 2
. Conv3+BN+ 64 feature maps of size
Hidden layer 3 ReLu 10x10
I FC 2 fully connected layers
Classification layer Softmax 2 units

From the table, it can be seen that CpNN2 has the highest
recognition rates for both training and test data. Further-
more, it can be seen that CpNN3 has a higher recognition
rate than CpNN2 for the training data. Its performance on
the test data is lower than CpNN2; that is, it can be stated
that CpNN3 has lower generalization power as compared to
CpNN2.

Furthermore, the convolutional neural network (CNN)
designed for this classification task is also tested using 30% of
the available chest X-ray images, and the results are shown in
Table 6.

Overall, the performance of the three employed net-
works in terms of recognition rate, training time, and
reached mean square error (MSE) is described in Table 7.

As shown in Tables 4 and 5, the networks behave dif-
ferently during training and testing, and this is obviously due
to the difference in the structures, working principles, and
training algorithms of the three employed networks. Also in
Table 7, the CNN has achieved the highest recognition rate
for training and testing data, compared to other employed
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(b)

FIGURE 8: Learned filters: (a) convolution layer 1 and (b) pooling layer 1.

TaBLE 4: Recognition rates for BPNNs on training and validation
data (32 x 32 pixels).

Network models  Training data (70%) Validation data (30%)

BPNN1 92.74% 87.42%
BPNN2 99.19% 89.57%
BPNN3 97.32% 84.36%
BPNN4 98.10% 85.24%

TaBLE 7: Performance of the BPNN, CpNN, and CNN.

Network  Training  Recognition Reached Maximum
. number of
models time rate MSE . .
iterations
BPNN2 630 secs 80.04% 0.0025 5000
CpNN2 300 secs 89.57% 0.0036 1000
CNN 2500 secs 92.4% 0.0013 40,000

TaBLE 5: Recognition rates for CpNNs using training and vali-
dation data (32 x 32 pixels).

Network models Training data (70%) Validation data (30%)

CpNN1 84.21% 81.40%
CpNN2 85.23% 84.71%
CpNN3 86.57% 76.25%

TaBLE 6: Recognition rates for CNNs on training and validation
data (32 x 32 pixels).

Validation data (30%)
92.4%

Network model
CNN

Training data (70%)
100%

networks. In contrast, this outperformance of CNN over
other networks requires longer time and a larger number of
learning iterations than that of BPNN2 and CpNN2.
Moreover, it can be seen that the three networks have
achieved a low MSE, whereas the CNN scored the lowest
(0.0013). Furthermore, it is noted that the time needed for
the CNN to converge is roughly higher than that of BPNN2
and CpNN2. Consequently, this is due to the depth of the
structure of a convolutional neural network, which normally
requires a long time, in particular, when the number of
inputs is large. Nonetheless, this deep structure is the
main factor in achieving a higher recognition rate compared
to other networks such as BPNN and CpNN. Lastly,
Figure 9 shows an example of the CNN testing paradigm.

The networks first take a chest X-ray as an input and output
the probabilities of the classes.

A comparison of the developed networks with some
earlier works is shown in Table 8. Firstly, it is seen that
shallow (traditional) networks (BPNN and CpNN) could not
achieve high recognition rates compared to other deep
networks, which is obviously due to their deficiency in
extracting the important features from input images.
Moreover, it is noticed that the proposed deep convolutional
neural network (CNN) achieved a higher recognition rate
than other earlier research work such as CNN with GIST
features [36]. The transfer learning-based networks are also
used for chest X-rays classification such as VGG16 [37] and
VGG19 [37]. They have gained lower generalization capa-
bilities compared to the proposed network. These pretrained
models [37] have very powerful features extraction capa-
bilities since they were trained using a huge database, Image
Net [38]. Note that, we compared the researches that pro-
vided explicitly achieved accuracies. The obtained results can
show that applying deep CNNs to the problem of chest X-ray
diseases is promising in a way that similar or confusing
diseases could be correctly classified with good recognition
rates.

5. Conclusion

In this paper, convolutional neural network (CNN) is
designed for diagnosis of chest diseases. For comparative
analysis, backpropagation neural network (BPNN) and
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Input: chest X-ray
Top 12 predictions
Trained CNN Mass
Atelectasis
Output: mass 98.8% Effusion
Pneumonia
Cardiomegaly
Infiltration
Nodule
Pheumothorax
Consolidation
Edema
Emphysema
Fibrosis
0 01 02 03 04 05 06 07 08 09 1
Probability
FIGURE 9: CNN final classification of chest X-rays with classes probabilities.
TaBLE 8: Results comparison with earlier works.
Parameters CNN BPNN2 CpNN2 CNN with GIST [36] VGG16 [37] VGG19 [37]
Number of images 120,120 1000 1000 637 8100 8100
Accuracy 92.4% 80.04% 89.57% 92% 86% 92%

competitive neural network (CpNN) are carried out for the
classification of the chest X-ray diseases. The designed
CNN, BPNN, and CpNN were trained and tested using the
chest X-ray images containing different diseases. Several
experiments were carried out through training of these
networks using different learning parameters and a num-
ber of iterations. In both backpropagation and competitive
networks, it was observed that the input image of size
32x32 pixels showed good performance and achieved
high recognition rates. Based on recognition rates, the
backpropagation networks outperformed the competitive
networks. Moreover, the competitive networks did not
require manual labelling of training data as it was carried
out for the backpropagation network. Furthermore,
a CNN was also trained and tested using a larger dataset
which was also used for training and testing of BPNN and
CpNN. After convergence, it was noticed that the CNN
was capable of gaining a better generalization power than
that achieved by BPNN and CpNN, although required
computation time and the number of iterations were

roughly higher. This outperformance is mainly due to the
deep structure of CNN that uses the power of extracting
different level features, which resulted in a better gener-
alization capability. The simulation result of proposed
CNN is also compared with other deep CNN models such
as GIST, VGG16, and VGG19. These networks have lower
generalization capabilities and accuracies compared to the
proposed network. The obtained results have demon-
strated the high recognition rates of the proposed CNN.
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