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Abstract: The hypothalamus maintains whole-body homeostasis by integrating information from
circulating hormones, nutrients and signaling molecules. Distinct neuronal subpopulations that
express and secrete unique neuropeptides execute the individual functions of the hypothalamus,
including, but not limited to, the regulation of energy homeostasis, reproduction and circadian
rhythms. Alterations at the hypothalamic level can lead to a myriad of diseases, such as type
2 diabetes mellitus, obesity, and infertility. The excessive consumption of saturated fatty acids
can induce neuroinflammation, endoplasmic reticulum stress, and resistance to peripheral signals,
ultimately leading to hyperphagia, obesity, impaired reproductive function and disturbed circadian
rhythms. This review focuses on the how the changes in the underlying molecular mechanisms
caused by palmitate exposure, the most commonly consumed saturated fatty acid, and the potential
involvement of microRNAs, a class of non-coding RNA molecules that regulate gene expression post-
transcriptionally, can result in detrimental alterations in protein expression and content. Studying the
involvement of microRNAs in hypothalamic function holds immense potential, as these molecular
markers are quickly proving to be valuable tools in the diagnosis and treatment of metabolic disease.

Keywords: palmitate; hypothalamus; energy homeostasis; reproduction; circadian rhythm; microR-
NAs; leptin; insulin; NPY; POMC

1. Introduction
1.1. Obesity and Palmitate Consumption

The World Health Organization has estimated that nearly 2 billion people worldwide
are obese or overweight, which represents a near tripling of the obesity rate since 1975 [1].
Obesity is accompanied by dangerous comorbidities such as type-2 diabetes mellitus,
cardiovascular disease, infertility, and some cancers [2,3]. The primary cause of obesity
is positive energy balance wherein individuals consume more energy than is expended.
Another important factor in the development or predisposition to obesity is the source
of nutrients contributing to the positive energy balance. The increase in obesity rates has
coincided with a 50% increase in the consumption of fats [4], and diets high in fat (HFD)
induce metabolic syndrome in rodents and mice [5]. There are two general categories of
fatty acids: saturated fats, which are commonly called “bad” fats, and unsaturated fats,
which are considered “healthy” fats. The increase in dietary fat consumption has been
primarily in the form of saturated fatty acids, which make up half of the fatty acid content
in palm oil, the most commonly consumed cooking oil in the world.

Palmitate is a 16-carbon saturated fatty acid that is crucial for cellular function, since it
is a component in the synthesis of membrane phospholipids, transport lipids, and palmitoy-
lated proteins [6]. Although palmitate is important for cellular function and is synthesized
endogenously via de novo lipogenesis, the excessive consumption of palmitate can have
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adverse consequences [7]. Under normal circumstances, palmitate is converted to triglyc-
erides for long-term energy storage, but excess palmitate leads to increased production
of potentially detrimental palmitate metabolites [8,9]. Palmitate and its metabolites can
induce several forms of cellular stress, including endoplasmic reticulum (ER) stress, oxida-
tive stress, and inflammation [10,11]. This is particularly a problem for the hypothalamus
as obese individuals have higher concentrations of palmitate in their cerebrospinal fluid
(CSF) [12] and brain [13]. This review will focus on the disruptive effects of palmitate on
the hypothalamic control of basic physiological processes, the mechanisms underlying this
dysregulation, and the potential role of microRNAs (miRNA) in these effects.

1.2. The Hypothalamus as a Central Homeostatic Regulator

The hypothalamus is a small region of the brain composed of distinct cell popula-
tions that play a crucial role in maintaining whole body homeostasis by regulating energy
balance, reproduction, and circadian rhythms [14], among other processes. The hypotha-
lamus, in part, links the central nervous system to the endocrine system, as neurons in
the hypothalamus communicate with the pituitary gland by releasing hormones into the
hypophyseal portal vein [15]. The secreted hormones will then induce or inhibit the secre-
tion of hormones from the pituitary gland. The position of the hypothalamus allows it to
sense nutrients, including palmitate, and peripheral signals that pass through the median
eminence, a porous region of the blood brain barrier [15].

The hypothalamus is able to orchestrate multiple processes as a result of the hetero-
geneous populations of neurons that secrete neuropeptides with distinct functions. This
inherent heterogeneity makes studying the direct effects of compounds on specific neuronal
subpopulations difficult and identifying the underlying mechanisms nearly impossible.
Primary cultures permit the study of direct effects of compounds on neurons, but these
cultures have short life spans, limited numbers of surviving neurons, and are still het-
erogeneous in nature [16]. To resolve this, the Belsham lab generated a bank of clonal
immortalized hypothalamic cell lines from murine, embryonic and adult hypothalamii. The
immortalization process utilized primary cultures of hypothalamic neurons, the addition of
ciliary neurotrophic factor (CNTF) to induce proliferation in adult neurons, and transforma-
tion with SV40 T-antigen [17]. The immortalized cells underwent selection with geneticin
and were subsequently subcloned to generate genetically identical clonal populations that
represent a single subpopulation of hypothalamic neurons. Immortalized heterogeneous
neuronal populations of neuropeptide subtypes such as mHypoA-POMC/GFP, mHypoA-
NPY/GFP, mHypoA-GnRH/GFP, and mHypoA-Kiss/GFP were also generated from the
hypothalamii of transgenic mice containing enhanced green fluorescent protein (eGFP)
downstream of the promoters of the genes of interest. The cells were sorted using fluores-
cent activated cell sorting (FACS), thereby selecting all immortalized neurons expressing
GFP and as a result the neuropeptide-expressing neurons of interest [16]. These cell models
have been used extensively to characterize neuronal function and the molecular events
upon sensing cellular signals, such as palmitate [18].

1.3. Mechanisms and Biogenesis of microRNAs

microRNAs (miRNAs) are short (21–23nt) non-coding strands of RNA that complex
with and act as guides for the argonaute (AGO) protein to regulate gene expression post-
transcriptionally. They target gene transcripts based on complementarity to a 6-nucleotide
seed sequence, which is often found at positions 2–7 from the 5′ end of the miRNA [19].
Upon binding to the targeted messenger RNA (mRNA), miRNAs can either inhibit the
translation of the mRNA or lead to its degradation. This mechanism allows for the precise
control of gene regulation by the cell and can be drastically altered in disease states [20].

The canonical pathway for miRNA synthesis begins with transcription by RNA poly-
merase II, which transcribes the primary miRNA (pri-miRNA) containing a stem loop
structure with the miRNA sequence. After transcription, the pri-miRNA undergoes further
processing within the nucleus by Drosha, a nuclear RNase III, which cleaves the pri-miRNA
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to release the stem-loop structure, known as the pre-miRNA [21]. The pre-miRNA is then
exported to the cytoplasm by exportin 5, a ubiquitously expressed exportin that recognizes
the double-stranded RNA portion of the stem-loop structure [22]. Once in the cytoplasm,
the pre-miRNA is recognized by Dicer, a cytoplasmic RNase III, which cleaves the miRNA
duplex from the stem-loop structure [23]. The miRNA duplex is then combined with AGO
to form the RNA-induced silencing complex (RISC) and will concomitantly be used to
target mRNAs for inhibition.

In addition to the actions that miRNAs have on the cells that produce them, they
are also present in the circulation and can affect distant organs. miRNAs are trans-
ported through extracellular fluids within exosomes or bound to proteins. Exosomes
are membrane-bound extracellular vesicles with a diameter below 100 nm. Interestingly,
the quantity and content of exosomes are disrupted in disease states [24], suggesting miR-
NAs have potential for use as biomarkers [25]. Furthermore, exosomes enriched with
miRNAs linked to the development of glucose intolerance and insulin resistance are de-
tected in the blood of obese individuals [26,27]. The injection of exosomes collected from
the adipose tissue macrophages of obese mice into lean mice caused glucose intolerance
and insulin resistance, whereas the reverse improved insulin sensitivity in obese mice [28].
Taken together, these results suggest that secreted miRNAs present in exosomes likely
mediate disease processes.

miRNAs have been predicted to play a pivotal role in gene regulation, as studies
have estimated that as many as 60% of protein coding genes in the human genome may
be targeted by miRNAs [29]. Furthermore, miRNAs are important for survival, as the
global knockout of Dicer or DGCR8, a cofactor for Drosha function, leads to embryonic
mortality [30,31]. The conditional knockout of Dicer in the mouse brain or in hypothalamic
POMC neurons leads to hyperphagic obesity [32,33], demonstrating the importance of
miRNAs in energy homeostasis. The dysregulation of miRNA expression in disease states
indicates distinct miRNA expression profiles for individuals with obesity, type 2 diabetes
mellitus, and cancers [34–36]. Of interest to this review, multiple miRNA array studies have
shown that HFD exposure in mice can induce distinct miRNA expression profiles in the
hypothalamus [37,38]. With the emerging potential of miRNAs to be used as biomarkers
and therapeutics, studies exploring the physiological effects of miRNAs in the hypotha-
lamus may provide a new class of tools to diagnose and target hypothalamus-associated
metabolic disease. Hence, this review will include a perspective on miRNAs involved in
hypothalamic function, and how palmitate exposure may alter these mechanistic pathways.

2. Energy Homeostasis

Energy homeostasis is primarily controlled in the arcuate nucleus (ARC) of the hy-
pothalamus by two opposing neuronal populations, the orexigenic, appetite inducing,
neuropeptide Y (NPY)/agouti related peptide (AgRP) expressing neurons and the anorexi-
genic, appetite suppressing, proopiomelanocortin (POMC) expressing neurons. The ARC
is situated directly above the median eminence allowing it to sense peripheral signals and
nutrients in the circulation. These neuronal populations synthesize and secrete their respec-
tive feeding neuropeptides in response to nutritional status communicated via peripheral
hormones, nutrients and signaling molecules. The neuropeptides primarily act on second
order neurons in the paraventricular nucleus (PVN) and the opposing neuronal population
in the ARC to control energy homeostasis. NPY and AgRP induce feeding and inhibit the
activity of POMC neurons [39], whereas POMC neurons, secreting α-melanocyte stimu-
lating hormone (α-MSH) have the opposite effect, suppressing food intake and inhibiting
NPY/AgRP neurons by activating melanocortin receptors, MC3R and MC4R [39]. This
system is drastically altered in obesity as the neurons become resistant to peripheral satiety
signals, such as insulin and leptin [40], leading to excessive food intake, weight gain, and
metabolic disease [41].
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2.1. Hypothalamic Insulin Signaling Is Impaired by Palmitate
2.1.1. Insulin Signaling in the Hypothalamus

Although initially debated, the critical role of hypothalamic insulin action in regulating
whole body energy homeostasis is now uncontested [42,43]. Pancreatic beta cells are the
primary source of insulin; they secrete insulin in response to elevated blood glucose
levels following a meal, allowing peripheral tissues to utilize or store the glucose [44].
Insulin travels through the circulation and is sensed by the hypothalamus at the median
eminence [43]. Insulin is an anorexigenic hormone, and its hypothalamic actions lead
to reduced food intake, and ultimately body weight, in rodents and primates [45,46].
Besides these anorexigenic effects, central insulin signaling in AgRP neurons is essential for
suppression of hepatic gluconeogenesis [47], and in POMC neurons, it is necessary for the
insulin-induced suppression of lipolysis in adipose tissue [48]. These actions are mediated
by the ability of insulin to suppress orexigenic NPY/AgRP, while promoting anorexigenic
POMC/α-MSH [49–51], which act on second-order neurons located in the PVN and other
hypothalamic nuclei. Ultimately the actions of insulin in the hypothalamus and peripheral
tissues achieve the same goal, which is to ensure glucose homeostasis after a meal [44].

Mechanistically, insulin acts via the insulin receptor (InsR), which dimerizes upon
insulin binding and undergoes autophosphorylation of tyrosine residues, followed by
recruitment and activation of insulin receptor substrate (IRS) proteins. Insulin actions
occur primarily through two downstream signaling pathways. The first pathway mediates
the effect of insulin on metabolism and begins with the activation of phosphoinositide
3-kinase (PI3K) by IRS. PI3K assists in the synthesis of PIP3, and PIP3 activates Akt via
PDK1. Akt then phosphorylates forkhead box protein O1 (FOXO1) causing its expulsion
from the nucleus, resulting in the anorexigenic actions of insulin signaling, which is to
suppress Npy and Agrp and promote Pomc transcription. Akt also activates the mTOR
signaling pathway, leading to the inhibition of AMP-activated protein kinase (AMPK),
a protein kinase that is activated in low energy states to replenish ATP levels (Figure 1).
The second pathway mediates the effect of insulin on cell proliferation and differentiation
and involves mitogen-activated protein kinase kinase(MEK)/extracellular signal-regulated
kinase (ERK)1/2 activation [44]. A commonality between insulin and leptin signaling is
PI3K, which integrates anorexigenic signals from both pathways [52] and is discussed
further later in this review.

2.1.2. Hypothalamic Insulin Resistance

A hallmark of pre-diabetes and type II diabetes is an inability to respond appropriately
to insulin. This phenomenon, known as insulin resistance, results from chronically elevated
insulin levels, termed hyperinsulinemia, and desensitization of the insulin signaling path-
way, ultimately resulting in improper energy balance. High calorie diets induce constant
insulin secretion and activation of InsR, leading to its downregulation as well as desensitiza-
tion of downstream signaling molecules [43,44]. Excess insulin-induced insulin resistance
has been demonstrated in several hypothalamic neuronal models, including NPY/AgRP-
and POMC-expressing neurons [51–53]. Specifically, insulin treatment in the mHypoE-46
cell line, an NPY/AgRP-expressing model, downregulated Npy and Agrp expression in
the immediate term, as expected [50]. However, high insulin exposure (100 nM) for as
little as 8 h downregulated IRβ, IRS1 and diminished subsequent insulin-stimulated Akt
phosphorylation [53]. mTOR-S6K1-mediated phosphorylation of IRS-1, and degradation
of IRS-1 and InsR via the proteasomal or lysosomal pathway, respectively, were implicated
in the mechanism of insulin-induced insulin resistance in these NPY/AgRP-expressing
cells [53].
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leading to its expulsion from the nucleus, leading to decreased Npy and Agrp and increased Pomc expression. Akt also 
activates mTOR signaling. Palmitate impairs insulin signaling by inducing, inflammation, ER stress, and lysosomal and 
proteasomal degradation of INSR or IRS. Components of the insulin signal transduction pathway are targeted by miRNAs 
include. INSR is targeted by miR-1983 and miR-7, IRS is targeted by miR-7 and miR-200a, and PI3K is targeted by miR-
103. 

2.1.2. Hypothalamic Insulin Resistance 
A hallmark of pre-diabetes and type II diabetes is an inability to respond appropri-

ately to insulin. This phenomenon, known as insulin resistance, results from chronically 
elevated insulin levels, termed hyperinsulinemia, and desensitization of the insulin sig-
naling pathway, ultimately resulting in improper energy balance. High calorie diets in-
duce constant insulin secretion and activation of InsR, leading to its downregulation as 
well as desensitization of downstream signaling molecules [43,44]. Excess insulin-induced 
insulin resistance has been demonstrated in several hypothalamic neuronal models, in-
cluding NPY/AgRP- and POMC-expressing neurons [51–53]. Specifically, insulin treat-
ment in the mHypoE-46 cell line, an NPY/AgRP-expressing model, downregulated Npy 
and Agrp expression in the immediate term, as expected [50]. However, high insulin ex-
posure (100 nM) for as little as 8 h downregulated IRβ, IRS1 and diminished subsequent 
insulin-stimulated Akt phosphorylation [53]. mTOR-S6K1-mediated phosphorylation of 
IRS-1, and degradation of IRS-1 and InsR via the proteasomal or lysosomal pathway, re-
spectively, were implicated in the mechanism of insulin-induced insulin resistance in 
these NPY/AgRP-expressing cells [53]. 

2.1.3. Induction of Central Insulin Resistance by Palmitate 
Saturated fats can also directly induce insulin resistance in peripheral and hypotha-

lamic cells in the absence of high insulin levels. Palmitate induces inflammatory re-
sponses, facilitated by nuclear factor kappa B (NFκB) activation, which is the primary me-
diator of HFD-induced insulin resistance in peripheral tissues, including adipocytes, mus-
cle and liver [54]. Given evidence that hypothalamic neuroinflammation occurs within 

Figure 1. Hypothalamic insulin signaling. Insulin binds to insulin receptor on the cell membrane, leading to the phospho-
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proteasomal degradation of INSR or IRS. Components of the insulin signal transduction pathway are targeted by miRNAs
include. INSR is targeted by miR-1983 and miR-7, IRS is targeted by miR-7 and miR-200a, and PI3K is targeted by miR-103.

2.1.3. Induction of Central Insulin Resistance by Palmitate

Saturated fats can also directly induce insulin resistance in peripheral and hypothala-
mic cells in the absence of high insulin levels. Palmitate induces inflammatory responses,
facilitated by nuclear factor kappa B (NFκB) activation, which is the primary mediator of
HFD-induced insulin resistance in peripheral tissues, including adipocytes, muscle and
liver [54]. Given evidence that hypothalamic neuroinflammation occurs within one day of
HFD exposure, prior to inflammation in peripheral tissues, [55] and central insulin signal-
ing is required for peripheral insulin action [42,47,48], fat-induced hypothalamic insulin
resistance merits attention. In fact, intracerebroventricular (ICV) administration of palmi-
tate impairs hypothalamic insulin signaling and leads to disruptions in hepatic glucose
production and peripheral glucose metabolism in rodents [56,57]. Knockdown of protein
kinase C theta in the ARC or toll-like receptor 4 (TLR4)-adaptor molecule, MyD88, in the
CNS prevented HFD- or ICV palmitate-induced weight gain and insulin resistance [56,57],
highlighting some of the mechanisms of palmitate-induced central insulin resistance. In
the NPY/AgRP-expressing mHypoE-44 cell line, palmitate pre-treatment diminished the
response to an insulin challenge, as demonstrated by reduced pAkt activation [58]. This
did not occur in POMC-expressing mHypoA-POMC/GFP-1 cells [59], suggesting a pro-
tective mechanism in the POMC-expressing cells. The proinflammatory cytokine tumour
necrosis factor alpha (TNFα) also induces insulin resistance in NPY/AgRP neurons [60].
Thus, along with the involvement of MyD88, a molecule that is essential for the generation
of pro-inflammatory cytokines [57], these results strongly implicate neuroinflammation
as a mediator of palmitate-induced insulin resistance. In contrast to palmitate, Amine
et al. recently described that the polyunsaturated fat docosahexaenoic acid (DHA) did not
induce pro-inflammatory cytokine production nor lead to hypothalamic insulin resistance
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in a human neuroblastoma cell line [61]. Our studies in vitro also suggest that DHA is
protective against TNFα-induced neuroinflammation through GPR120 [62], implicating
DHA as a protective fatty acid against the effects of palmitate.

Alternative mechanisms by which palmitate can induce insulin resistance include
AMPK inhibition and ER stress. Treatment with an AMPK activator, aminoimidazole
carboxamide ribonucleotide (AICAR), prevented palmitate-induced phosphorylation of
cJun N-terminal kinase (JNK) and restored insulin signaling in the mHypoE-44 cells [58].
Indeed, activation of AMPK prevented hyperglycemia in insulin-resistant, leptin-deficient
mice [63], and improved glucose tolerance in insulin-resistant Zucker rats [64]. This
protective phenomenon is thought to result from the ability of AMPK to increase fatty
acid oxidation, thereby decreasing fatty acid levels [65], or to inhibit mTOR signaling,
as overactive mTOR is related to insulin resistance [66]. ER stress, resulting from the
accumulation of misfolded proteins in the ER lumen, is also induced with palmitate
and may play a role in palmitate-mediated hypothalamic insulin resistance [43,58]. To
summarize, neuroinflammation, AMPK inhibition/mTOR activation and ER stress are
involved in the mediation of hypothalamic insulin resistance by palmitate [43]. These
processes involve signaling proteins that converge on pathways activated by insulin,
resulting in modified signaling. As an example, palmitate upregulates SOCS3, as a result
of nuclear factor κ B (NFκB) activation, subsequently leading to IRS1 degradation and
prevention of InsR auto-phosphorylation. Inhibition of the NFκB pathway with PS1145 in
turn reduced food intake and diminished hypothalamic insulin resistance in mice fed a
HFD [67], identifying a targetable pathway to restore hypothalamic insulin signaling.

2.1.4. Role of miRNAs in Hypothalamic Insulin Signaling and Resistance

The role of miRNAs in mediating insulin signaling and resistance and their potential
ability to therapeutically prevent or reverse insulin resistance is an area of increasing
interest. Of note, there is evidence hypothalamic miRNAs play an important role in insulin
action and whole-body energy homeostasis. Firstly, hypothalamic knockout of Dicer leads
to overactivation of the PI3K/Akt/mTOR pathway, akin to the effects of high insulin
levels, suggesting miRNAs may serve to prevent overactivation of insulin signaling [68].
Specifically, miR-103 administration to mice lacking hypothalamic Dicer prevented overeat-
ing and obesity [68]. miR-103 targets two components of the insulin signaling pathway:
Pik3cg, a catalytic subunit of PI3K, and IRS1 [68,69] (Figure 1). Overexpression of Lin28a
in the hypothalamus improved glucose tolerance and insulin sensitivity in HFD-fed mice,
suggesting the importance of hypothalamic miRNAs in whole body insulin sensitivity [70].
Components of insulin and leptin signaling often crosstalk and therefore miRNAs can affect
both pathways. An example of this is miR-200a, a miRNA upregulated in the hypothala-
mus of ob/ob mice and targets both IRS2 (Figure 1) and LepR in the hypothalamus [71].
ICV administration of miR-200a antagomir in ob/ob mice increased the expression of
insulin receptor in NPY and POMC neurons [71]. Because miRNAs can target hundreds
of genes, there resides a potential symphony of intracellular events that target multiple
pathways, ultimately leading to metabolic disease.

Two miRNAs, miR-1983 and miR-7, have emerged as miRNAs associated with neu-
ronal insulin resistance that directly target the InsR (Figure 1). Treatment of mHypoE-46
neurons with high levels of insulin for 24 h identified miR-1983 as a candidate that is
induced with insulin resistance in hypothalamic neurons. Exposure to miR-1983 mim-
ics downregulated InsR β-subunit protein levels and target analysis identified a binding
site for miR-1983 in the 3′UTR of IRβ [72]. miR-1983 levels were also increased in the
hypothalamus of MKR mice [72], a non-obese model with impaired insulin signaling and
hyperinsulinemia [73], and was positively correlated to insulin and homeostatic model for
insulin resistance (HOMA-IR) scores in human serum samples, representing their potential
for use as a biomarker. miR-7 is a miRNA that is highly abundant in the hypothalamus,
along with let-7c and miR-9 [74]. miR-7 was elevated in mice fed a HFD, and insulin
induced the miR-7-expressing intron and its parent gene heterogeneous nuclear ribonu-
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cleoprotein K. Interestingly, miR-7 targets multiple components of the insulin signaling
pathway, including the InsR, IRS2, and insulin-degrading enzyme (IDE) [75], suggesting
potent downregulation of insulin signaling in the presence of this miRNA. However, knock-
down of miR-7 in POMC neurons of female mice exacerbated diet-induced obesity [76],
suggesting that the neuronal subtype and sex differences play an important role in the func-
tion of miR-7. Antagonizing both miR-1983 and miR-7 in specific neuronal subtypes may
have therapeutic potential as preventing the downregulation of the InsR is one potential
way to combat hypothalamic insulin resistance. Future studies investigating the combined
effects of several of these insulin-related miRNAs may provide avenues for combating
multiple aspects of central insulin resistance.

2.2. Leptin Signaling Is Impaired by Palmitate

Leptin is an anorexigenic circulating hormone involved in the hypothalamic control
of appetite. It is predominately synthesized in adipocytes and secreted into the circulation.
The circulating concentration of leptin increases acutely after a meal to suppress appetite
and the levels are proportional to the amount of fat mass [77,78]. Mutation of the leptin
receptor (LepR), whereby a longer defective variant is expressed, causes hyperphagia,
leading to obesity [79]. The restoration of leptin signaling in the central nervous system
alone is able to restore the appetite suppressing effects of leptin and reverse the obese
phenotype in LepR-deficient mice [80]. Obese individuals typically have chronically
elevated levels of circulating leptin as a result of greater fat mass [78]. Despite this, the
anorexigenic effects of leptin is lost in obese individuals, a phenomenon known as leptin
resistance [81]. The primary cause of leptin resistance has not been identified but has
been hypothesized to be caused by either impaired leptin transport across the blood brain
barrier or the continuous activation of a negative feedback loop in the leptin signaling
pathway [82,83].

2.2.1. The Mechanisms of Hypothalamic Leptin Signaling

Leptin achieves its appetite suppressing effects primarily via LepR signaling in the
ventromedial hypothalamus and the ARC, which are involved in the control of feeding [84].
In anorexigenic POMC expressing neurons, leptin induces the transcription of Pomc mRNA
and the secretion of α-MSH [85,86]. In contrast, leptin suppresses the transcription and
secretion of NPY and AgRP in orexigenic neurons [87,88]. Leptin signaling begins with the
phosphorylation of janus kinase 2 (JAK2), which in turn phosphorylates signal transducer
and activator of transcription 3 (STAT3), leading to its translocation to the nucleus, where
it activates Pomc transcription and inhibits Npy and Agrp transcription [89–92]. Phosphory-
lated STAT3 also promotes the transcription of suppressor of cytokine signaling 3 (SOCS3),
which in turn inhibits JAK2 activity [93], acting as a negative feedback loop to prevent
chronic activation (Figure 2). Thus, a potential mechanism for the development of leptin
resistance is the continuous transcription and activation of SOCS3 [93]. Leptin signaling
can also crosstalk with the insulin signaling pathway, as JAK2 can lead to the phospho-
rylation of FOXO1 via IRS1/PI3K/Akt signaling [94]. The induction of insulin resistance
in rat- and mouse-derived immortalized neurons also attenuates leptin signaling and its
effects on gene expression [52]. Thus, there is a complex relationship between signaling
components in neurons that require further investigation and disentangling of their roles
in hypothalamic function.
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back to inhibit JAK2 phosphorylation. miR-488 and miR-384-3p target the 3′-UTR of Pomc mRNA and inhibit its expression.
miR-200a targets the 3′-UTR of LepR, inhibiting its expression and reducing leptin sensitivity. Socs3 is targeted by miR-19a
and can enhance JAK2-STAT3 signaling. Palmitate directly induces leptin resistance by inducing inflammation and ER
stress, resulting in the activation of PTP1B and SOCS3. Excess palmitate can also induce leptin resistance by chronically
increasing circulating leptin, leading to overactivation of the signaling pathway.

2.2.2. The Induction of Central Leptin Resistance by Palmitate

Leptin resistance is caused primarily by chronically high circulating levels of leptin.
This has been demonstrated in the mHypoA-NPY/GFP cell line, an adult murine-derived
Npy-expressing neuronal model, as an 8 h leptin exposure attenuates subsequent leptin-
induced suppression of NPY secretion [95]. Hypothalamic exposure to saturated fatty
acids has also been shown to induce leptin resistance. For example, ICV administration
of palmitate in C57BL/6J mice led to central leptin resistance, as the appetite suppressing
effects of leptin were lost and the phosphorylation of JAK2 and STAT3 were attenuated [96].
This coincided with an increase in the proinflammatory genes TNFα, interleukin 6 (IL6),
and Interleukin 1 beta (IL1-β) [96]. Indeed, neuroinflammation has been implicated in the
development of leptin resistance, as the activation of NFκB signaling, the hallmark regu-
lator of proinflammatory cytokines, leads to an induction of SOCS3 and protein tyrosine
phosphatase 1B (PTP1B), which are both negative regulators of leptin signaling [97,98].
Similar to neuroinflammation, ER stress induced by palmitate can lead to leptin resistance
via PTP1B, and conversely, relieving ER stress with chemical chaperones, increased leptin
sensitivity in diet-induced obese mice [99–101]. Overall, these findings demonstrate that
exposure to palmitate can directly induce central leptin resistance via modifying proteins
involved in leptin signaling.
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2.2.3. The Role of miRNAs in Leptin Signaling and Resistance

The role of miRNAs in leptin signaling is still a new area of investigation, but the
importance of their involvement has been established. The conditional knockout of Dicer
in POMC neurons, resulted in increased leptin sensitivity, evident from the greater sup-
pression of food intake by leptin and a reduction in food intake overall [102]. Furthermore,
miR-200a and miR-200b have been shown to directly target leptin mRNA in yellow cat-
fish [103]. In mice, miR-200a targets the 3′-UTR of LepR and has been shown to be regulated
by leptin itself, as mice with deficient leptin signaling have increased hypothalamic miR-
200a expression and central leptin administration decreases it [71]. Therefore, an induction
of miR-200a by exogenous compounds, including dietary fats, may lead to reduced leptin
sensitivity and blocking mir-200a may serve as a tool to relieve leptin resistance. miRNAs
can also target components involved in the leptin signaling pathway, such as SOCS3, which
is targeted by miR-19a [104]. Administration of miR-19a can therefore enhance leptin
sensitivity by relieving inhibition on JAK-STAT signal transduction and warrants further
investigation. A group of conserved miRNAs have been shown to mediate the effects of
leptin signaling in POMC neurons. The miRNAs of interest, miR-383, miR-384-3p, and
miR-488, target the 3′ UTR of the Pomc mRNA in the mHypoA-POMC/GFP-1 cell line [105]
(Figure 2). The expressions of these miRNAs in the hypothalamus were dependent on
leptin, as they were downregulated in response to leptin administration and were increased
in leptin-deficient ob/ob mice [105]. The potential role of miRNAs in mediating leptin
response or resistance in NPY/AgRP-expressing neurons remains to be explored.

2.3. Feeding Neuropeptides
2.3.1. Palmitate-Induced Changes in Neuropeptide Expression

In addition to modifying the response of hypothalamic neurons to peripheral sig-
nals, palmitate can also directly affect the expression of feeding neuropeptides. In the
mHypoA-POMC/GFP-2 cell line, an adult murine derived Pomc-expressing neuronal
model, exposure to palmitate increased Pomc mRNA expression and induced a myriad of
neuroinflammatory and ER stress markers [59]. This induction of Pomc mRNA by palmitate
was independent of neuroinflammation as neither inhibition of TLR4 nor NFκB signaling
were able to block the effects of palmitate, but it was dependent on palmitate metabolism
to palmitoyl-coA and activation of MAP kinases, JNK and ERK [59]. Though the effects
of palmitate on Pomc and inflammatory marker gene expression were not dependent on
each other, the monounsaturated fatty acid oleate, which has been shown to block the
effects of palmitate in multiple different tissues, blocked changes in the mRNA expression
of Pomc, inflammatory and ER stress markers [59]. In the mHypoE-44 and mHypoE-46 cell
lines, which are embryonic-derived Npy-expressing neuronal models, exposure to palmi-
tate increased Npy mRNA expression, which was attenuated by PS1145, an inhibitor of
IKK [106–108], illustrating a role for neuroinflammation in the alteration of Npy expression.
The development of chronic, low-grade neuroinflammation in vivo has been suggested
to play a significant role in altering feeding neuropeptide expression [106,109]. Studies in
the mHypoE-46 cell line demonstrate that exogenous administration of TNFα and visfatin,
proinflammatory cytokines induced by palmitate, induce Npy expression [106,110]. How-
ever, the exogenous administration of other palmitate-induced pro-inflammatory cytokines,
Macrophage migration inhibitory factor (MIF) and IL-17F, were unable to affect Npy expres-
sion in the mHypoE-46 cell line [110]. Whereas PS1145 was only able to partially block the
induction of Npy by palmitate [106], inhibition of acyl-coA synthetase completely blocks
the increase in the mHypoE-46 cells [110], suggesting that the palmitate-mediated effects
of Npy occur primarily through the metabolism of palmitate to ceramides and certain phos-
pholipid species and is only partially dependent on neuroinflammation [110]. Furthermore,
Npy dysregulation by palmitate in the mHypoE-44 cell line coincides with disruptions in the
cyclic expression of circadian rhythm genes [108], including brain and muscle ARNT-like 1
(BMAL1), an essential mediator of palmitate-induced Npy upregulation [111]. This topic is
discussed further in subsequent sections. Agrp mRNA expression is induced with palmi-
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tate in the mHypoE-41 cell line at 4 h and was blocked by siRNA-mediated knockdown
of autophagy-related gene 5 (Atg5) [112]. In mHypoE-46 cells, palmitate induced Agrp
mRNA expression at 16 h, which was blocked by metformin and salicylate treatment [107].
Furthermore, Agrp mRNA expression was unaffected by the proinflammatory cytokine
TNFα, demonstrating the differential regulation of Agrp and Npy by pro-inflammatory me-
diators [107]. Taken together, palmitate is able to directly disrupt the expression of feeding
neuropeptides in hypothalamic neurons via the induction of MAP kinases or inflammatory
signaling, increasing palmitate metabolites, altering circadian transcription factors, and
modifying autophagy.

2.3.2. The Control of Feeding Neuropeptides by miRNAs

Research on miRNAs directly targeting feeding neuropeptides is severely limited. A
total of three miRNAs have been identified to directly target the 3′ UTR of Pomc mRNA,
miR-383, miR-384-3p, and miR-488 [105]. There are currently no published studies identify-
ing miRNAs that directly target Npy or Agrp. miRNAs do not need to directly target a gene
to affect its expression, as they can target components involved in the regulation of the
gene, such as transcription factors and signal transduction molecules. Transcription factors
involved in the regulation of Npy include cAMP response element binding protein (CREB),
octamer transcription factor 1 (OCT1), and BMAL1 [113–116]. CREB, a transcription factor
that positively regulates Npy expression, is targeted by several miRNAs, including miR-
22-3p, miR-26a-5p, miR-27a-3p, miR-221-3p, miR-4474-3p, and miR-4717-3p [117,118]. A
miRNA-induced decrease in CREB would likely lead to a downstream decrease in Npy
expression. miR-155 has two binding sites in the 3′UTR of Bmal1, a transcription factor
crucial for the rhythmic expression of Npy [119]. Furthermore, miR-155 is induced by
inflammatory signaling and is increased in the adipose of obese humans [119,120]. A
miRNA-induced decrease in Bmal1 expression could result in the loss of rhythmic Npy
expression, similar to what is seen in BMAL1-KO mice. Our lab recently identified miR-
708-5p as a miRNA involved in Npy regulation, as transfection of the mHypoA-59 cell
line with miR-708-5p mimic increased Npy mRNA [121]. This increase in Npy may be the
result of miR-708-5p-mediated downregulation of its target neuronatin (NNAT), a putative
sarco/endoplasmic reticulum Ca2+ inhibitor [122]. This hypothesis is supported by the fact
that knockout of NNAT resulted in increased Npy expression in the ARC and an increased
propensity to develop obesity in mice [123]. Transcription factors involved in the regula-
tion of Agrp include Kruppel-like factor 4 (KLF4), activating transcription factor 3 (ATF3),
STAT3, and FOXO1 [90,124–126]. KLF4, a transcription factor crucial for development and a
positive regulator of Agrp, is targeted by two miRNAs, miR-206 and miR-145 [127,128]. The
expression of miR-206 is increased 6-fold in the brain after a 20-week HFD [129], suggesting
the potential involvement of miR-206 and KLF4 in palmitate-mediated Agrp induction.
ATF3 is a stress induced transcription factor that induces Agrp transcription [130] and is
targeted by at least three miRNAs, miR-27a-3p, miR-488, and miR-222 [131–133]. miR-222
is found in serum exosomes primarily produced by the gonadal white adipose tissue and is
elevated in the serum of obese patients [134], implying a far-reaching mechanism by which
palmitate can act. As with all miRNAs that target a positive regulator of a gene of interest,
the miRNA-induced downregulation would cascade to a downregulation of the gene of
interest. Thus, although a variety of miRNAs that target components involved in feeding
neuropeptide regulation have been identified, there is still much to be done with respect to
miRNAs that directly target Npy, Agrp, and Pomc, as many have been predicted to do so
with in silico analysis.

3. Reproduction

Infertility occurs in 10% of women worldwide and often accompanies obesity [135].
Specifically, overweight and obese women are three times more likely to experience infer-
tility [136,137] and the odds ratio of infertility increases with increasing body mass index
(BMI) in men [138]. Even in cases of successful pregnancies, overweight and obesity is a
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main risk factor for gestational diabetes, occurring in up to 20% of pregnant women in
Canada, the complications not only affecting the mother, but reaching adult offspring [139].
As such, consumption of an HFD impacts reproductive and offspring health, with evidence
of excess fats disrupting multiple aspects of the hypothalamic-pituitary-gonadal (HPG)
axis [136,140], the master regulator of reproductive function. In this section, we describe
the effects of palmitate on the hypothalamic cells that initiate the HPG axis.

3.1. Hypothalamic-Pituitary-Gonadal Axis

Gonadotropin releasing hormone (GnRH) neurons of the hypothalamus are the main
regulators of reproductive function, and disruptions to these neurons leads to infertility
and improper development [141]. These neurons are primarily located within the medial
preoptic nucleus of the hypothalamus but receive inputs from surrounding neuronal
populations. At the anterior pituitary, GnRH induces the release of luteinizing hormone
(LH) and follicle stimulating hormone (FSH) into circulation. LH and FSH then travel to
the gonads, triggering the production and secretion of sex steroid hormones, estrogen,
testosterone, and progesterone. The expression and secretion of GnRH are tightly regulated
by afferent neuropeptides, satiety signals, hormones, and stress.

Kisspeptin (KISS1) is a key reproductive peptide that regulates GnRH expression. The
importance of KISS1 in reproduction cannot be understated as whole-body knockouts of
KISS1 or its receptor, GPR54/KISS1r, lead to hypogonadotropic hypogonadism, a condition
where little to no sex hormones are produced, resulting in infertility and the loss of
puberty [142,143]. The role of KISS1 in reproduction can be traced to the hypothalamus as
the conditional knockout of KISS1r in GnRH neurons or KISS1 in hypothalamic neurons is
enough to induce an infertile phenotype [144,145]. KISS1 neurons are primarily located in
the ARC and anteroventral periventricular nucleus (AVPV) of the hypothalamus allowing
integration of nutrient signals into their actions [146]. ARC KISS1 induces the secretion
of GnRH (Figure 3), leading to pulsatile LH and FSH secretion required for the onset of
puberty and maintenance of reproductive function [147–149], while AVPV KISS1 evokes the
pre-ovulatory GnRH and LH surge [141]. Phoenixin (PNX) is another recently discovered
hypothalamic peptide that afferently controls GnRH expression. siRNA knockdown of
Pnx in rats delayed the start of the estrous cycle by 2.3 days [150], highlighting its role in
maintaining proper reproductive function. In hypothalamic neuronal models, PNX bound
to GPR173 receptors and increased Gnrh mRNA, GnRH secretion, Gnrh receptor (Gnrh-r)
mRNA and Kiss1 mRNA [151]. GnRH-, KISS1- and PNX-expressing neurons are all subject
to HFD- or palmitate-induced dysregulation as described below.
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Figure 3. Regulation of GnRH neurons. NPY differentially affects GnRH neuron excitability depending on receptor variant
availability; activation of Y1 is inhibitory and Y4 is excitatory. AgRP indirectly affects GnRH neurons by inhibiting afferent
KISS1 neurons. KISS1 neurons secrete KISS1 which activates GPR54/KISS1r on GnRH neurons, leading to increased
excitability and GnRH transcription. POMC neurons secrete α-MSH, which acts via MC3R and MC4R to increase GnRH
neuron excitability. Moderate concentrations of palmitate induce Gnrh transcription, whereas high concentrations of
palmitate induce ER stress and inhibit Gnrh transcription. miR-155 and miR-200 increase Gnrh mRNA by targeting Gnrh
repressors CEBP and ZEB1, respectively.

3.2. The Integration of Energy Homeostasis in the Control of Reproduction

Reproduction is a costly process that requires an appropriate nutritional status to
succeed. As such, it is imperative that reproductive neurons integrate satiety signals
from feeding neurons, including NPY/AgRP and POMC neurons. This requirement for
proper energy homeostasis is emphasized by the fact that both malnourished and obese
individuals often suffer from reproductive dysfunction [137,152].

Orexigenic NPY and AgRP signals are able to directly and indirectly affect GnRH neu-
rons. NPY also suppresses KISS1 neuron activity in the ARC, thereby acting indirectly on
GnRH through its afferents [153]. The overall directionality and magnitude of the effects of
NPY on GnRH neurons is highly variable and dependent on the receptor subtypes present,
NPY can activate or inhibit the reproductive axis. In contrast to the effects of NPY, the direct
effects of AgRP on GnRH neuron excitability are minimal [154]. Instead, AgRP neurons
may act on GnRH neurons indirectly via KISS1 neurons. Padilla et al. demonstrated that
overactivation of AgRP neurons decreased fertility through a γ-aminobutyric acid (GABA)-
dependent inhibition of KISS1 neurons [155]. The anorexigenic POMC neurons release
α-MSH, which exerts an excitatory effect on GnRH neurons via MC3R and MC4R [154,156].
This excitatory effect of α-MSH on GnRH neurons may be a signal indicating sufficient nu-
trients are available for reproduction (Figure 3). Taken together, whether direct or indirect,
communication between GnRH and feeding neurons is essential for proper reproductive
function, and disruptions to feeding neurons as described previously may also impair
reproductive function.

In addition to receiving input from feeding neurons, GnRH neurons also contain
receptors for peripheral satiety signals, such as insulin and leptin, and as a result can
become insulin- or leptin-resistant. However, the presence of insulin signaling in GnRH
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neurons seems to be dispensable as mice with conditional knockout of the InsR in GnRH
neurons develop normally and are fertile [157]. This is similar for leptin signaling, as
mice with conditional knockout of LepR in GnRH neurons are fertile but do have a slight
delay in the onset of puberty [158]. Thus, these peripheral satiety signals may relay their
signals primarily through feeding-related neurons that project onto GnRH neurons as
discussed above. KISS1 neurons may also relay this information as circulating leptin
levels are correlated with circulating KISS1 levels and leptin is able to increase Kiss1
mRNA expression [159,160]. In addition to sensing peripheral hormones, GnRH neurons
can also directly sense nutrients such as glucose [161] and fatty acids [9]. Overall, these
studies demonstrate the ability of reproductive neurons to integrate energy status and
draws attention to probable mechanisms of HFD- and palmitate-induced disruption of
hypothalamic reproductive neurons.

3.3. Palmitate-Mediated Disruption of Hypothalamic Reproductive Control

As discussed, obesity in both men and women is associated with a greater incidence
of infertility [136,138], however this association can be confounded by genetic and other
lifestyle factors. Fertility complications in rodents consuming an HFD have delineated
direct effects of an HFD on reproductive function. For example, female rats fed an HFD had
increased incidences of irregular estrous cycles after just 4 months on the diet and showed
accelerated follicle loss [162]. HFD-fed male mice had functional sperm but reduced sperm
counts [163]. At the pituitary, the effects of HFD on LH secretion are highly variable,
with some studies observing an increase in LH, whereas others reported a decrease or no
change [164–167]. Nevertheless, the majority of studies identify some dysregulation of the
HPG axis, resulting in detrimental effects on reproductive function.

GnRH neurons can directly sense fatty acids as illustrated by in vitro studies. In the
mHypoA-GnRH/GFP cell line, exposure to 50 to 100 µM palmitate increased Gnrh mRNA,
which was mechanistically linked to palmitoyl-coA synthesis and increased PI3K signal-
ing [9]. In the GT1-7 cell line, treatment with 500 or 1000 µM palmitate decreased Gnrh
mRNA and this effect was seemingly the result of ER stress, which is commonly observed
among obese individuals [168]. These dose-dependent effects of palmitate demonstrate
the fatty acid sensing capabilities of GnRH neurons: lower concentrations of palmitate
likely signals that sufficient nutrients are available for reproduction, thereby increasing
Gnrh, but higher concentrations cause cellular stress and dysfunction and dampen Gnrh
as may be seen in obesity. Inflammatory cytokines have been reported to decrease Gnrh
expression and may represent a mechanism of HFD-mediated impairment of the HPG
axis [169]. For example, HFD-fed rabbits had decreased GnRH and KISS1r immunoposi-
tivity alongside increased microglial activation and hypothalamic inflammatory cytokine
expression [170]. Furthermore, ovariectomized female C57BL/6J mice become obese, but
are protected against changes in the HPG axis. This is remarkably accompanied by a lack
of microglial activation and inflammatory cytokine production as well as an increase in
anti-inflammatory IL-10 levels in the hypothalamii of these female mice despite the lack
of ovarian estrogen. These studies strongly tie together hypothalamic inflammation and
reduced Gnrh expression [171].

In addition to the direct effects of palmitate on GnRH neurons, palmitate can also
alter the function of neurons that afferently regulate GnRH neurons, including feeding
neuropeptide expressing- and PNX-expressing neurons. Treatment of the mHypoE-46
cell line with palmitate increased the mRNA expression of Pnx, which has been shown to
positively regulate GnRH expression and function [172]. However, palmitate also reduced
the expression of the PNX receptor, Gpr173, via a p38-mediated mechanism and prevented
PNX-induced upregulation of pCREB [173], suggesting potential dampening of the HPG
axis. Although Kiss1 and Kiss1r expression is reduced in the hypothalamus of male mice
fed a HFD for 19 weeks [174], the direct effects and mechanisms of palmitate action on
KISS1 neurons remain to be studied. Overall, palmitate alters hypothalamic reproductive
neurons via direct actions on Gnrh expression or through the regulation of its afferents.
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How these effects can be combatted to prevent fertility complications in obesity remains an
important question.

3.4. miRNAs Involved in the Hypothalamic Control of Reproduction

miRNAs may become useful tools in the study of palmitate-induced dysregulation
of reproduction as they are already being investigated as biomarkers of infertility and
pregnancy outcomes [175,176]. The literature surrounding miRNAs specifically involved
in the hypothalamic control of reproduction is still very limited, but their importance is
evident as conditional knockout of Dicer in GnRH neurons or in the pituitary gland leads to
infertility or severely reduced fertility, respectively [162,177]. A miRNA “switch” has been
identified in GnRH neurons involving miR-155, which targets CCAAT-enhancer binding
protein beta (CEBPß), a transcription factor that negatively regulates GnRH, and miR-200,
which targets Zinc finger E-box binding homeobox 1 (Zeb1), another repressor of GnRH
and its transcriptional activators [177]. Prior to the onset of puberty, these miRNAs are
increased, leading to the downregulation of the targeted GnRH repressors, and ultimately
lead to increased GnRH [177]. In addition, 16 other miRNAs have been identified by in
silico analysis to directly target the 3′ UTR of GnRH but none have been experimentally
validated [178]. Another miRNA that has been associated with the onset of puberty in the
hypothalamus is miR-30b. miR-30b targets the 3′-UTR of makorin RING-finger protein-3
(MKRN3), a protein associated with the inhibition of the onset of puberty [179]. Central
administration of target site blockers prevented the binding of miR-30b to the 3′-UTR of
MKRN3 and delayed the onset of puberty in female mice [179]. As for KISS1, a recent
abstract described a miRNA that directly targets the 3′ UTR of Kiss1 and is increased in
obese individuals with hypogonadism, but due to intellectual property reasons has not
been disclosed [180]. Overall, investigation into miRNAs involved in the hypothalamic
control of reproduction and how they are altered by palmitate holds potential for future
intervention studies.

4. Circadian Rhythms

Circadian rhythms are 24-h patterns of biological activity that occur to synchronize
homeostatic functions, including feeding, reproduction, stress, temperature control, blood
pressure and hormone production, with the outside environment [181]. Disruptions to these
rhythms in humans through shift work or through genetic polymorphisms of the genes
responsible for maintaining these rhythms are linked to increased rates of obesity, metabolic
syndrome and diabetes [182–184]. As such, disrupting circadian rhythms may promote
obesity by altering metabolism of nutrients; however, dietary factors can themselves disrupt
circadian rhythms [185]. This section will explore how circadian rhythms in the feeding
centers of the hypothalamus are disrupted by palmitate and how these changes mediate
the other downstream actions of palmitate, including neuroinflammation, neuropeptide
dysregulation and potentially miRNA alterations.

4.1. Control of Circadian Rhythms by the SCN and other Hypothalamic Nuclei

Circadian rhythms are generated internally by the suprachiasmatic nucleus (SCN)
of the hypothalamus and are entrained or synchronized by zeitgebers or “time givers”,
including light, food, body temperature and social cues [185]. The SCN is then able to
control the rhythms of all other cells in the body via projections to other hypothalamic nuclei
and brain regions [181,186]. At the molecular level, this occurs as a result of transcriptional-
translational feedback loops involving clock genes, Bmal1 and circadian locomotor output
cycles protein kaput (Clock) that are transcribed and translated and act as transcription
factors to positively regulate period (Per1-3), cryptochrome (Cry1-2), nuclear receptor
subfamily 1,group D, member 1 (Rev-erbs) and retinoic acid-related orphan receptor (Rors)
by binding to promoter elements called E-boxes. PER and CRY proteins then inhibit the
action of BMAL1:CLOCK to prevent their own transcription, and REV-ERBs, RORs and
peroxisome proliferator-activated receptors (PPARs) directly influence Bmal1 transcription.
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This feedback loop creates a 24 h period where Per and Cry oscillate in an antiphasic
manner to Bmal1 expression [187]. These genes are subject to post-translational as well as
post-transcriptional modifications (i.e., miRNA regulation) that contributes the length of
the 24 h period [188–190] (Figure 4).
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SCN rhythms are essential to maintain proper energy regulation and reproduction,
as rodents with SCN lesions exhibit increased body weight, disrupted timing of food
intake and activity [191], and a dysregulated LH surge and estrous cycle [192,193]. How-
ever, the SCN is not the sole player in circadian rhythms; the ARC and the PVN of the
hypothalamus are core nuclei involved in food intake and energy expenditure [17], and
synchronization of rhythms in these nuclei is critical to metabolic homeostasis. For example,
SCN-ARC connections play a crucial role as microcuts removing this interconnectivity
abolished rhythms in locomotor activity, corticosterone levels and body temperature in
Wistar rats despite uninterrupted SCN rhythms [186]. Furthermore, deletion of BMAL1
in the PVN disrupts diurnal rhythms in metabolism and decreases neuronal response to
refeeding, leading to obesity [194]. This dysregulation was attributed to perturbation of
the rhythmic expression of the GABA-A receptor y2 subunit in the PVN neurons [194].
ARC neuropeptides NPY/AgRP and POMC show rhythmicity in vivo, with a peak in Pomc
expression at 4 h after the dark phase [195], in Agrp expression in the transition between
the light and dark phases, and in Npy expression once in the dark and once in the light
phase [196]. These rhythms are also studied in vitro, where mechanisms of rhythmicity
can be elucidated. Remarkably, the non-SCN, NPY/AgRP-expressing mHypoE-44 cell line
demonstrated rhythmic expression of clock genes with an approximate period of 24 h [197].
Rhythmic binding of BMAL1 to the promoter region of Npy in these cells was associated
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with the rhythmic expression of Npy [197]. This ability of non-SCN hypothalamic cell
lines to endogenously express rhythmicity has been recapitulated in murine adult-derived
cell lines [111]. The importance of the molecular clock in NPY/AgRP-expressing neurons
of the ARC is further demonstrated with the knockout of BMAL1 in AgRP-expressing
neurons. These knockout mice demonstrated increased food intake with a trend towards
increased body weight, a higher respiratory exchange ratio, and elevated hepatic glucose
production [198]. Furthermore, coinciding with the transcriptional regulatory activity
of BMAL1, the expressions of several genes were altered in AgRP-specific BMAL1-KO
mice, including those involved in protein folding, secretory pathways, glucagon signaling,
spliceosome activity and transcriptional response to leptin [198]. The observation that
the major functions of AgRP-neurons were disrupted in these KO mice highlights the
significance of BMAL1 and the circadian clock in NPY/AgRP neuron activity.

4.2. Palmitate-Induced Dysregulation of Circadian Rhythms in Hypothalamic Neurons

A major way in which the ARC and PVN neurons can desynchronize from the
SCN is through exposure to exogenous factors, including high levels of fats and sug-
ars [108,111,185,199–201]. Several in vivo studies have described hypothalamic neuropep-
tide expression and disruption of the rhythm of associated homeostatic processes, including
body weight, food intake, and locomotion as a result of high fat diet exposure [199]. Con-
sumption of a 45% HFD for 6 weeks dampened the diurnal pattern of food intake in
C57BL6/J mice and although the expression profiles of hypothalamic clock genes were not
altered, these mice displayed drastic changes in rhythmic Npy, Agrp and Pomc expression,
indicative of HFD-induced disruptions in rhythmic feeding regulation at the level of the
hypothalamus [199]. Moreover, although combined high-sugar, high-fat diets (termed a
Western Diet (WD)) lead to obesity and disrupt circadian rhythms in food intake, the effects
of a WD on hypothalamic neuropeptides or circadian proteins was not investigated until
recently by our lab. Specifically, C57BL/6J mice exposed to a WD for 16 weeks showed
altered diurnal feeding patterns of mice, with decreased food intake during the dark period
and increased energy consumption during the light period [111]. These mice also dis-
played loss of rhythmic Agrp expression, a phase-shift in Pomc expression, and an overall
reduction in Npy and Agrp expression in the hypothalamus [111]. In vitro experiments
where neurons have been directly exposed to palmitate have indicated a causal relationship
between palmitate, clock gene, and neuropeptide changes. For instance, palmitate-treated
mHypoE-44 and mHypoE-37 neurons showed increased Bmal1 expression and decreased
Per2 expression [108,200]. Likewise, palmitate-exposure in the mHypoE-44 neurons in-
creased the amplitude of rhythmic Npy expression, which was mechanistically linked to
AMPK activation by palmitate [108]. Thus, although causal links remained to be estab-
lished, these studies strengthened the link between disruption of circadian clock genes,
disruption of neuropeptides and disruption of whole-body homeostatic processes.

Remarkably, DHA, aω-3 polyunsaturated fatty acid, prevented the palmitate-mediated
upregulation in the amplitude of Bmal1 expression in the mHypoE-37 cells [200]. DHA also
led to a phase advance in Bmal1 expression, however, DHA pre-treatment for palmitate-
treated cells allowed normalization of the phase changed caused by both fatty acids. These
results suggest potential protective actions of DHA against the saturated fatty acid palmi-
tate in neurons and is corroborated by the recent finding of DHA-induced protection
against fatty liver disease in HFD-fed mice through mechanisms involving circadian genes,
RORα and REV-ERBα [202]. The monounsaturated fatty acid oleate has demonstrated
protective effects against palmitate-induced changes in inflammatory markers and neu-
ropeptides [9,59]. Interestingly, Tal et al. recently reported in 3T3-L1 adipocytes that
palmitate increased the amplitude of clock gene expression, but decreased their overall
expression after 24 h of treatment [203]. Oleate, in contrast, did not alter the amplitude
of rhythmic expression nor lead to decreased expression. In fact, oleate increased the
expression of Clock and Cry1 [203]. Mechanistically, these differences were attributed to
differential enzyme activation by oleate (AMPK) and palmitate (acetyl-coA carboxylase
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(ACC)). Palmitate also induced the activation of Akt and GS3Kβ, which both phosphorylate
BMAL1 for exclusion from the nucleus of for ubiquitination [203–205]. Whether oleate
has protective effects against palmitate-induced circadian dysregulation in the hypotha-
lamus warrants investigation given the considerable ability of oleate to protect against
neuropeptide and inflammatory dysregulation. These studies also highlight the potential
mechanistic basis of palmitate-induced circadian dysregulation, where palmitate acts by
disrupting proteins and enzymes that post-transcriptionally modify BMAL1 and the other
circadian regulators to maintain proper rhythmicity.

To further establish the molecular clock as mediating the disruptive effects of an HFD
or palmitate, peripheral as well as brain-specific BMA1-KO models have become useful
tools. For instance, mice with BMAL1-KO in skeletal muscle resisted HFD-induced obesity
due to increased oxidative capacity [206]. Microglial-specific BMAL1-KO also prevented
diet-induced obesity due to increased microglial phagocytic capacity [207]. This ability
led to increased retention of POMC neurons in the hypothalamus, which are typically
selectively lost with exposure to an HFD [207,208]. Thus, brain-specific BMAL1 and circa-
dian control are implicated as mediators of the effects of HFD-exposure. To establish links
between BMAL1 and the direct effects of palmitate on hypothalamic neurons, our lab gener-
ated immortalized hypothalamic cell lines from male or female BMAL1-KO mice and their
wildtype littermates, which served as appropriate controls [116]. Palmitate treatment in
wild-type mixed population neurons (mHypoA-BMAL1-WT/F) or clonal NPY-expressing
neurons (mHypoA-BMAL1-WT/8) increases Npy expression, while the respective BMAL1-
KO counterparts failed to show increased Npy expression [111]. Mechanistically, palmitate
treatment increases binding of BMAL1 to the promoter of Npy, indicating a causal link
between palmitate-mediated Npy dysregulation and BMAL1 [111]. Furthermore, BMAL1
may play a role in the inflammatory actions of palmitate. In mHypoA-BMAL1-KO/F cells,
palmitate increased basal Il6 expression, but decreased basal Nf κb expression. Moreover,
the absence of BMAL1 altered the Il6 and Nf κb response to palmitate treatment [209]. To
further highlight this inflammatory role, BMAL1 knockdown in microglial BV-2 cells led
to an increased anti-inflammatory phenotype, and increased protection from palmitate-
induced neuroinflammation [207]. As neuroinflammation has been established as a critical
mediator of palmitate actions [55,59,107,210], the role of the circadian system in influencing
this inflammation should not be ignored, particularly considering that in the mHypoE-37
neurons, circadian gene dysregulation with palmitate occurred prior to changes in inflam-
matory markers [200]. In contrast to knockdown of BMAL1, knockdown of REV-ERBα
and REV-ERBβ specifically in tuberal hypothalamic nuclei (non-SCN) led to exacerbated
weight gain and day-time food intake in male mice, but not female mice, fed an HFD; leptin
insensitivity was implicated as the mediator [211]. These results coincide with the negative
regulatory role of REV-ERBs on BMAL1 [185].

4.3. Role of miRNAs in Palmitate-Mediated Circadian Dysregulation

The role of miRNAs in the maintenance of normal circadian rhythms is demonstrated
by whole-body knockdown of Dicer in mice. Dicer knockdown shortened the circadian
period by 2 h as a result of faster translation of PER1 and PER2, due to the absence of
three miRNAs that target PER: miR-24, miR-29 and miR-30a [212]. The role of miRNAs in
palmitate-mediated circadian rhythm dysregulation can be thought of as two-fold. Firstly,
miRNAs that target and control clock gene expression can be altered by palmitate, thereby
altering the rhythmic expression of these genes and the transcriptional targets of clock
genes. Secondly, miRNAs themselves can be rhythmically expressed, leading to specific
fine-tuning and control of their targets. Palmitate-mediated alterations in these rhythmic
miRNAs can influence a wide variety of gene products and this miRNA influence may
underlie many of the palmitate-mediated changes in gene expression mentioned above.
Palmitate-specific examples of both of these scenarios remain to be investigated in the
hypothalamus; however, examples of both scenarios exist from other models [189,190].
For example, miR-142-3p in the SCN and miR-155 in bone marrow cells target BMAL1,
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both with two independent binding sites in the BMAL1 3′UTR [119,213,214]. Given that
HFD-fed mice show reduced expression of miR-142-3p in muscle [215], it remains plausible
that palmitate or an HFD may alter the expression of this miRNA in the hypothalamus.
Furthermore, deletion of miR-155 protected HFD-fed female mice from developing obe-
sity, accumulating white adipose tissue (WAT) and glucose tolerance, while it decreased
WAT accumulation in males without any reduction in body weight [216]. Although this
protection was associated with increased expression of brown adipose tissue promoting
genes, the role of BMAL1 cannot be excluded [216]. Lastly, in a recent screen to identify
rhythm-controlling miRNAs, 120 out of 989 miRNAs were identified to alter the period
of Bmal1-dluc or Per2-dluc reporter containing cells. From this, miR-183/96/182 was fol-
lowed up to be a conserved cluster and maintains the period and amplitude in human
cells containing the Per2-dluc reporter, controls rhythmic locomotor activity, and targets
Per2 (miR-96) or Clock (miR-183) [217]. Interestingly, miR-96 was upregulated in the liver
cells with palmitate exposure or with HFD exposure, targets IRS1 and insulin receptor
and may contribute to fatty acid induced hepatic insulin resistance [218]. Whether its
circadian function is also affected warrants investigation in these mice. Other miRNAs that
have been reported to play a role in the murine SCN include miR-219, which is a target
of CLOCK:BMAL1 [219], miR-132, which is responsive to light and fine tunes the clock
by targeting chromatin remodeling [220], miR-17-5p, which itself displays a rhythm in
the SCN via regulating CLOCK and is reciprocally regulated by CLOCK [221] (Figure 4).
Any disruption to the rhythmicity of these miRNAs by palmitate has potential to alter the
regulation of their targets. Dicer mRNA itself shows a diurnal rhythm of expression in
the SCN, retina and bone marrow of mice, whereas this rhythm was phase-advanced in
the SCN by aging and levels were decreased in the retina and bone marrow in diabetic
animals [222]. Thus, the importance of rhythmic miRNAs in metabolic disorders warrants
closer analysis and may prove therapeutically beneficial to fine-tune the expression of clock
genes and their downstream targets.

5. Conclusions

Neurons in the hypothalamus control appetite, reproduction, and circadian rhythms
and disruptions to these neurons have detrimental consequences for whole body health.
Ultimately, these processes are interconnected and often undergo concurrent dysregulation.
Thus, investigating the mechanisms of factors that dysregulate several of these functions
will provide tools to combat their broad effects. Excessive exposure to saturated fatty acids
such as palmitate, which are commonly found in HFDs, can disturb hypothalamic neurons
resulting in resistance to insulin and leptin, dysregulation of feeding and reproductive
neuropeptides, and disruptions of circadian rhythms that maintain energy homeostasis, and
in turn reproduction. The effects of palmitate have been primarily linked to the induction
of cellular stress, including neuroinflammation and ER stress, but avenues remain yet to be
fully explored, including the actions of palmitate metabolites [110]. miRNAs play a key
role in hypothalamic function and are dysregulated in disease states, and as a result, have
become a novel and exciting area of study. Extracellular miRNAs can act as biomarkers
to identify patients predisposed to certain metabolic conditions [25]. Furthermore, with
the advent of technologies that enable packaging and therapeutic delivery of miRNAs to
patients [223], they hold promise as an innovative tool to target key regulatory pathways
in palmitate- and HFD-induced obesity and type 2 diabetes mellitus.
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Abbreviations

ACC Acetyl-CoA carboxylase
AGO Argonaute
AgRP Agouti related peptide
AICAR Aminoimidazole carboxamide ribonucleotide
AMPK AMP-activated protein kinase
Arc Arcuate nucleus
ATF3 Activating transcription factor 3
AVPV Anteroventral periventricular nucleus
BMAL1 Brain and muscle ARNT-like 1
BMI Body mass index
CEBPβ CCAAT-enhancer binding protein beta
CLOCK Circadian locomotor output cycles protein kaput
CNTF Ciliary neurotrophic factor
CREB cAMP response element binding protein
CRY(1-2) Cryptochrome (1-2)
CSF Cerebrospinal fluid
DHA Docosahexaenoic acid
eGFP Enhanced green fluorescent protein
ER Endoplasmic reticulum
ERK Extracellular signal-regulated kinase
FACS Fluorescent activated cell sorting
FOXO1 Forkhead box protein O1
FSH Follicle stimulating hormone
GABA γ-aminobutyric acid
GnRH Gonadotropin releasing hormone
GNRH-R Gonadotropin releasing hormone receptor
HFD High fat diet
HOMA-IR Homeostatic model for insulin resistance
HPG Hypothalamus-pituitary-gonadal
ICV Intracerebroventricular
IL1-β Interleukin 1 beta
IL6 Interleukin 6
InsR Insulin receptor
IRS Insulin receptor substrate
IRβ Insulin receptor beta
JAK2 Janus kinase 2
JNK cJun N-terminal kinases
KISS1 Kisspeptin
KISS1r/GPR54 Kisspeptin receptor
KLF4 Kruppel-like factor 4
LepR Leptin receptor
LH Luteinizing hormone
MAPK Mitogen activated protein kinase
MC3R Melanocortin 3 receptor
MC4R Melanocortin 4 receptor
MEK Mitogen-activated protein kinase kinase
MIF Macrophage migration inhibitory factor



Cells 2021, 10, 3120 20 of 29

miRNA microRNA
MKRN3 Makorin RING-finger protein 3
mRNA Messenger RNA
NFκB Nuclear factor kappa B
NNAT Neuronatin
NPY Neuropeptide Y
OCT1 Octamer transcription factor 1
pCREB Phosphorylated cAMP response element binding protein
PER (1-3) Period (1-3)
PI3K phosphoinositide 3-kinase
PIP3 Phosphatidylinositol 3-phosphate
PKA Protein Kinase A
PNX Phoenexin
POMC Proopiomelanocortin
PPAR Peroxisome proliferator-activated receptor
pri-miRNA Primary miRNA
PTP1B Protein tyrosine phosphatase 1B
PVN Paraventricular nucleus
Rev-erb Nuclear receptor subfamily 1, group D, member 1
RISC RNA induced silencing complex
ROR Retinoic acid-related orphan receptor
SCN Suprachiasmatic nucleus
SOCS3 Suppressor of cytokine signaling 3
STAT3 signal transducer and activator of transcription 3
TLR4 Toll like receptor 4
TNFα Tumour necrosis factor alpha
UTR Untranslated region
WAT White adipose tissue
WD Western diet
ZEB1 Zinc finger E-box binding homeobox 1
α-MSH α-melanocyte stimulating hormone
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