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Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical,
and physiological properties of cells in the central and peripheral nervous system. Neu-
rotrophins, acting by binding to their cognate Trk receptors on target cell membranes,
contribute to modulation of anatomical, neurochemical, and physiological properties of
neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin
signaling is associated with many post-SCI changes including maladaptive plasticity leading
to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced
locomotor improvement. Here we characterize expression of mRNA for neurotrophins and
Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different sever-
ities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation
that differed with tissue, injury severity, and survival time, including reversals of regulation
between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in
the spinal cord may continue for months after birth. Our assessments determined that a
coordination of gene expression emerged at the 12-week post-SCI time point and bioin-
formatic analyses address possible mechanisms. These data can inform studies meant to
determine the role of the neurotrophin signaling system in post-SCI function and plasticity,
and studies using this signaling system as a therapeutic approach.

Keywords: spinal cord injury, neurotrophins, neurotrophin receptors, contusions, transcription, injury mechanisms,
sensory neurons, genetic regulation

INTRODUCTION
Traumatic injury to the spinal cord (SC) results in a variety of
changes to sensorimotor circuits. Sensory neurons of the dorsal
root ganglia (DRG) rapidly undergo long-lasting changes in their
electrophysiological properties and growth capacity (e.g., Bedi
et al., 2010, 2012; Walters, 2012). Locomotor circuitry in the SC
caudal to an injury site undergoes plasticity at the cellular, synap-
tic, and connectivity levels in an activity-dependent manner after
injury in humans and experimental models (e.g., Edgerton et al.,
2004; Rossignol,2006; Petruska et al., 2007). One strategy to restore
function after spinal cord injury (SCI) is physical therapy and/or
locomotor rehabilitation training (e.g., Wernig et al., 1995). The
neurotrophins Nerve Growth Factor (NGF), Brain Derived Neu-
rotrophic Factor (BDNF), and Neurotrophin 3 (NT3) are secreted
growth factors that were first characterized for their important
role in the survival of subpopulations of sensory neurons and in
formation of SC sensorimotor circuits during development (e.g.,
Barbacid, 1995; Lindsay, 1996; Huang and Reichardt, 2001). In
addition to these essential roles in establishing the physiological

patterns of developing neural circuitry, neurotrophins are impli-
cated as having a role in activity-dependent changes associated
with restoration of function after SCI (described below).

Neurotrophins have key roles in modulating the anatomical,
neurochemical, and physiological properties of cells in the central
and peripheral nervous system. The effects of neurotrophins on
responses to stimuli in both the intact and injured nervous system
have been extensively investigated and studies have demonstrated
an important role in modulation of sensorimotor physiology (for
reviews, see Huang and Reichardt, 2001, 2003; Reichardt, 2006;
Skaper, 2008, 2012). The neurotrophins have therefore become a
frequent target for manipulation after injury. Delivery of exoge-
nous BDNF and NT3 to the transected SC improves recovery of
hindlimb function (Blits et al., 2003; in rats) and results in a level
of function similar to that seen in animals receiving locomotor
training after spinal transection (Boyce et al., 2007; in cats). Such
demonstrations of enhanced post-SCI function in response to
exogenous neurotrophins suggests a role for neurotrophin signal-
ing in models of activity-dependent plasticity after injury, possibly
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including physical therapy. For example, in the lumbar SC of rats,
post-SCI locomotor training causes an increase in both BDNF and
NT3 above levels of non-trained animals (Hutchinson et al., 2004;
Côté et al., 2011). In light of the demonstrated and suggested
roles in modulating sensorimotor physiology, characterizing the
endogenous regulation of neurotrophins and their receptors after
injury is particularly relevant.

Neurotrophins influence cellular processes by binding to
membrane-bound receptors which transduce the extracellular sig-
nal into intracellular effect – their high affinity tyrosine kinase
receptors. In general, NGF binds TrkA, BDNF bindsTrkB, and NT3
binds TrkC (e.g., Barbacid, 1995; Patapoutian and Reichardt, 2001;
Huang and Reichardt, 2003), although cross-talk is recognized and
there is a low-affinity receptor, p75, which we do not consider here.
To determine the role of neurotrophins in any process or condi-
tion one must examine not only the neurotrophins, but also the
receptors.

Prior characterizations of changes in neurotrophins and Trk
receptors in lumbar neural circuitry have been instrumental in
elucidating the complex regulation of these important molecules
after injury (Table 1). However, these have largely focused on time
points of less than 6 weeks (Hayashi et al., 2000; Liebl et al., 2001;
Nakamura and Bregman, 2001; Widenfalk et al., 2001; Qiao and
Vizzard, 2002, 2005; Gulino et al., 2004; Zvarova et al., 2004; Qin
et al., 2006; Li et al., 2007; Hajebrahimi et al., 2008; Qian et al.,
2011; Keeler et al., 2012). Although valuable for elucidating the
role of neurotrophin signaling in the first 6 weeks after SCI, these
data are of uncertain value for relating to longer-term post-SCI
function. Given the many demonstrations of continued changing
conditions after SCI (e.g., Beattie et al., 2002; Profyris et al., 2004;
Ung et al., 2008; Beck et al., 2010), it is important to recognize that
the temporal character of experiments has a significant influence
on the outcome.

The impact of SCI also varies depending on the location of the
injury itself and the spatial relation of the investigated tissue to the
SCI. Clearly, the relative composition of types of tissues innervated
changes throughout the course of the neuraxis as does the specific
function of local circuitry. For example, in rat, the spinal com-
ponents of bladder control are focused on the T13/L1 and L6/S1
segments, colon function is focused in L6/S1, and the locomotor
central pattern generator appears focused in (though not lim-
ited to) the L1/2 segments, spinal sympathetic circuitry regulating
outflow exists roughly from T1-L2, and spinal parasympathetic
circuitry exists in the sacral-caudal SC. Thus it follows that the
effect on spared function and/or recovery is influenced by the level
of the injury (e.g., Magnuson et al., 1999, 2005; Garcia-Alias et al.,
2006), but this also extends to less direct functions (Campagnolo
et al., 2000; Lucin et al., 2007). It is also very important to consider
that both neural and non-neural tissues remote from the SCI can
be affected (e.g., Collazos-Castro et al., 2005; Massey et al., 2006;
Gris et al., 2008).

Sensory input to the SC plays a role in establishing natural
and therapy-induced recovery and regulating spinal function in
the absence of descending control. For example, urinary bladder
function after SCI is highly reliant on sensory input and plasticity
of sensory afferents (e.g., Tai et al., 2006; de Groat and Yoshimura,
2009), and SCI affects the trk receptor profile of neurons in DRG

segments innervating bladder differently than for DRG innervat-
ing hindlimb (Qiao andVizzard,2002,2005),a finding that extends
to spinal trk receptors as well (Zvarova et al., 2004). Additionally,
the type and amount of sensory input can influence spontaneous
recovery after SCI (e.g., Grau et al., 2004, 2012; Ollivier-Lanvin
et al., 2010; Caudle et al., 2011; Ferguson et al., 2012a,b) and
also influence the effectiveness of physical therapy (e.g., Bouyer
and Rossignol, 1998, 2003; Edgerton et al., 2004, 2008; Gomez-
Pinilla et al., 2004; Frigon and Rossignol, 2009; Ollivier-Lanvin
et al., 2010), all of which may involve neurotrophin signaling (e.g.,
Gomez-Pinilla et al., 2004; Hutchinson et al., 2004; Boyce et al.,
2007, 2012; de Leon, 2007; Côté et al., 2011). Further, autonomic
dysreflexia (AD), a life-threatening condition that is common for
those living long-term with cervical or high thoracic SCI, is trig-
gered most frequently by nociceptive sensory input (Maiorov et al.,
1998; Krassioukov and Fehlings, 1999; Garstang and Miller-Smith,
2007), and sprouting of central terminals of nociceptive neurons,
purportedly modulated by NGF, is proposed as a mechanism con-
tributing to AD (Weaver et al., 1997; Krenz et al., 1999; Marsh et al.,
2002; Cameron et al., 2006; Ackery et al., 2007). It is important,
therefore, to examine not only the SC, but also the sensory neurons
providing information to the SC, and to consider that the effects
of SCI on these neurons may differ with their spatial relation to
the SCI, and/or to the different tissues they innervate (e.g., Qiao
and Vizzard, 2002; Zvarova et al., 2004; Bedi et al., 2010, 2012;
Keeler et al., 2012). The spatial character of experiments, in terms
both of the level of SCI and the relation to the SCI of the tissue
investigated, has a significant influence on the outcome.

Injury severity, or more precisely the degree and nature of the
tissue spared after injury, is one of the key factors determining the
functional capabilities of the SC caudal to the SCI. The literature is
replete with examples of this when reports are considered together
(e.g., Rossignol and Frigon, 2011). Far fewer single studies exam-
ine multiple injury severities (e.g., Magnuson et al., 2005; Smith
et al., 2006), although the injury severity character of experiments
has a significant influence on the outcome.

We sought to characterize the natural regulation of neu-
rotrophin and trk receptor genes in tissues and conditions that
were applicable to experimental studies of long-term function and
recovery after SCI and to the human condition. We therefore char-
acterized the transcriptional response of neurotrophins and their
cognate Trk receptors to SC contusion temporally (6 and 12 weeks
post injury), spatially (in lumbar SC and DRG), and relative to
injury severity (12.5 and 25 g cm NYU contusions).

MATERIALS AND METHODS
All experimental protocols and procedures were approved by the
Institutional Animal Care and Use Committee at the University
of Louisville, Louisville, KY, USA. Experimental animals were
7 week old female Sprague–Dawley rats (Taconic Labs, Hudson,
NY, USA). Animals were housed in pairs throughout the course of
our experiments.

SURGICAL SPINAL CORD INJURY
Rats (n= 47) were anesthetized with 50 mg/kg sodium pentobar-
bital (Sigma, St Louis, MO, USA). Once sedated, Lacquer Lube
was applied to the eyes to prevent drying. After skin incision,
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laminectomy was performed at vertebral level T9, to expose the
T10 SC. Contusion injuries were produced using the New York
University (NYU) Impactor. Either “Moderate” or “Moderately
severe” injuries were produced by releasing a 10 g, 2 mm rod from
12.5 or 25 mm height, respectively, onto the exposed dura mater of
the SC. These will subsequently be referred to as 12.5 and 25 g cm
injuries. After producing the contusion the wound was closed in
layers and the skin incision was stapled. Rats received fluids (10cc
0.9% saline subcutaneously), and antibiotic treatment (0.1cc Gen-
tamicin (50 mg/mL) intramuscularly, and Bacitracin was topically
applied on the incision site). Animals were housed overnight in a
recovery room with a heating pad under their cage, and were taken
to the animal facilities in the morning.

Assessment of mRNA expression in SCI animals was compared
to control animals. These consisted of naïve rats (two per time
point group) and rats receiving laminectomy-only (three rats per
time point group), for a total of five controls per time point. There
were four additional laminectomy-only control rats included with
the animals used for the 6-week post-SCI DRG assessment. All
surgical procedures (except for the SCI), were as described above
for the laminectomy-only control rats.

INJURY CHARACTERIZATION
Behavior
Experiments were performed on rats separated into groups based
on injury severity, survival time, and the tissue to be analyzed
for mRNA expression. Rats were familiarized with the test-
ing procedures and personnel by handling for 1 week before
injury. Pre-surgical behavioral assessments were done to ensure
no pre-existing conditions were present that would subsequently
affect our locomotor outcome measures. Seventeen rats received
12.5 g cm NYU (moderate) and 16 rats received 25 g cm NYU
(moderately severe) injuries. Hindlimb locomotor function was
assessed with the Basso, Beattie, and Bresnahan (BBB) Locomotor
Rating Scale (Basso et al., 1996). BBB testing was carried out prior
to injury and 7, 14, 21, 28, 35, 42 for the 6-week SC group, and 7, 14,
21, 28, 35, 42, 49, 56, 63, 72, 79, and 84 days post injury for the 12-
week SC groups, 12 week DRG group, and at 7, 14, 28, and 42 days
post injury for the 6-week DRG group. For testing, rats were placed
in an open field (a plastic tank that was 105 cm in diameter with
30 cm high walls) for 4 min. BBB testing was done after animal care
in the morning. Hindlimb movement and locomotion were scored
simultaneously by two observers who were blind to the treatment
groups. We include the BBB measures as a means to characterize
the injuries with commonly used assessments so that the mRNA
measures can be placed in context.

Histology
At the end of the testing period, rats were anesthetized with sodium
pentobarbital and euthanized via transcardial perfusion with 30%
RNA Later (Qiagen) in 0.1 M Phosphate Buffered Saline (PBS).
An approximately 10 mm long block of SC containing the injury
epicenter was removed from each animal and immersed in 4%
paraformaldehyde. After 1 week cords were immersed in PBS con-
taining 30% sucrose for cryoprotection until further processing.
For sectioning, tissue was embedded in TissueTek®(VWR) and
frozen. The blocks were cut 50 µm thick in the transverse plane

on a cryostat and were sampled every 250 µm. A series of sections
spanning the rostrocaudal extent of the lesion was stained with
eriochrome cyanine (EC) to assess amounts of spared myelin as
described (Rabchevsky et al., 2007). Light microscopy was used
to determine spared white matter (SWM). Images were captured
using a SPOT digital camera (Diagnostic Instruments) mounted
on a Zeiss Axioskop. From these, the area of spared tissue was man-
ually designated (Intuos drawing tablet; Wacom, Otone, Japan).
Areas of white matter sparing were calculated using the ImageJ
program and expressed as a proportion of control (defined as
group mean of the smallest white matter area from an analogous
section of SC from all control animals). For each injured animal,
the SCI epicenter was defined quantitatively as the section contain-
ing the least amount of intact tissue. Percent white matter sparing
is reported as mean (±SD). As with the BBB, we include the WMS
measures as a means to characterize the injuries with commonly
used assessments so that the mRNA measures can be placed in
context.

mRNA EXPRESSION
Isolation and cDNA conversion
Animals were euthanized after final behavioral assessments and
exsanguinated by transcardial perfusion using 30% RNA later
(Qiagen) in PBS. Lumbar SCs (L4/5) and DRG were removed
and immersed in 100% RNA later and stored at −20˚C until
further processing. SCs were homogenized on ice in 1 mL Tri-
zol and RNA was isolated using Trizol/chloroform extraction
method. Briefly, homogenate was transferred to a 1.5 mL tube
and spun at 12,000 g for 10 min at 2˚C. The supernatant was
transferred to a new tube and 200 µL chloroform added. This
mixture was spun for 15 min at 2˚C to separate into aqueous
and organic phases. The aqueous phase was transferred to a
new tube and alcohol precipitation was performed with 100%
isopropanol, then 70% ethanol. After removal and drying of
excess ethanol, the pellet was resuspended in 30 µL nuclease free
H20, solubilized in 600 µL Buffer RLT with beta-Mercaptoethanol
(BME), and processed through RNeasy MiniKit (Qiagen) per
manufacturers protocol. DRGs were homogenized directly in
Buffer RLT+BME and processed through RNeasy MiniKit. RNA
was analyzed by Nanodrop (ThermoScientific, Waltham, MA,
USA) to obtain concentration and 500 ng of RNA from each
sample was reverse transcribed into cDNA using Quanta Bio-
sciences qScript cDNA SuperMix. All RNA was converted to
cDNA using the same lot of reverse transcriptase. Performing
the reverse-transcription for all samples with the same reagents
is a methodological procedure meant to reduce the cross-sample
variability which in turn can enhance the reliability of statistical
assessments.

qRT-PCR
mRNA expression levels were quantified by qRT-PCR on Corbett
Research 6000 (Qiagen) using FastStart Universal SYBR Green
Master Mix(Roche). Duplicate reactions were run for each sample
for both the gene of interest and the normalizer [Beta-3 Tubulin –
demonstrated as a suitable normalizer gene for SCI work (Strube
et al., 2008)]. Relative expression levels were calculated as ∆∆CT
of gene of interest vs. normalizer. Primer sequences for the genes
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analyzed are provided in Table 2, along with their relationship to
the known gene structure and transcript species.

STATISTICS
Statistical analyses were performed using SPSS (IBM, North Castle,
NY, USA) or SigmaPlot/SigmaStat (Systat Software, San Jose, CA,
USA). A Student’s t -test was performed to determine if expression
levels differed between control groups. In cases where gene expres-
sion did not differ between control groups the 6- and 12-week
control groups were combined and the expression values for the
experimental groups are reported as a fold-change of the unified
control group. One-way analysis of variance (ANOVA) was per-
formed on these values with post hoc Tukey’s test for all pairwise
comparisons. All groups with p < 0.05 difference are reported as
significant. Pearson Product Moment was calculated to determine
the relationships between the expression levels of the different
transcripts, and to determine the relationships between BBB/WMS
vs. expression levels. Differences between BBB scores were assessed
using a mixed model repeated measures ANOVA with a post hoc
Bonferroni t -test.

RESULTS
INJURY CHARACTERIZATION
To assess the degree of injury severity, we characterized SC injuries
based on two parameters; behavior as measured by BBB, and the
amount of SWM at the epicenter after staining with eriochrome
cyanin (Rabchevsky et al., 2007). BBB scores were significantly
greater in the 12.5 g cm injury groups than the 25 g cm groups
beginning at week 5 (Figure 1A). These differences in behavior
were reflected in the amount of SWM, as the 25 g cm groups had
8.5% (±1.8%) and the 12.5 g cm groups had 13.9% (±3.6%) SWM
at the epicenter. In accord with prior literature (Basso et al., 1996;
Schucht et al., 2002; Magnuson et al., 2005), a significant corre-
lation (r = 0.88, p < 0.001) was observed between white matter
sparing at epicenter and BBB scores (Figure 1B). BBB scores of
the 12.5 g cm group showed a high degree of variability and con-
tinued to increase between 6 and 12 weeks instead of reaching a
plateau. Within this group, two animals had BBB scores consistent
with the range observed in previous literature (Basso et al., 1996;
Agrawal et al., 2010; 12 and 13) and four animals that had higher
BBB scores than expected for this injury severity (mean 17.9) at
12 weeks post injury. We considered that these results may be due
to both greater amount of SWM and/or asymmetry of the lesion
(Figures 1C,D). Indeed, of the four animals whose BBB scores
continued to increase, all had a greater amount of SWM (mean
16.1% for four animals with higher BBB scores, 10.1% for two
animals with lower BBB scores), and all had asymmetrical injuries
(arbitrarily defined as more than 4% greater SWM on one side
vs. the other). Animals with the lower BBB scores in the 12.5 g cm
group did not represent statistical outliers (Grubbs outlier test).
Separate statistical analyses of gene expression were performed
with the exclusion of the two animals whose BBB scores did not
continue to increase and the results generally did not differ from
those found when all six animals were considered together. The
lone exception was the results for expression of one Trk receptor
in the SC, which is noted below. We thus consider all six animals Ta
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Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

FIGURE 1 | Injuries were characterized using BBB scores to assess
hindlimb locomotor function and white matter sparing (WMS) at
epicenter using EC stain. (A) BBB scores of groups that received
12.5 g cm (blue) or 25 g cm (green) NYU injuries. Starting at week 5, a
significant difference was observed between the two injury severities. Both
groups were significantly different (p < 0.05) from controls (not shown) at
all time points. (B) White matter sparing at epicenter (x axis) plotted vs.
BBB score. Black dots represent 6 week values. Green dots represent
12 week, 25 g cm injured animals. Blue x represent the two animals from
the 12-week, 12.5 g cm group with the lowest BBB scores within the group.
Blue dots represent the four animals from the 12-week, 12.5 g cm group
with the highest BBB scores within the group. (C) Image taken from a
12.5 g cm contused animal showing a laterally-symmetrical injury pattern at
the epicenter. Note the difference from (D), which was taken from an
animal that also received a 12.5 g cm spinal cord contusion but which
yielded an asymmetrical injury at epicenter. *p < 0.05, ***p < 0.001.

together in the group in all subsequent figures and analyses of
mRNA expression.

EXPRESSION OF Trk RECEPTORS IN THE DRG
One purpose of this study was to determine whether these dif-
ferent contusion severities result in a differential transcriptional
response of neurotrophins and their Trk receptors in lumbar sen-
sorimotor circuits. Hence, we sought to determine the expression
level of Trk receptors in the DRG 6 and 12 weeks after our two
severities of contusion injury. Expression of TrkA, TrkB, and TrkC

each differed significantly between the 6- and 12-week groups,
with the magnitude and direction of difference depending on
receptor type and injury severity. Expression of TrkA mRNA in
DRG from the 12-week group at both injury severities was signif-
icantly greater than that in DRG from the corresponding 6 week
group. Expression of TrkA in DRG from the 12-week group that
received 12.5 g cm injury was also elevated relative to the control
groups. We also observed a difference in TrkA expression between
injury severities at the 12-week time point. Similar to TrkA, expres-
sion of TrkC mRNA in DRG from the 12-week group was greater
than that in DRG from the corresponding 6 week group at both
injury severities, but the difference only reached significance in the
12.5 g cm animals. Unlike the findings for TrkA, we detected no
significant difference in TrkC expression between DRG from the
12.5 g cm group and from the 25 g cm group at the 12 week time
point. Expression of mRNA for TrkB in DRG at 12 weeks after
25 g cm injury was significantly lower than in DRG from both the
6-week SCI and control groups. No significant difference in TrkB
expression was observed between injury severities at 6 or 12 week
time points in the 12.5 g cm injury group (Figure 2).

EXPRESSION OF NEUROTROPHINS IN THE DRG
As with TrkA, NGF mRNA expression in DRG from the 12.5 g cm
injury severity group was significantly greater in the 12-week
group than in both the 6-week and control groups. However, no
significant changes in NGF expression were observed between sur-
vival time groups in the 25 g cm injury severity group. As with
TrkB, BDNF expression in the 12-week 25 g cm group was signifi-
cantly less than in the 6-week 25 g cm group,but did not differ from
the control group (Figure 3). No other differences were observed
in BDNF expression levels. There was a large increase in the mean
expression of NT3 in DRG from the 12-week, 12.5 g cm injury
group, however due to high variance no significant differences
were observed from 6 to 12 weeks.

EXPRESSION OF Trk RECEPTORS IN THE SPINAL CORD
Expression levels of mRNA for neurotrophin receptors TrkA, TrkB,
and TrkC were assessed from samples of lumbar SC (L4/5). In the
groups that received a 12.5 g cm injury, the level of TrkA in SC from
the 12-week group was significantly greater than that from the 6-
week group, whereas there was no significant difference between
the two post-SCI times in the 25 g cm injury group. Like TrkA,
the level of TrkC in SC from the 12-week 12.5 g cm group was
significantly greater than that from the 6-week group, with no sig-
nificant difference between the two post-SCI times in the 25 g cm
injury group. No significant changes in TrkB expression levels were
detected between any groups (Figure 4).

EXPRESSION OF NEUROTROPHINS IN THE SPINAL CORD
The results for neurotrophins in the SC are displayed differently
from the data regarding expression levels of neurotrophins and
Trk receptors in the DRG, and Trk receptors in the SC. In the latter
assessments, the expression of neurotrophins and trks did not dif-
fer between the 6- and 12-week control animals. Thus, those data
were analyzed and presented relative to the mean and variation of
a single unified control group. This allowed us to simultaneously
assess the effect of both injury severity and survival time on gene
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Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

FIGURE 2 | mRNA expression ofTrk receptors is altered in L4/5 DRG at 6
and 12 weeks after receiving either 12.5 g cm (blue) or 25 g cm (green)
NYU contusion injury to spinal cord at vertebral levelT9. Fold-change (FC)
is reported as change of 12 week relative to 6 week time points in all figures.
Black bar on TrkA reports fold-change (fc) of 25 g cm at 12 weeks relative to

12.5 g cm at 12 weeks. X axis denotes weeks post injury. White lines in
box-plots indicate group mean. Dotted gray lines indicate expression level of
controls (normalized to 1), with ±SEM indicated by the vertical arrows at right
end of the control line. #p < 0.05 vs. control, *p < 0.05, **p < 0.01,
***p < 0.001.

FIGURE 3 | mRNA expression of Neurotrophins is altered in L4/5 DRG at
6 and 12 weeks after receiving either 12.5 g cm (blue) or 25 g cm (green)
NYU contusion injury to spinal cord at vertebral levelT9. Fold-change (fc)
is reported as change of 12 week relative to 6 week time points in all figures.

X axis denotes weeks post injury. White lines in box-plots indicate group
mean. Dotted gray lines indicate expression level of controls (normalized to 1),
with ±SEM indicated by the vertical arrows at right end of the control line.
#p < 0.05 from control. *p < 0.05, **p < 0.01, ***p < 0.001.

expression. For the neurotrophin genes in SC, however, expression
differed significantly between the 6- and 12-week control groups
(Figure 5A). We first analyzed these gene expression data exactly as
was done for the other tissues – comparing each injury severity and
survival time to the mean and variation of a single unified control
group – but for the sake of clarity we have presented the data from
the individual animals in each group. Caution must be exercised
when considering the expression data for the experimental groups
in this analysis (Figure 5A) because of the use of a unified control
group – i.e., these data were generated exactly as were the other
expression values, but are relative to a unified control group that,
in this case, is not a suitable control group. We found decreases
between our 6 and 12 week control groups in expression levels of
NGF, BDNF, and NT3 in the SC in the absence of SCI. It is worth

noting that our quality control measures were repeated for these
samples, but the assessments remained the same. In ruling out
technical issues and variability due to the necessity of using ani-
mals from different litters, a single factor appears to account for
the altered expression levels in the control groups, that being age.

Because the gene expression differed between the 6- and 12-
week control groups, we cannot incorporate the temporal char-
acteristic of the experimental design in our assessment of neu-
rotrophin expression in SC. We are limited to analyzing the effect
of injury severity on gene expression within each separate survival
time group, where the data from experimental groups is expressed
relative to the time-matched control group only (Figure 5B).
Considered in this way, SCI itself did not significantly influence
expression of any neurotrophin at any time considered, with the
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Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

FIGURE 4 | mRNA expression ofTrk receptors is altered in L4/5 spinal
cord at 6 and 12 weeks after receiving either 12.5 g cm (blue) or 25 g cm
(green) NYU contusion injury to spinal cord at vertebral levelT9.
Fold-change (fc) is reported as change of 12 week relative to 6 week time

points in all figures. X axis denotes weeks post injury. White lines in box-plots
indicate group mean. Dotted gray lines indicate expression level of controls
(normalized to 1), with ±SEM indicated by the vertical arrows at right end of
the control line. #p < 0.05 from control. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 5 | (A) Scatterplots of Neurotrophin mRNA expression in L4/5
SC at 6 and 12 weeks after receiving either 12.5 g cm (blue) or 25 g cm
(green) NYU contusion injury to spinal cord at vertebral level T9, relative
to the unified control group as was done for the other data. x ’s represent
mRNA expression of age-matched naive animals. Open circles represent
expression of age-matched laminectomy control animals. *p < 0.05,
**p < 0.01 (B) mRNA expression of Neurotrophins in L4/5 SC at 6 and

12 weeks after receiving either 12.5 g cm (blue) or 25 g cm (green) NYU
contusion injury to spinal cord at vertebral level T9, relative to their
respective age-matched control groups. X axis denotes weeks post
injury. White lines in box-plots indicate group mean. Dotted gray lines
indicate expression level of controls (normalized to 1), with ±SEM
indicated by the vertical arrows to the right of each time point pair.
#p < 0.05 from control.
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Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

exception of NT3 at 12 weeks post-SCI. At this time, NT3 was
elevated relative to the time-matched control group, with no effect
of injury severity.

RELATIONSHIP OF TRANSCRIPTIONAL ASSESSMENTS TO FUNCTIONAL
AND ANATOMICAL ASSESSMENTS
Our experimental design was intended to embrace the variability
that exists with models of contusive SCI in that we also examined
whether a statistical correlation existed between expression levels
of each transcript and BBB or white matter sparing on an animal
by animal basis. We observed no statistically significant correlation
between the expression levels of the transcripts and BBB score or
white matter sparing.

COORDINATED EXPRESSION OF NEUROTROPHINS AND Trk RECEPTORS
IN DRG AND SPINAL CORD 12 WEEKS POST INJURY
To further characterize the relationship between the neurotrophins
and their receptors in lumbar DRG and SC, we analyzed the expres-
sion levels of neurotrophins and Trk receptors relative to each
other, and without respect for injury severity. In the SC, the only
significant relationship was that of TrkB and TrkC in the con-
trol and 6 week groups. No relationship was found between any
other expression levels at any time points in the SC (Table 3). In
the DRG, there was a relationship between NGF and NT3 in all
groups. In the 6-week groups the only other significant correlation
observed was between BDNF and TrkB. After 12 weeks there was a
significant correlation in the expression levels of all neurotrophins
in the DRG, a relationship that existed for the Trk receptors as
well (Table 4). Additionally, a significant correlation was observed

between expression levels of neurotrophins and their cognate
Trk receptors at 12 week time points (Table 4). This coordinated
expression pattern occurred in all animals independent of injury
severity (Figures 6 and 7). The reliability of this statistical assess-
ment is enhanced by our performing the reverse-transcription for
all samples with the same reagents, a procedure which reduces the
cross-sample variability.

BIOINFORMATIC ANALYSIS OF NEUROTROPHIN AND Trk RECEPTOR
GENE REGULATION
In light of the apparent coordinated expression of neurotrophins
and trk receptors in DRG at 12 weeks after SCI, we used bioinfor-
matic analyses to examine some possible mechanisms that may be
at play. In order to assess possible coordination of regulation via
gene promoters, we retrieved from the TransFac database (Win-
gender et al., 2000; Wingender, 2008; gene-regulation.com) all
transcription factors (TFs) known/predicted to bind to (1) the
annotated promoter region or (2) the sequence 1 kb upstream of
the annotated translation start-site if the annotated promoter was
less than 1 kb, of all six genes examined here. For this procedure
the RGSC 5.0/rn5 (March 2012; genome.ucsc.edu) rat genome
assembly was used and all sequences and locations are relative
to this assembly (Table 5). These broad results were filtered for
those TFs with annotations indicating expression in nervous tis-
sue, and results for different transcript entries for the same gene
were pooled. TrkC was the only gene to lose all TFs in this fil-
tering process, reflecting the fact that the assembled sequence
upstream of the TrkC gene has numerous stretches of unde-
fined bases, and that the annotated promoter is very short. In

Table 3 | Correlations between expression of mRNA for trk receptors in spinal cord.

Control 6 week 12 week

r -Value p-Value r -Value p-Value r -Value p-Value

TrkA vs. TrkB 0.47 0.2 0.25 0.46 0.19 0.56

TrkA vs. TrkC 0.42 0.26 0.21 0.53 0.4 0.19

TrkB vs. TrkC 0.75 0.01 0.76 0.004 0.44 0.16

Data in bold are statistically significant.

Table 4 | Correlations between expression of mRNA for neurotrophins,Trk receptors, and cognate pairs in DRG.

Control 6 week 12 week

r -Value p-Value r -Value p-Value r -Value p-Value

NGF vs. BDNF 0.20 0.61 0.15 0.69 0.84 0.001

NGF vs. NT3 0.72 0.03 0.87 0.003 0.92 0.00006

BDNF vs. NT3 0.10 0.80 0.33 0.38 0.88 0.0004

TrkA vs. TrkB 0.04 0.90 0.005 0.989 0.89 0.0007

TrkA vs. TrkC 0.56 0.11 0.61 0.08 0.79 0.006

TrkB vs. TrkC 0.40 0.28 0.38 0.31 0.78 0.004

NGF vs. TrkA 0.65 0.06 0.55 0.13 0.88 0.0004

BDNF vs. TrkB 0.45 0.22 0.69 0.04 0.77 0.005

NT3 vs. TrkC 0.57 0.11 0.61 0.08 0.77 0.006

Data in bold are statistically significant.
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Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

FIGURE 6 | Correlated expression of neurotrophins in DRG emerges at chronic time points. Values represent fold-change of the individual animals vs.
mean of control group. Blue dots represent animals with 12.5 g cm injuries. Green dots represent animals with 25 g cm injuries.

FIGURE 7 | Correlated expression ofTrk receptors in DRG emerges at chronic time points. Values represent fold-change of the individual animals vs. mean
of control group. Blue dots represent animals with 12.5 g cm injuries. Green dots represent animals with 25 g cm injuries.

spite of this, numerous TFs remained for three or more genes,
and four TFs remained for all genes (except trkC) – cyclic AMP
response element binding protein (CREB), MafB, NeuroD, and
Pax3 (Table 6).

Another possible means of regulating the levels of mRNA is
by micro-RNA (miRNA), which can influence the stability and/or
turn-over rate of transcripts, among other effects (e.g., Kosik and
Krichevsky, 2005). In order to assess possible coordination of regu-
lation via miRNA, we retrieved from the TargetScan database those
miRNA-binding sites that are conserved between human and rat
neurotrophin and trk genes (TargetScanHuman release 6.2, e.g.,
Grimson et al., 2007; targetscan.org; Table 7). Although numer-
ous miRNA species were retrieved, none were shared across any of
the neurotrophin and trk genes.

DISCUSSION
EXPRESSION AND FUNCTION OF NEUROTROPHINS AND Trks
Spinal cord injury engenders a host of changes to both the central
and peripheral nervous system, indeed for the entire organism,

with residual functional capacity that is largely dependent on
the location and severity of the injury. A variety of different
approaches have been used in efforts to re-establish function,
including enhancement of regeneration across the injury site (e.g.,
Bregman et al., 2002; Moon and Bunge, 2005; Sharma et al., 2012;
Smith et al., 2012) and plasticity of intact circuits below the level of
the lesion (e.g., Edgerton et al., 2004; Boulenguez and Vinay, 2009;
Rossignol and Frigon, 2011). One means for achieving plasticity
of intact circuits is through activity-dependent reorganization of
inputs (e.g., Edgerton et al., 2004). This phenomenon has been
described in studies of both animal (reviewed in Edgerton et al.,
2008) and human (reviewed in Harkema, 2008) of SCI. Neu-
rotrophins have been implicated as having a role in such changes
(Hutchinson et al., 2004; Boyce et al., 2007, 2012; Côté et al., 2011).
However, activity-dependent changes in the capacity for locomo-
tion often manifest at times later than those examined in studies
of post-SCI expression of neurotrophins and trk receptors (De
Leon et al., 1998, 1999; Table 3). Indeed, the dynamic period of
spontaneous locomotor recovery generally lasts for approximately
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Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

Table 5 | Genomic coordinates used for Bioinformatic analyses.

Gene RefSeq Chromosome CDS Beg CDS End Strand 5′UTR Beg 5′UTR End 3′UTR Beg 3′UTR End

Ntrk1 (TrkA) NM_021589 chr2 206548727 206565310 – 206565311 206570310 206543727 206548726

Ntrk2 (TrkB) NM_012731.2 chr17 8158054 8463473 – 8463474 8468473 8153054 8158053

Ntrk2 (TrkB) NM_001163168.1 chr17 8340214 8463473 – 8463474 8468473 8335214 8340213

Ntrk2 (TrkB) NM_001163169 chr17 8389944 8463473 – 8463474 8468473 8384944 8389943

Ntrk3 (TrkC) NM_001270655.1 chr1 140868438 141239903 – 141239904 141244903 140863438 140868437

Ntrk3 (TrkC) NM_001270656.1 chr1 140868438 141239903 – 141239904 141244903 140863438 140868437

Ntrk3 (TrkC) NM_019248.1 chr1 140868438 141239903 – 141239904 141244903 140863438 140868437

NGF NM_001112698.1 chr2 224368770 224369496 + 224363770 224368769 224369497 224374496

NGF NM_013609.2 chr2 224362515 224369496 + 224357515 224362514 224369497 224374496

BDNF NM_001270631 chr3 107418271 107419021 + 107413271 107418270 107419022 107424021

BDNF NM_001270632 chr3 107418271 107419021 + 107413271 107418270 107419022 107424021

BDNF NM_001270633 chr3 107418271 107419021 + 107413271 107418270 107419022 107424021

BDNF NM_001270634 chr3 107418271 107419021 + 107413271 107418270 107419022 107424021

BDNF NM_001270635 chr3 107418271 107419021 + 107413271 107418270 107419022 107424021

BDNF NM_001270636 chr3 107418271 107419021 + 107413271 107418270 107419022 107424021

BDNF NM_001270637 chr3 107418271 107419021 + 107413271 107418270 107419022 107424021

BDNF NM_001270638 chr3 107418271 107419021 + 107413271 107418270 107419022 107424021

BDNF NM_001270630 chr3 107390677 107419021 + 107385677 107390676 107419022 107424021

BDNF NM_012513 chr3 107371964 107419021 + 107366964 107371963 107419022 107424021

Ntf3 (NT3) NM_031073 chr4 225639116 225705803 – 225705804 225710803 225634116 225639115

Ntf3 (NT3) NM_001270869 chr4 225639116 225705803 – 225705804 225710803 225634116 225639115

Ntf3 (NT3) NM_001270868 chr4 225639116 225675123 – 225675124 225680123 225634116 225639115

Ntf3 (NT3) NM_001270870 chr4 225639116 225639893 – 225639894 225644893 225634116 225639115

6 weeks after SCI, a time well beyond most prior studies (Table 3).
In addition to a likely role in locomotor function, neurotrophin
signaling is implicated in pathologic outcomes of plasticity such
as post-SCI pain and autonomic dysreflexia (e.g., Brown and
Weaver, 2012). The role of neurotrophin signaling has princi-
pally been examined in terms of initiation of these conditions
in the near-term after SCI in animal models (Krenz et al., 1999;
Marsh et al., 2002; Cameron et al., 2006), as opposed to later-phase
initiation or maintenance. The regulation we have demonstrated
at extended time points may provide new rationale for exam-
ining the role of neurotrophin signaling in later stages of these
conditions.

Neurotrophins exert modulatory effects on cellular physiology
through activation of their cognate Trk receptors (Lindsay, 1996;
Patapoutian and Reichardt, 2001; Huang and Reichardt, 2003). In
the DRG, expression of neurotrophin receptors is restricted to spe-
cific populations of cells. Generally, TrkA is expressed in neurons
with small soma size, TrkB in neurons with intermediate size, and
TrkC in neurons with large soma size; populations of TrkA and
TrkC expressing neurons remain largely separate, whereas TrkB is
co-expressed in overlapping populations of TrkA and TrkC posi-
tive cells (Mu et al., 1993; McMahon et al., 1994; Wright De, 1995;
McMahon, 1996; Phillips and Armanini, 1996). Trk receptors are
not ubiquitous, however, as there is a large subpopulation of small
diameter DRG neurons which do not express any of the Trk recep-
tors or the low-affinity neurotrophin receptor p75 in the adult
(McMahon et al., 1994; Molliver and Snider, 1997; Bennett et al.,
1998). In the mammalian SC, TrkA is expressed in second order

nociceptors of the dorsal horn, TrkB has a broad pattern of expres-
sion which overlaps with both TrkA and TrkC expression, and
TrkC is expressed in neurons of the intermediate and ventral horn
(e.g., Duberley et al., 1997; Curtis et al., 1998; Schober et al., 1999;
Copray and Kernell, 2000; Liebl et al., 2001; Allen Institute for
Brain Science, 2009).

As long as 6 weeks after SC transection injury, the number of
cells expressing TrkA and TrkB protein in L1 and L6/S1 DRG
(containing bladder afferents) increases over controls, though the
numbers of cells expressing these genes does not significantly
change in L4/5 DRG (Qiao and Vizzard, 2002, 2005). Our analy-
sis of Trk expression, which was also performed in L4/5 DRG
and included a 6-week post-SCI time point, found no significant
change in the trkA or trkB mRNA levels for either severity of con-
tusion injury, in agreement with the prior work. In intact sensory
and sympathetic ganglia of the adult rat, NGF and NT3 (as well
as TrkA, full length TrkB, and TrkC), localize exclusively to neu-
rons; BDNF and the truncated isoform of TrkB are expressed more
extensively, however, localizing to neuronal cells and some glial
and satellite cells (Wetmore and Olson, 1995). These observations
are consistent with the notion that full length Trk expression pre-
dominantly occurs in neurons, though since the latter study was
performed with intact animals, we cannot exclude the possibility
that our injuries potentially resulted in expression in other cell
types. Indeed, there are numerous reports of trk receptor expres-
sion by non-neuronal cells. In particular Schwann cells can express
trks, as can cancer cells (e.g., Funakoshi et al., 1993; Tacconelli et al.,
2005; Hess et al., 2007; Jin et al., 2011). Further, neurotrophins are

Frontiers in Physiology | Integrative Physiology January 2013 | Volume 3 | Article 478 | 14

http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

Table 6 |Transcription factor binding sites for neurotrophin and trk receptor genes.

TF Binding-site name HGNC symbol TrkA NGF TrkB BDNF TrkC NTF3

AhR AHR x x x

AhR: Arnt x

AP-1 FOS; FOSB; JUN; JUND x x

AP-2 TFAP2A x x x x

AR AR x x

Arnt ARNT x

ATF ATF x x

ATF2 ATF2 x x x x

ATF2: c-Jun x

Brn-2 POU3F2 x

C/EBP CEBPA, B, D, E, G, Z x x

CAR NR1I3 x

c-Ets-2 ETS2 x

c-Jun JUN x x

c-Myc: Max x

COUP-TF1 NR2F1 x x x

CREB CREB1 x x x x x

CREB, ATF x

CREM CREM x x

DEC BHLHE40 x x x

E2A TCF3 x

Ebox TCF3; MYOD1; MYOG x

ER-alpha ESR1 x x

Ets ETS1, 2; ETV1, 2, 3, 4, 5, 6, 7 x x x

Foxj1 FOXJ1 x

FOXO1 FOXO1 x

GATA-3 GATA-3 x x

GR NR3C1 x x x

HES1 HES1 x x

HOXA5 HOXA5 x

HOXB8 HOXB8 x

KROX EGR1, 2; ZNF22; ZBTB7B x

MAF MAF x x x x

MAFB MAFB x x x x x

Max MAX x x x

MEF-2 MEF-2A x

MEF-2C MEF-2C x

Myc MYC x x

Neuro D NEUROD1 x x x x x

NFAT1 NFATC2 x x x x

NF-AT4 NFATC3 x x x x

NF-kappaB NFKB1 x

NKX2B NKX2-2 x

NRSF REST x

NURR1 NR4A2 x x x

Oct-1 POU2F1 x x

Octamer POU family of proteins x x

Oct-x STAT1 x

p53 TP53 x

Pax3 PAX3 x x x x x

Pax6 PAX6 x

(Continued)
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Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

Table 6 | Continued

TF Binding-site name HGNC symbol TrkA NGF TrkB BDNF TrkC NTF3

Pax8 PAX8 x x x

Pbx1 PBX1 x x x

POU6F1 POU2F1 x

POUF2F1 POU6F1 x

PPARgamma PPARG x

PPARgamma: RXR-alpha x

PXR NR1I2 x

RXR-alpha RXRA x x

SF1 SF1 x

SMAD MADH family of proteins x x

Smad3 SMAD3 x x

Sox1 SOX1 x x

Sox2 SOX2 x

Sp1 SP1 x x x x

SRF SRF x

Sry SRY x x x

STAT SOAT1 x x x

STAT1 STAT1 x

STAT3 STAT3 x x

Tax CNTN2 x

Tax/CREB x x

Tbp TBP x x x

TCF4 TCF4 x

Tcfap2a TFAP2A x

Tcfap2b TFAP2B x

Tst-1 CCDC6 x

USF USF1 x

USF2 USF2 x

VDR VDR x

VDR, CAR, PXR x x

Entries with transcription factors separated with a “:” have binding sites situated such that they act in a cooperative fashion, rather than independent from each other.

Entries with transcription factors separated by a “,”share binding sites or have binding sites situated near each other such that the factors act in competition with each

other.

often expressed in non-neuronal cells, most notably by cells out-
side the nervous system where they influence both developmental
and adult processes (e.g., Lewin, 1996; Petruska and Mendell,
2004).

Previous assessments of changes in neurotrophin/Trk receptor
expression levels after SCI have typically focused at time points
of less than 6 weeks. BDNF expression increases up to 2 weeks
after injury in the SC after thoracic transection and crush injury
(Hayashi et al., 2000; Li et al., 2007), though both increases and
decreases in expression have been reported after hemisection dur-
ing a similar time period post injury (Gulino et al., 2004; Qin et al.,
2006). Expression levels of NGF and NT3 in the cord increase for
up to 3 weeks after SCI (Hayashi et al., 2000; Li et al., 2007). In
another study, NGF and BDNF transcripts were found to increase
up to 4 days following injury in the adult cord, however, by 2 weeks
post injury all neurotrophins were expressed at levels similar to that
of control (Nakamura and Bregman, 2001; Widenfalk et al., 2001),
suggesting expression decreases after an early increase, though

these studies used different injury models. Trk mRNA expression
is downregulated acutely in the SC at and around the injury site
after contusion (Liebl et al., 2001; Hajebrahimi et al., 2008), how-
ever by 6 weeks expression levels are not different from control
(Liebl et al., 2001). However, after SC transection TrkC has been
shown to increase after 2 weeks (Qian et al., 2011). Similarly, in
a recent study assessing mRNA and protein changes after tran-
section at 10 and 31 days post injury, whole SC TrkB mRNA was
elevated at 10 days post injury, and whole SC NT3 and TrkB pro-
tein was elevated at 31 days post injury, with expression differences
also observed depending on the location within the parenchyma
of the SC (Keeler et al., 2012). Table 1 summarizes the findings of
recent experiments to facilitate comparison of these results.

We found TrkA expression increases in both the DRG and SC
of animals after contusion in a manner that was dependent on
injury severity. This finding is of particular interest with regards
to the functions of NGF and TrkA. NGF plays a well-defined
role in sensitization of nociceptive afferent neurons (e.g., Shu
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Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

Table 7 | Micro-RNA binding sites for neurotrophin and trk receptor

genes.

Gene symbol miRNA symbol

Ntrk1 (TrkA) n/a

Ntrk2 (TrkB) rno-miR-325p

Ntrk2 (TrkB) rno-mir-211

Ntrk2 (TrkB) rno-miR-204

Ntrk3 (TrkC) rno-mir-128

Ntrk3 (TrkC) rno-miR-466b

Ntrk3 (TrkC) rno-miR-297

Ntrk3 (TrkC) rno-miR-3592

NGF rno-let-7e

NGF rno-let-7d

NGF rno-let-7b

NGF rno-let-7c

NGF rno-let-7a

NGF rno-miR-98

NGF rno-let-7f

NGF rno-let-7i

BDNF rno-miR-10a-5p

Ntf3 (NT3) rno-miR-222

Ntf3 (NT3) rno-miR-221

and Mendell, 1999, 2001; Galoyan et al., 2003; Zhu et al., 2004b).
Nociceptive DRG neurons undergo changes after SCI, including
development of spontaneous activity (Bedi et al., 2010) and an
enhanced intrinsic growth promoting state (Bedi et al., 2012). Such
changes in anatomical and physiological properties of nociceptors
may contribute to development of conditions such as autonomic
dysreflexia (e.g., Marsh et al., 2002). TrkA antagonists prevent
the sensitization (thermal and mechanical hyperalgesia) normally
induced by partial nerve injury (Ma et al., 2010), and antagonism
of TrkA signaling has been effective for controlling human pain
(Mantyh et al., 2011). Hence, elevation in the levels of TrkA and
NGF in response to contusive injury could play a role in some of
the maladaptive processes after incomplete SCI.

TrkB activation has also been implicated in hypersensitivity
to nociceptive input and sensitization of nociceptors (Kerr et al.,
1999; Shu et al., 1999; Garraway et al., 2003). However, after either
SC transection or contusion injury, BDNF induced facilitation
of afferent responses in lamina II of the dorsal horn is signif-
icantly reduced (Garraway et al., 2005; Garraway and Mendell,
2007). Our results could suggest a mechanism for those physiolog-
ical observations. In addition to TrkB expression in populations
of second order nociceptive neurons (Schober et al., 1999), it is
expressed robustly throughout the interneuronal circuitry, and
also co-expressed along with NT3 in motoneurons (Buck et al.,
2000), a finding corroborated in humans (Josephson et al., 2001).
Notably, BDNF administration to the injured SC can improve
locomotor outcomes, however because of its influence on noci-
ceptive circuitry its therapeutic utility may be limited (Boyce et al.,
2012).

In DRG, TrkC is present on medium to large diameter mus-
cle spindle afferents that make monosynaptic connections with
motoneurons and cutaneous low threshold mechanoreceptors

(Klein et al., 1994; Oakley et al., 1997; Josephson et al., 2001) in the
intermediate and ventral horns of the SC. NT3, likely acting via
TrkC, exerts a modulatory effect on sensorimotor circuits in both
intact (Petruska et al., 2010) and injured preparations (Mendell
et al., 2001; Arvanian et al., 2003; Arvanian et al., 2006a,b; García-
Alías et al., 2011; Schnell et al., 2011). Locomotor training after
SCI is associated with increased expression levels of TrkB and TrkC
agonists in rats (Hutchinson et al., 2004; Côté et al., 2011). In addi-
tion, co-administration of both BDNF and NT3 to the injury site
has been shown to improve hindlimb locomotion after transection
in both rats (Blits et al., 2003) and cats (Boyce et al., 2007). Taken
together, these findings suggest a potential role for Trk activation
in modulation of lumbar sensorimotor circuitry in both intact and
injured animals.

The apparent age-related regulation of NGF, BDNF, and NT3
in non-injured SC was unexpected and we made significant
efforts to identify possible technical and sampling issues. While
those factors that often account for variability did not satis-
factorily account for the expression patterns we observed, the
single factor of age did appear to fully account for the differ-
ences. Expression of the neurotrophins has been examined in
the context of embryonic and postnatal development and in
aging (e.g., Timmusk et al., 1994; Nosrat, 1998; Bergman et al.,
2000). However, to the best of our knowledge, there has been
no systematic assessment of the regulation of the neurotrophins
at such late postnatal times. If it is indeed borne out that neu-
rotrophins are regulated in the SC over a long postnatal time
course, this must be taken into account when designing experi-
ments that may be influenced by the natural progression of this
expression.

COORDINATED EXPRESSION OF NEUROTROPHINS AND Trks
Twelve-weeks after injury a coordinated expression pattern existed
among the levels of all neurotrophins and Trk receptors regard-
less of injury severity, and also between the neurotrophins and
their cognate Trk receptors in the DRG (Tables 1 and 2, Figures 5
and 6), a relationship that was not evident at 6 weeks post-SCI.
Although there are reports of smaller groups of neurotrophins
and/or Trks being regulated in a coordinated fashion (e.g., Widen-
falk et al., 1999), to our knowledge this degree of coordination
has not been reported, and the mechanism is unclear. One obvi-
ous possibility is a feedback/feed-forward relationship between
some/all of these genes, and these sorts of relationship do exist
(e.g., Michael et al., 1997; Wyatt et al., 1999; Gibbons and Bailey,
2005).

Neurotrophin dependent neurotrophin expression has been
demonstrated in vitro in NIH3T3 and PC12 cells (Canossa et al.,
1997; Mallei et al., 2004), hippocampal neurons (Canossa et al.,
1997), and cerebellar granule neurons (Leingärtner et al., 1994).
In vivo, intrathecal administration of NT3 to intact adult ani-
mals for 1 week results in reduced expression of TrkA protein
in the DRG, but has no effect on levels of TrkC (Gratto and
Verge, 2003). After unilateral axotomy, sub-cutaneous adminis-
tration of exogenous NT3 similarly causes a decrease in TrkA on
the side contralateral to the injury. This contrasts to the increase
in TrkA expression seen on the side ipsilateral to the injury; the
effect of NT3 on expression levels of TrkB and TrkC however is
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Hougland et al. Post-SCI transcriptional regulation of neurotrophins/Trks

not affected by injury in this paradigm, as levels of these tran-
scripts show increased expression up to 4 weeks post axotomy in
both ipsi- and contra-lateral DRG (Kuo et al., 2007). Such coor-
dinated expression patterns could potentially result from changes
at the epigenetic level or from interactions between the different
transcription factors associated with expression of specific tran-
scripts. During development, Runx1 and Runx3 transcription
factors play essential roles in cell fate determination of nocicep-
tive (Chen et al., 2006) and proprioceptive (Inoue et al., 2002)
neurons, respectively. Much attention regarding transcriptional
regulation of neurotrophin expression in the mature nervous sys-
tem has been given to BDNF, due to its role in activity-dependent
mechanisms during long-term potentiation (LTP). Such investi-
gations have revealed several important transcriptional regulators
including, CREB, calcium-responsive transcription factor (CaRF),
and methyl CpG-binding protein 2 (MeCP2; Tao et al., 1998, 2002;
Chen et al., 2003; Reichardt, 2006). Such findings may facilitate
future efforts to determine the mechanisms regulating the expres-
sion of the neurotrophins and Trk receptors in the injured adult
SC and sensory ganglia.

The lack of any TFs for trkC after the filtering process is more
a reflection of the relative amount of data available than reality.
The filtering step in the bioinformatic analysis involved the use
of annotations, which, valuable though they are, have inherent
limitations. Certainly there are published data regarding factors
involved in regulating the expression of trkC, particularly Runx3
(Levanon et al., 2002), Brn3a/Pou4f1 and Runx1 (Zou et al., 2012),
and REST/NRSF (Nakatani et al., 2005).

In spite of the lack of any result related to TrkC, four TFs did
emerge as possibly interacting with all of the remaining genes.
The majority of published information related to these genes and
their involvement in regulation of neurotrophins and Trks is in the
context of development or cancer. This does not imply that they
function exclusively in those contexts, but only that those contexts
are the most studied. We could not identify any studies examin-
ing Pax3, NeuroD, or MafB in SC or DRG in the context of SCI.
Maf has been studied in relation to neurodegeneration (Kobayashi
et al., 2011) and in stress (Machiya et al., 2007). Pax3 was studied
in relation to nerve injury, where it was found to not be regulated
(though this does not imply it not being active; Vogelaar et al.,
2004).

There are studies examining CREB in SC (Crown et al., 2005,
2006; Yu and Yezierski, 2005; Yune et al., 2008) or DRG (Qiao and
Vizzard, 2005) in the context of SCI, with the latter study examin-
ing TrkA, TrkB, and CREB, though not in direct relation to each
other. Interestingly, the expression of activated CREB in the DRG
changed over the course of the first 6 weeks after SCI, with the
levels at 6 weeks being significantly greater than controls, though
not in the DRG we examined here. Other studies demonstrate
induction of CREB in injured/stressed neurons and also in neu-
rons post-synaptic to stressed sensory neurons (e.g., Ji and Rupp,
1997; Bedogni et al., 2003; Choi et al., 2003; He et al., 2003; Zhu
et al., 2004a), while others demonstrate CREB regulating multiple
NTs (Bender et al., 2001), in at least one case by interacting with
cytokines (Otten et al., 2000).

Unlike the results of the analysis of the gene promoter regions
using the TransFac database, the set of miRNAs that emerged from

the TargetScan analysis of gene 3′-UTRs were not shared across
multiple genes. It should be noted that these analyses necessarily
have certain differences that certainly impacted the results. Most
notable is that TargetScan returns only those miRNA targets that
have experimental confirmation. The data in Table 7 could there-
fore be considered a snapshot of the current experimental data
regarding which miRNA species interact with those genes (Saba
et al., 2008; Guidi et al., 2010; Natera-Naranjo et al., 2010; Rau
et al., 2010; Smith et al., 2010; Benoit and Tenner, 2011; Farrell
et al., 2011; Kawahara et al., 2011, 2012; Yu et al., 2011, 2012; Bran-
denburger et al., 2012; Hamada et al., 2012; Ryan et al., 2012; Wang
et al., 2012). Thus, although our analysis revealed no common
miRNA species that interacted with multiple genes (represent-
ing a possible common regulatory mechanism), this may yet be
the case.

Because our data are derived from homogenized tissue, we
cannot make any conclusions about the cellular basis of this
apparent coordinated expression. That is, we cannot determine
which aspect, if any, of this coordination is occurring within
single cells, or if it is simply occurring within the same tissue
but arises through expression of different combinations of genes
across different cells. Considerations of this issue here are at best
speculative as there are virtually no studies that can provide infor-
mation directly relevant to the question. Relevant information
would include (1) an indication of which types of cells were
expressing the genes, or at least if they were neural, non-neural,
or both, (2) an indication of whether or not any combination of
the genes were expressed in any single cells, and both of these
would (3) have to be sampled from DRG or SC 12 weeks after SCI.
We are not aware of any studies fitting these criteria (Table 1).
Although the relationship is not direct, we can nonetheless draw
from a number of sources to make inferences about what may be
happening.

(1) There is some evidence that at 6 weeks after SCI Trk recep-
tors are expressed almost exclusively in DRG neurons, much
as before the SCI (Qiao and Vizzard, 2002, 2005). However, it
must be noted that there is a plethora of evidence of expres-
sion of NTs and Trks in non-neuronal cells (e.g., Funakoshi
et al., 1993; Elkabes et al., 1998; Nemoto et al., 1998; Noga
et al., 2002; Hess et al., 2007), although much of this is in
the context of cancer (e.g., Tacconelli et al., 2005; Howe et al.,
2011; Jin et al., 2011). Studies which identify the cell types
expressing the NTs or Trks are necessary as it is possible
that at least a portion of the tissue-level regulation could be
due to invading cells. Certainly the complement of immune
cells in the SC is affected by injury, even in segments spa-
tially remote from the injury (e.g., Popovich et al., 1997).
Immune cells invade the DRG after nerve injury (e.g., Nguyen
et al., 2007; Vega-Avelaira et al., 2009; Kim and Moalem-
Taylor, 2011), but there is no indication that this possibility
has been examined in DRG at any time after SCI. However,
evidence suggests that the immune cells and their functions
throughout the body may be affected by SCI (e.g., Popovich
et al., 2001), and some express Trk receptors and/or neu-
rotrophins (e.g., Noga et al., 2002; Nassenstein et al., 2004;
Tabakman et al., 2004).
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(2) There is evidence that single neurons can express certain lim-
ited combinations of the genes examined here, though to our
knowledge there has been no examination of all together that
could distinguish each of the Trk receptors and neurotrophins
(e.g., McMahon et al., 1994; Obata et al., 2004).

(3) There are certainly studies which examine the chronic post-
SCI condition, but we could not identify any that could pro-
vide data relevant to these specific considerations (i.e., they
examined other readouts).

Almost irrespective of the outcome of the above considera-
tions, there is still another consideration that can be brought
to bear. Although there are a number of papers describing co-
expression of some of these genes in single cells where common
genetic/molecular regulation could possibly be exerted, it is highly
unlikely that all the coordinated expression is accounted for by
single cells. Even in the feasible condition where expression is
limited to neurons, and perhaps even to the same population
of neurons that expressed these genes in the intact system (i.e.,
differences in expression would be based on volume regulation
in any given cell and not on recruitment/de-recruitment of cell
populations), what is the likelihood that this degree and scope
of coordinated expression could occur across different cell types
independently? It seems highly unlikely that each of the genes
considered here would change in a single cell type independent
of its regulation in any other cell type, and still give rise to this
result. However, because there is little-to-no cellular expression
data here or in the literature from which to extrapolate the iden-
tity of the cells expressing these genes (i.e., immunocytochemical
or in situ hybridization assessment of SC or DRG 12 weeks post-
SCI), we must acknowledge that this is indeed possible in principle.
There is, however, virtually no reason to expect that individual
cells would express all of the “coordinated” genes and thus have
the mechanism of coordinated regulation exist fully inside of those
given single cells. Therefore, at least some of the coordination must
arise across cells which express one or more of the “coordinated”
genes.

It is possible that coordinated regulation/expression may arise
due to shared direct molecular mechanisms, but the literature and
our bioinformatic analyses provide little evidence for a simple
mechanism of this sort. There may yet be coordinated transcrip-
tional regulation that is indeed shared across cell types, but may
reside at a level above our analyses (i.e., shared factors may be
directing the actions of separate factors that then individually act
on the different genes). Alternatively, there may be a shared biolog-
ical process(es) or response(es) that is being executed in the various
different cells – a process that has similar outcomes in terms of gene
regulation but arrives there through the actions of different spe-
cific molecular entities. For “simplicity,” let us consider that only
the neurons of the DRG are involved. Even this cell population is
not homogeneous in function, form, or sensitivity. Each of the Trk
receptors is largely separately expressed. Given the dissimilarities
of their regulatory sequences, they may each be directly regulated
by distinct factors. However, conditions may arise that induce the
non-homogeneous neuronal types, regardless of the specific Trk
they express (and thus which specific factors will act on the DNA
and/or mRNA), to coordinately regulate the expression of their

Trk receptor. It is possible that the regulation of those specific
factors may be under a control mechanism that is itself shared
across the different neuron types. Our analysis would not detect
this. As an example, consider cellular stress or injury. Numerous
authors have reported on the regulation of Trks and neurotrophins
in response to nerve injury, and the change in expression over
time (e.g., Ernfors et al., 1993; Sebert and Shooter, 1993; Krekoski
et al., 1996; Yamamoto et al., 1996; Bergman et al., 1999; Lee et al.,
2001; Kuo et al., 2007), and many aspects of our data coincide
with the reported regulation after nerve injury or neuronal stress.
Intriguingly, there was another report of “coordinated regulation”
associated with DRG neurons and glia in conditions of injury
and/or stress (Cameron et al., 2003).

It is not clear if SCI induces any long-term injury or stress
on DRG neurons. Certainly the central axons of some DRG neu-
rons are damaged in the SCI, particularly those terminating in
the affected cord, or with long axons ascending through the dor-
sal columns (Huang et al., 2006). However, the effect of injury to
central axons differs from that of injury to peripheral axons (e.g.,
Stam et al., 2007), and the long-term effects on expression of neu-
rotrophins and Trk receptors has not been examined. Injury to
central axons is not the only possible source of stress to the sen-
sory neurons, however. The inflammatory condition of the SC and
continued spread of damage may induce injury or stress in the sen-
sory neurons at times remote from the acute SCI, and at locations
remote from the lesion (e.g., Popovich et al., 1997; Popovich, 2000;
Bao et al., 2004, 2011; Fleming et al., 2006; Gris et al., 2008; Kwon
et al., 2010; Lubieniecka et al., 2011; Ng et al., 2011; Stammers et al.,
2012). There is a systemic inflammatory condition (Fleming et al.,
2006; Gris et al., 2008; Bao et al., 2012) that has unknown effects
on these neurons. Additionally, one must consider the effects of
SCI on the peripheral tissues innervated by the sensory and motor
neurons. The inflammation and altered activity/mobility/use state
can impact these tissues (e.g., Edwards-Beckett and King, 1996;
Lynch et al., 2000; Gris et al., 2008) with uncertain consequences
for the innervating neurons. The increased expression of galanin,
a neuropeptide induced in DRG neurons by stress/injury (Suarez
et al., 2006), in the DRG innervating bladder and bowel (but
not other DRG) after SCI (Zvarova et al., 2004) suggests that the
histopathology secondary to SCI may stress the sensory neurons
innervating those tissues. Tissue damage has been shown to induce
stress/injury responses in sensory neurons (e.g., Ivanavicius et al.,
2007; Hill et al., 2010; Thakur et al., 2012), and has been shown to
affect regulation of multiple neurotrophins in the injured tissue
(Vizzard, 2000).

REGULATION OF NEUROTROPHINS AND Trks AFTER SCI: ENOUGH
ASSESSMENT OR NOT?
Although there are many reports examining the expression of neu-
rotrophins and/or Trk receptors after SCI, there is relatively little
overlap of the data (Table 1), and general principles have yet to
be identified. That is not to say that the data disagree, but more
that the studies have largely produced different data. Indeed, given
the number of factors that influence gene regulation after SCI,
much work is yet to be done. A matrix of variables demonstrated
by our study and others to significantly impact the regulation
of these genes suggests that over 1000 assessments would be
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Table 8 | Matrix of factors influencing outcomes in SCI research.

Injury type/severity Injury location Region

investigated

Post-SCI

time

Hemisection – lateral Cervical Cervical 1–3 days

Hemisection – D/V Brachial plexus Brachial plexus 3–7 days

Transection Thoracic Thoracic 1–3 weeks

Contusion – mild Lumbar Lumbar 3–6 weeks

Contusion – moderate Lumbar plexus Lumbar plexus 6–12 weeks

Contusion – severe Sacral Sacral 12–24 weeks

required to provide relatively thorough coverage (Table 8). This
matrix relates only to natural progression and does not include
variables for the two sexes, different species and strains, and out-
come measures (e.g., protein, mRNA, behavior, etc.). It would
thus only be expanded when considering treatments, sex/species/
strain-differences, and multiple outcome measures (some of which
are mutually exclusive), each of which has been shown to influence
the data (e.g., Popovich et al., 1997; Sroga et al., 2003; Kigerl et al.,
2006; Beck et al., 2010).

This study examined only mRNA expression levels, which could
change due to a limited set of non-mutually exclusive scenarios.
Cells already expressing the specific transcripts could up- or down-
regulate expression, or a different population of cells – resident or
infiltrating – could begin expressing these transcripts de novo. Our
data cannot speak to the relative contribution of these possibilities
as they come from homogenized tissue. Although the literature
provides some insight for the 6-week post-SCI data, this is not
true for the 12-week data as neurotrophins and Trk receptors have
not been examined at 12 weeks post-SCI (Table 1). Further, we are

not aware of any work examining whether cells infiltrate the DRG
after SCI.

CONCLUSION
Despite the limitations of examining only mRNA expression, this
study has established that different injury severities within the
same model can result in different forms of regulation of these
important genes in neural tissue. It has also demonstrated that
expression of these genes in neural structures providing innerva-
tion to the hindlimb changes over a time course important for
experiments examining activity-dependent plasticity and also for
modeling the human condition. Thus, this study (1) offers insight
for interpreting published data and for designing future studies;
(2) serves as a reference for mechanistic studies that manipulate
the neurotrophin-Trk signaling systems, (3) indicates that injury
severity, post injury time, and tissue sampled all influence the
assessments of gene regulation, (4) suggests that regulation of
these genes continues to occur as late as 12 weeks post-SCI, and (5)
suggests that some common factor or process may be influencing
expression of these genes at later times after SCI.
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