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In the present manuscript, we have developed a
unique catalytic system by merging photoexcited ketone catalysis,
halogen atom transfer (XAT), and nickel catalysis to forge C(sp*)—
C(sp?) cross-electrophile coupling products from unactivated
iodoalkanes and (hetero)aryl bromides. The synergistic catalytic
system works under mild reaction conditions and tolerates a variety
of functional groups; moreover, this strategy allows the late-stage
modification of medicinally relevant molecules. Preliminary
mechanistic studies reveal the role of the a-aminoalkyl radical,
which further participates in the XAT process with alkyl iodides to
generate the desired alkyl radical, which eventually intercepts with
the nickel catalytic cycle to liberate the products in good to excellent

yields.
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® Late-stage fuctionalization
® [nexpensive amine as XAT reagent
® Benzophenone as photosensitiser

® Mild reaction condition
® Good yield upto 92%
® Broad substrate scope
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ver the past decade, with the development of metal-

laphotoredox catalysis, several synthetic methodologies
have been developed to forge various C—C and C—X (X =
heteroatom) bonds.'~* The synergy between photocatalysts
and a variety of metal catalysts is the key to the success of this
strategy. Various radical precursors have been employed in the
presence of metal-based or organo-based photosensitizers to
generate the desired radical entities through either a single-
electron transfer (SET) process or an energy transfer (ET)
process.”~” The generated carbon radicals under visible-light
photocatalysis were efficiently integrated with transition metal
catalysts.'~* With the advancement of this strategy, further
research was explored by employing unreactive C(sp®)—H
bonds as carbon radical precursors through the hydrogen atom
transfer (HAT) process, which led to various cross-coupling
products.*”'> Recently, it has been demonstrated that
commercially available inexpensive ketones are utilized as
organophotocatalysts in the presence of light.'° The photo-
excited triplet ketone acts as a hydrogen-atom-abstracting
agent, a single-electron acceptor, or can participate in energy
transfer processes with the substrates to generate the radical
entities that are efficiently merged with transition metal
catalysts for versatile functionalization of C—H or C—X
bonds. During this process, the photoexcited ketone is
converted to an entity that is easily transformed to the
ground-state ketones upon synergy with metal.'” In this
direction, a few groups recently demonstrated synergistic
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photoexcited ketone/nickel catalysis to forge C(sp®)—C(sp?)
and C(sp>)—C(sp®) bonds (Scheme 1 a).'*™**

Recently, the concept of halogen atom transfer (XAT) under
visible-light photocatalysis gained significant momentum.****
This strategy allows the radical dehalogenative functionaliza-
tion of haloalkanes and haloarenes.”>™*° Furthermore, this
concept was successfully merged with metal catalysis, which
eventually led to a variety of cross-coupling products.’!
Initially, Macmillan and co-workers enormously contributed
by employing silicon-based reagents as XAT reagents in the
presence of photosensitizer,”> " and later, the Doyle and
Leonori groups independently demonstrated the employment
of a-aminoalkyl radicals as XAT reagents and further
applications in a number of C—C bond formation reactions
in the presence of visible light photocatalysis.”>~***'~** In this
direction, our group also first demonstrated C(sp®)—C(sp*)
and C(sp®)—C(sp) cross-electrophile coupling reactions using
iodoalkanes, aryl bromides, and phenylethynyl bromides.””*’
Very recently, Noél and co-workers further exploited the
merger of a photoexcited ketone, HAT, and XAT with nickel
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Scheme 1. Known Strategies for Photoexcited Triplet
Ketone-Enabled C—C and C—H Bond Formation Reactions
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catalysis to forge C—C bond formation by employing
bromoalkane and bromoarenes through a silyl radical
generated in situ (Scheme 1b).” In the present manuscript,
we have developed cross-electrophile coupling between
unactivated iodoalkanes and (hetero)aryl bromides by merging
nickel—photoexcited ketone catalysis using inexpensive amines
as XAT reagents (Scheme 1c).

We started our investigations by selecting iodocyclohexane
1a and methyl 4-bromobenzoate 2a as model substrates. After
the different conditions were thoroughly investigated (see the
Supporting Information), we realized that using 20 mol% of
4,4’-dichlorobenzophenone B, 3 equiv of "Bu;N, and 5 mol%
of Ni(dtbbpy)Br, (dtbbpy = 4,4’-di-tert-butyl-2,2'-bipyridine)
in acetonitrile (0.1 M) in the presence of Kessil light (390 nm)
resulted in isolation of the product 3a in 87% yield (Table 1,
entry 1). Using benzophenone A and 4,4’-dimethoxybenzo-
phenone C observed a slight reduction in the yield (Table 1,
entries 2 and 3), while using ketone D produced a comparable
yield (Table 1, entry 4) with ketone B.'® Because of the
commercial availability and inexpensive nature of ketone B,
further optimization reactions proceeded with ketone B. When
we decreased the loading of ketone catalyst and nickel catalyst
and employed different bipyridine ligands, we observed a
slightly lower yield of the product 3a (see the Supporting
Information). By employing different solvents (EtOAc, DMF)
and amines (Et;N and DIPEA), we observed moderate to
good yields of the products (Table 1, entries 5—8).
Interestingly, the presence of other amines, such as Hantzsch
ester, 1,4-diazabicyclo[2.2.2]octane (DABCO), and TMP
(2,2,6,6-tetramethylpiperidine), did not lead to any product
formation (Table 1, entries 9—11). Finally, controlled
reactions clearly indicate that all components, such as ketone,
NiBr,(dtbbpy), amine, and light are necessary for the product
formation (Table 1, entries 12—15).

With the suitable optimized conditions in hand, we next
evaluated the substrate scope of the transformation by
employing a wide range of unactivated alkyl iodides and
(hetero)aryl bromides. As shown in Scheme 2, a variety of
secondary unactivated iodoalkanes were coupled with aryl
bromides (2a, 2q, and 2k) and afforded the corresponding
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Table 1. Optimization of the Reaction Conditions”

C>~I + Br@COZMe O—@—COZMe

B (20 mol%)
Ni(dtbbpy)Br, (5 mol%)
"BusN (3 equiv)

CH3CN (0.1 M)
kessil light (390 nm),
1a 2a 45-50 °C, 2h 3a
entry optimization of reaction parameters 3a (%)°
1 none 94(87)°
2 using A instead of B 85
3 using C instead of B 78
4 using D instead of B 94
S EtOAc as a solvent 65
6 DMF as a solvent 71
7 using DIPEA 76
8 using Et;N 66
9 using Hantzch ester 0
10 using DABCO 0
11 using TMP 0
12 without "Bu;N 0
13 without light 0
14 without Ni(dtbbpy)Br, 0
without ketone 0

15
° o o o
c/‘“‘u MeO” ‘ ‘ “OMe FaC” ‘ .‘ “OMe
B c D

A

“Reaction conditions: 1a (0.15 mmol), 2a (0.1 mmol), B (20 mol%),
and CH,CN (0.1 M) at 45—50 °C, 2 h. "NMR yields using benzyl
benzoate as an internal standard. “Isolated yield. TMP = —2,2,6,6-
tetramethylpiperidine.

coupling products (3a—3c) in good to excellent yields (78—
87%). Secondary iodoalkanes containing an ether moiety were
coupled with methyl 4-bromobenzoate 2a in excellent yields
(3d—3f, 82—92%). Also, it is noteworthy to mention that no
competing HAT byproducts were observed in our reaction
conditions. Medicinally relevant N-protected (N-Boc, N-Cbz,
N-Bz, and N-Ts) 4-iodopiperidines were converted to
secondary alkyl radical and efficiently intercepted with nickel
catalysis in our methodology to afford corresponding products
(3g—3j) in good yields (73—83%). Primary alkyl iodides
containing different functional groups, such as alkyl ether,
benzylic ether, ester, and amide, were proven to be excellent
coupling partners in our reaction conditions and reacted with
aryl bromides (2a, 2j) to result in desired products in good
yields (3k—3p, 66—77%). A medicinally relevant alkyl iodide
derived from gemfibrozil, 4-methyl-S-thiazoleethanol (used in
kinase inhibitors), and tryptophol were efficiently coupled with
aryl bromide 2a in our conditions and led to the desired
products 3q, 3r, and 3s, respectively, in 64—75% vyield.

Next, we turned our attention to the scope of the
(hetero)aryl bromides. para-, meta-, and ortho-substituted
electron-poor aryl bromides were efficiently reacted with
iodoalkane (1j) in our catalysis and converted into the
corresponding products (3t—3y) in excellent yields (76—85%).
Aryl bromides bearing different functional groups, such as
ketone, aldehyde, amides, and sulfonamides, were well
tolerated (3z—3ae, 78—82%). Electron-donating aryl bromides
reacted slowly in our reaction protocol, and desired coupling
products (3af—3ag) were obtained in good yields (75—79%).
Notably, electronically different (hetero)aryl bromides readily
transformed into targeted coupling products in our photo-
catalytic conditions in good yields. For example, electron-
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Scheme 2. Substrate Scope®
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“For 8 h. For 10 h. Reactlons were carried out using 0.15 mmol of 1
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of at least two independent runs. “Reaction conditions: 1 (0.3 mmol),
2 (0.2 mmol), ketone B (20 mol%), and CH,CN (2 mL) at 45—50
°C, 4 h.
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deficient six-membered (hetero)arylbromides, such as pyr-
idines and pyrimidines, were efficiently converted into the
desired coupling products (3ah—3ak, 77—85%). Moreover,
electron-rich (hetero)aryl bromides, such as benzothiophene,
benzofuran, and N-phenyl carbazole, proved to be suitable
substrates for the process and led to the products (3al—3an) in
good yields (72—82%). To further showcase the application of
this protocol, we have synthesized some medicinally relevant
aryl bromides derived from menthol, proxyphylline, estrone,
and mexiletine, which were employed as coupling partners in
our protocol to isolate the desired products (3a0—3ar) in good
yields (73—79%).

With a decent substrate scope, next we carried out a few
preliminary mechanistic studies to reveal the reaction pathway
(Scheme 3). The ON-OFF experiment indicates the

Scheme 3. Preliminary Mechanistic Studies of (a) Reaction
in Presence of TEMPO, (b) Radical Clock Experiment, (c)
Reaction with Catalytic Ni(II) Complex (5), and (d)
Reaction with Stoichiometric Ni(II) Complex (5)

Standard reaction Ts N
Br N o
‘ — OLLY" .
O/ DIPEA (3 eq) o N
N ! 4a 4b \( j/

TEMPO (3 equiv)

(a) Radical-trapping experiment

Detected by HRMS
[M+H]* Calc. 395.2363
Found: 395.2362

Detected by HRMS
[M+H]* Calc. 285.2900
Found: 285.2905

Standard reaction > N o

X o conditions | e
A/' ‘ . NN eH
- LA, ¥ o
1t 2q 3as, 55% yield
(c) ion with lytic Ni(ll) (5)
Ts
Br B (20 mol%) N
1 "BusN (3 eq)
O/ NI(ll)-complex (5) (5 mol%)
N . Al-complex () (5 molZ%
Ts” 2¢ CH,CN (2 ml), -
. CF, kessil light (390 nm), FaC 3u, 85% yield
1 4550 °C
(d) Reaction with stoichi ic Ni(ll) (5)
o -
| B (20 mol%) N /7\ W
O/ "BugN (3 eq) : NN
1 CH4CN (2 ml), :
kessil light (390 nm), FsC 3u, 46% yield; f ¢ NI(I1)-complex (5)

45-50 °C

importance of continuous irradiation of light throughout the
reaction (see the Supporting Information). In the presence of
DIPEA and a radical trapping agent, such as TEMPO (2,2,6,6-
tetramethyl-1-piperidinyloxy), under the standard reaction
conditions, a TEMPO-adducts 4a,4b were detected by
HRMS (Scheme 3a). A radical clock experiment using
cyclopropyl methyl iodide (1t) in the presence of (hetero)aryl
bromide 2q led to ring-opening product 3as in 55% yield
(Scheme 3b). These experiments suggested the involvement of
an alkyl radical and an a-amino alkyl radical in our catalysis.
Finally, we carried out the reaction using catalytic and
stoichiometric amounts of Ni(II) complex (5), as shown in
Scheme 3c,d, which led to the product 3u in 85% yield and
46% vyield, respectively, according to 'H NMR (see the
Supporting Information for crude proton NMR) (Scheme
3c,d). These two experiments suggested the potential
involvement of the Ni(Il) intermediate in our catalysis. It is
noteworthy to mention amines (Hantzsch ester, DABCO, and
TMP) that are unable to be involved in an XAT process did
not lead to the formation of product 3a (Table 1, entries 9—
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11), which might also suggest the role of the a-aminoalkyl
radical in our catalysis.

On the basis of our preliminary mechanistic studies and
previous literature precederxts,46_51 we propose a tentative
mechanism, as shown in Scheme 4. Initially, in the presence of

Scheme 4. Mechanistic Hypothesis
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0 N<_R
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hv Ar)J\Ar IX " ;7/
3 —Ar

390 nm light, the ketone is converted to either photoexcited
ketone (I) or diradical (I') intermediate. Next, the amine is
converted to a-aminoalkyl radical either in the presence of
diradical (I') intermediate through hydrogen atom transfer
(HAT) or by single-electron transfer (SET) from amine to the
photoexcited ketone (I) followed by deprotonation, which
leads to the formation of a-aminoalkyl radical (III) and ketyl
radical (II).***” Next, the generated a-aminoalkyl radical (IIT)
engages in the halogen atom transfer (XAT) process with
unactivated alkyl iodides to lead to the formation of an alkyl
radical (V) intermediate. Concurrently, the Ni’L, complex,
which might be generated from Ni"'Br,L, complex (E,.4 [Ni"/
Ni’] = — 1.2 V versus SCE in DMF)** through two successive
single-electron transfer events from ketyl radical (II) [E,q
(Ph,CO) = — 2.20 V vs Ag/AgNOj; in MeCN],"*** undergoes
oxidative addition with aryl bromides to generate the ArNi'Br
complex (VII). Then, the trapping of an alkyl radical (V) with
the Ni(II) complex (VII) leads to a high-valence Ni(III)
complex (VIII). Also, there is a possibility that alkyl radical is
first trapped by the L,Ni(0) complex followed by oxidative
addition with ArBr to afford the Ni(Ill) complex (VIII).
However, the stoichiometric reaction with presynthesized
Ni(II) complex (S) (Scheme 3d) suggestes that the nickel
cycle is more likely to proceed via Ni(II) intermediate. The
Ni(IlI) complex (VII) then, upon reductive elimination,
furnishes the cross-coupling product (3) and the Ni(I)
complex (IX). Finally, SET between ketyl radical (II) [E,4
(Ph,CO) = — 2.20 V vs Ag/AgNO; in MeCN]*>* and Ni'BrL,
complex [E,.q (Ni' /Ni®) ~ — 1.13 V vs Ag/AgNO; in
DMF]***° results in a recovery of both the propagating diaryl
ketone and Ni(0)L, catalyst for the next catalytic cycle.

In conclusion, we developed an operationally simple and
convenient protocol for the direct cross-electrophile coupling
of unactivated alkyl iodides and (hetero)aryl bromides. The
synergistic combination of diarylketone catalysis and XAT with
nickel catalysis is the key to success. Given the wide substrate
scope, good functional group tolerance, scale-up (gram-scale
reaction) of the reaction, and the ability to engage medicinally
relevant alkyl iodides and (hetero)aryl bromides, we believe
that the reported findings are of interest to many synthetic
chemists from academic research to chemical industry.
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The data underlying this study are available in the published
article and its Supporting Information.

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsorginorgau.3c00062.
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