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Abstract

Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes
zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are
unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-
human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus
dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing
enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types
and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-
time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-
EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus
preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early
non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic
cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, SVV was found primarily in neurons
and occasionally in memory T-cells adjacent to neurons. In conclusion, the data suggest the role of memory T-cells in
disseminating SVV to its target organs during primary infection of its natural and immunocompetent host.
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Introduction

Varicella-zoster virus (VZV) is a ubiquitous human neurotropic

alphaherpesvirus that causes varicella (chickenpox) as a primary

infection and herpes zoster (shingles) upon reactivation of latent

virus [1]. Primary VZV infection is acquired via the respiratory

route and varicella occurs 2–3 weeks after exposure [2,3]. The

pathogenesis of varicella is largely unknown, mostly due to the

prolonged incubation period and restricted host range of the virus.

VZV is detected in lymphocytes of varicella patients [4],

suggesting that the virus spreads to susceptible organs including

skin and ganglia via a cell-associated viremia [4]. However, the

low number of VZV-infected lymphocytes has precluded their

identification during natural infection in humans [5].

Most of the current understanding of VZV pathogenesis is

based on experimental infection of human fetal tissue transplanted

in severe combined immunodeficient mice (SCID-hu model) [6,7].

In this model, VZV has a tropism for T-cells within thymus and

liver xenografts [8]. It has been postulated that VZV initially

replicates in respiratory epithelial cells and is transferred to T-cells

within tonsilar lymphoid tissue contacting the upper respiratory

tract [9,10]. Virus transport to human fetal skin and ganglia

explants in SCID-hu mice can be mediated by T-cells [11,12],

most likely activated memory CD4 T-cells expressing the skin

homing markers C-C type chemokine receptor type 4 (CCR4) and

cutaneous lymphocyte antigen (CLA) [10]. However, the VZV

SCID-hu mouse model does not reproduce the complex and

dynamic virus-host interactions involved in the dissemination of

VZV to its target organs during primary infection in its natural

and immunocompetent host [6,7].

Simian varicella virus (SVV) produces a naturally occurring

disease in non-human primates with clinical, pathological and

immunological features that parallel human VZV infection

[13,14]. The prevalence of SVV in free-ranging non-human

primates is largely unknown. However, SVV outbreaks in primate

centers have been associated with the introduction of monkeys

captured from the wild into the colony [15]. The genomes of SVV

and VZV are similar in size, structure and genetic organization,

with an estimated 70–75% DNA homology [16]. SVV causes

varicella, becomes latent in ganglionic neurons and reactivates

after stress and immunosuppression to cause herpes zoster [17,18].

A cell-associated viremia is detected from 3 days post-infection
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(dpi), with the highest number of infected lymphocytes just before

the onset of skin rash [14,19]. SVV reaches the ganglia before skin

rash [20,21], indicating viremic spread to ganglia.

The aim of the present study was to characterize the kinetics of

virus infection and the cell types involved in the dissemination of

SVV during primary infection. We have previously shown that

infection of macaques with recombinant measles virus expressing

EGFP (rMV-EGFP) facilitated the identification of the cell types

involved in MV pathogenesis with unprecedented sensitivity

[22,23,24,25]. To detect SVV-infected cells at the low frequencies

expected in blood and lungs, we infected African green monkeys

(AGMs) with recombinant SVV expressing EGFP (SVV-EGFP)

and, as a control, wild-type SVV (SVV-wt) to study SVV

pathogenesis at the whole organism, tissue and cellular levels in

its natural and immunocompetent host. The data presented

suggest a crucial role for memory T-cells in the dissemination of

SVV during primary infection.

Results/Discussion

SVV-infected African green monkeys develop transient
fever and skin rash

Five SVV-seronegative adult AGMs were infected intratrache-

ally with SVV-wt (n = 2) or SVV-EGFP (n = 3). A transient

increase in body temperature was seen between 6 and 11 dpi

(Fig. 1A and B). SVV-wt2infected animals developed skin rash

starting at 6 dpi, which increased in severity until 9 to 10 dpi and

resolved thereafter (Fig. 1C). Macroscopic EGFP fluorescent

lesions were detected on the skin and lips of all SVV-

EGFP2infected animals starting at 7 dpi, which increased in

severity until 9 dpi and resolved by 13 dpi (Fig. 1D and E). EGFP

fluorescent lesions were also detected on the tongue of SVV-

EGFP2infected monkeys, coinciding with appearance of skin rash

(Fig. 1F). No lesions were observed on the lips and tongues of

SVV-wt2infected animals, demonstrating the increased sensitivity

of using SVV-EGFP to study varicella pathogenesis. Skin rash was

more severe in SVV-wt2 compared to SVV-EGFP2infected

monkeys. Collectively, the findings indicate the close resemblance

of the clinical signs associated with experimental SVV-EGFP

infection of AGMs and those of primary VZV infection in

humans.

SVV infection of alveolar myeloid cells and T-cells in the
lung

All SVV-infected animals became dyspneic at the time of skin

rash. Macroscopic examination of lungs showed multifocal

pulmonary consolidation and hemorrhage affecting at least one

lobe in all animals euthanized 9 or 13 dpi (Fig. 2A). Diffuse EGFP

fluorescence was detected in an SVV-EGFP2infected monkey at

9 dpi (Fig. 2B and C). Combined immunohistochemical (IHC) and

immunofluorescence (IF) analyses for SVV antigens and EGFP on

consecutive sections of lung showed that EGFP expression was

restricted to SVV antigen-positive cells (Fig. 2D–G), demonstrat-

ing that EGFP is a valid marker to identify SVV-infected cells in

the monkeys. To investigate SVV-infected cell types in situ, lung

tissue sections were analyzed by dual-IF staining with SVV-specific

antiserum and anti-keratin, -CD3, -CD68 and -CD11c mouse

monoclonal antibodies (mAbs). SVV-infected cells were readily

detected in lungs at 9 dpi, but not at later times (data not shown).

At 9 dpi, abundant SVVposkeratinpos lung epithelial cells were

observed (Fig. 2H), as well as SVVposCD3pos T-cells (Fig. 2I). In

addition, SVV antigens were found in intra-alveolar cells that co-

expressed CD68 and/or CD11c, consistent with alveolar macro-

phages (AM), some of which appeared to have phagocytosed SVV-

infected cells (Fig. 2J). Occasionally, SVVposCD11cpos dendritic

cell (DC)-like cells displaying multiple branched projections were

observed adjacent to bronchi (Fig. 2K).

To define the kinetics of virus replication and the cell types

infected in the respiratory tract during primary SVV infection,

bronchoalveolar lavage (BAL) cells were obtained at 5 dpi, 9 dpi

and at necropsy (9, 13 or 20 dpi). SVV DNA load and infectious

virus titers in BAL cells peaked at 5 dpi and declined rapidly

thereafter (Fig. 3A and B). Infectious virus was not recovered from

BAL cells at 13 and 20 dpi (Fig. 3B and data not shown). The viral

DNA load and infectious SVV titer in BAL samples were similar in

SVV-wt2 and SVV-EGFP2infected monkeys at 5 dpi, indicating

a similar level of replication of both viruses in lung.

At 5 dpi, 7.2% of BAL cells from SVV-EGFP2infected

monkeys were EGFPpos (Fig. 3C). In EGFPpos BAL cells, equal

numbers of CD45pos (leukocytes) and CD45neg cells, most likely

bronchial and alveolar epithelial cells, were detected (Fig. 3D and

Fig. S1). CD45pos BAL cells could be categorized as T-cells, B-cells

and alveolar myeloid cells, i.e. large granular cells expressing high

levels of both CD14 and HLA-DR (Fig. S1). These myeloid cells

could be alveolar macrophages (AM) and/or DC. At 5 dpi, 82%

of CD45pos BAL cells were alveolar myeloid cells, 17% were T-

cells and only 1% were B-cells (data not shown). Most

EGFPposCD45pos BAL cells were alveolar myeloid cells and T-

cells (Fig. 3E). CD4pos, CD8dim and CD8bright T-cells were infected

at equal frequencies (Fig. 3F). The number of BAL-derived T-cells

was too low to determine their differentiation status unequivocally

(data not shown). At 9 dpi, frequencies of EGFPposCD45pos BAL

cells were too low to conclusively identify the SVV-infected

leukocyte subsets (Fig. 3C).

SVV infection of memory T-cells in blood during viremia
To determine the kinetics of virus infection and identify the

blood lymphocyte subsets infected during the viremic phase of

varicella, peripheral blood mononuclear cells (PBMC) isolated at

multiple dpi from SVV-infected monkeys were analyzed. SVV

DNA was detected in PBMC from 2 dpi until necropsy (Fig. 4A).

Viral DNA load in PBMC peaked at 7 dpi and was higher in

Author Summary

Varicella-zoster virus (VZV) causes varicella, establishes life-
long latent infection in ganglia and reactivates later in life
to cause zoster. VZV is acquired via the respiratory route,
with skin rash occurring up to 3 weeks after exposure. The
cell types that transport VZV to skin and ganglia during
primary infection are unknown. Simian varicella virus (SVV)
infection of non-human primates mimics clinical, patho-
logical and immunological features of human VZV infec-
tion. African green monkeys were infected with recombi-
nant SVV expressing enhanced green fluorescent protein
(SVV-EGFP) or wild-type SVV (SVV-wt) as a control. By
visualizing SVV-EGFP2infected cells in the living animal
and in tissue samples, we identified the virus-infected cell
types in blood, lungs, skin and ganglia during primary
infection. Our data demonstrate that during viremia, SVV
predominantly infects peripheral blood memory T-cells.
Detection of SVV-infected memory T-cells in lungs, in early
varicella skin lesions and also, albeit to a lesser extent, in
ganglia suggests a role for memory T-cells in transporting
virus to these organs. Our study provides novel insights
into the cell types involved in virus dissemination and the
overall pathology of varicella in a non-human primate
model.

T-Cell Tropism of SVV during Primary Infection
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SVV-wt2 compared to SVV-EGFP2infected monkeys (Fig. 4A).

Infectious virus was isolated from PBMC of both SVV-EGFP2

and SVV-wt2infected monkeys until 9 and 11 dpi (Fig. 4B).

EGFPpos lymphocytes were detected from 5 to 11 dpi, peaking at

7 dpi (Fig. 4C). Together, the data indicate that the kinetics of

viral DNA load and infectious virus titer represent the temporal

change in the number of circulating SVV-infected lymphocytes,

but not in the replication of SVV in blood lymphocytes during

viremia. The rapid loss of SVV-infected lymphocytes from the

circulation could be caused by virus-induced apoptosis [26] or,

alternatively, infected lymphocytes may be cleared from the

circulation by the SVV-specific adaptive immune response

[14,21,27].

At 5 dpi, EGFPpos cells were detected at similar frequencies in

all major PBMC subsets (i.e., T-cells, B-cells, natural killer cells,

monocytes and dendritic cells) (Fig. 4D and Fig. S2). However,

given that most PBMC are T-cells (Fig. S2), T-cells were

identified as the main SVV-infected lymphocyte subset in blood

(Fig. 4D). Moreover, at the peak of viremia (7 dpi) T-cells were

the only SVV-infected cells demonstrated in blood. Unlike

humans and macaques, AGMs have three distinct T-cell subsets:

CD8bright, CD8dim and CD4pos T-cells (Fig. S2) [28]. While

CD8bright T-cells correspond to classical human CD8+ T-cells,

CD4pos T-cells and CD8dim T-cells are considered dynamic

populations of AGM T-helper cells functionally equivalent to

human CD4+ T-cells [28]. Similar levels of CD8bright, CD8dim

and CD4pos T-cells were SVV-infected, most of which were

memory T-cells (Fig. 4E and F). Importantly, at 5 and 7 dpi,

predominantly central memory (CM) T-cells and effector

memory (EM) T-cells, respectively, were infected (Fig. 4F). The

apparent dual phase of SVV-infected CM and EM T-cells may

reflect the organ in which the T-cells have been infected. CM T-

cells are preferentially found in lymphoid tissues, whereas EM T-

cells are migratory memory T-cells that home to peripheral

tissues to orchestrate local immune responses and may ultimately

function as tissue-resident T-cells to sense the cognate antigen

locally for extended periods of time [29,30]. CM T-cells may

have been infected in lymphoid tissues and EM T-cells in lungs.

Alternatively, SVV infection might have altered the expression of

membrane markers used herein to identify AGM-derived CM

and EM T-cells. Finally, virus infection may have induced

differentiation of CM T-cells into EM T-cells in vivo.

Figure 1. Experimental SVV infection of African green monkeys results in transient fever and skin rash. (A, B) Fluctuations in body
temperature after infection with SVV-wt and SVV-EGFP, respectively, were measured by intraperitoneally implanted temperature transponders during
primary infection. Arrows indicate time of SVV inoculation; horizontal lines indicate normal range in body temperature before infection. (C) Vesicular
skin rash at 8 dpi with SVV-wt. (D) Macroscopic detection of EGFP fluorescence on skin at 8 dpi with SVV-EGFP. (E) Macroscopic detection of EGFP
fluorescence (arrows) on lips at 9 dpi with SVV-EGFP. (F) Macroscopic detection of EGFP-positive lesions (arrows) on tongue at 8 dpi with SVV-EGFP.
doi:10.1371/journal.ppat.1003368.g001

T-Cell Tropism of SVV during Primary Infection
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In vitro infection studies on human tonsil-derived lymphocytes

showed that VZV preferentially infects T-cells expressing the

activation marker CD69 and skin-homing markers CCR4 and

CLA [10]. To address this issue in SVV-EGFP2infected monkeys,

peripheral blood-derived EGFPpos T-cells obtained at 5 and 7 dpi

were analyzed for expression of both CCR4 and the T-cell

activation marker CD137, the latter marker is selectively expressed

by T-cells early after recognition of their cognate antigen [31,32].

No preference of SVV for memory T-cells expressing CCR4 or

CD137 was seen in vivo (Fig. S3), suggesting that SVV did not

infect virus-specific T-cells that recognized SVV-infected antigen

presenting cells like macrophages or DCs.

To determine whether the predominant infection of memory T-

cells in vivo reflects viral tropism for a specific lymphocyte subset,

PBMC from SVV-naive AGMs were infected in vitro with SVV-

EGFP. Expression of EGFP was restricted to lymphocytes that

expressed SVV antigens (Fig. S4A), supporting the use of EGFP as

a surrogate marker for SVV-infected cells in flow cytometry. While

all major PBMC subsets appeared to be equally susceptible to

SVV infection, T-cells were the prominent SVV-infected PBMC

subset in vitro (Fig. S4B), with similar infection levels in CD4pos,

CD8dim and CD8bright T-cells (Fig. S4C). In particular, signifi-

cantly more memory T-cells were infected compared to naive T-

cells (p,0.05; Mann-Whitney test) (Fig. S4D). Thus, SVV

preferentially infects memory T-cells rather than naive T-cells

both in vivo (Fig. 4) and in vitro (Fig. S4).

Detection of SVV in lymphoid organs
Alveolar macrophages and lung-resident DC transport antigens

to lung-draining lymph nodes for presentation to T-cells [33,34],

and VZV-infected human DCs can transfer infectious virus to T-

cells in vitro [35]. We hypothesized that SVV-infected alveolar

myeloid cells transport SVV to draining lymph nodes for

subsequent virus transfer to memory T-cells. High SVV DNA

Figure 2. Macroscopic and microscopic detection of SVV-infected cells in lungs of infected African green monkeys. (A) Macroscopic
appearance of consolidated dark-red lesions (black arrow) in the lung of an SVV-wt2infected monkey at 13 dpi. (B) Macroscopic detection of EGFP
fluorescence in affected area of lung (white arrow) of an SVV-EGFP-infected monkey at 9 dpi. (C) Magnification of the affected area in panel B shows
EGFP fluorescence. (D–G) Serial lung sections obtained from an SVV-EGFP2infected monkey at 9 dpi analyzed by immunohistochemistry (IHC) for
SVV antigens (D) or by immunofluorescence (IF) for EGFP (E), with two sections analyzed by IHC (F) or IF (G) using normal rabbit serum (NRS) and
isotype control antibodies, respectively. Lung sections obtained from an SVV-wt2infected monkey at 9 dpi were analyzed using dual IF for SVV
(green) and: cytokeratin (red) (H), CD3 (red) (I), CD68 (red) (J), and CD11c (red) (K) antigens. Arrows indicate double-positive cells. Asterisks indicate
autofluorescent erythrocytes. Dashed lines indicate alveolar septa. Br: bronchus. Nuclei were counterstained with DAPI. D–G: 1006magnification; H,
J: 4006magnification; I, K: 4006magnification and 26digital zoom.
doi:10.1371/journal.ppat.1003368.g002

T-Cell Tropism of SVV during Primary Infection
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loads were detected in lymph nodes, tonsils and spleens of SVV-

infected monkeys at 9 dpi, declining rapidly thereafter (Fig. 5A).

Cells in lymph nodes and tonsils of SVV-infected monkeys

contained intranuclear inclusions bodies and SVV antigen (Fig. 5B

and C). Tracheobronchial lymph nodes showed more pronounced

SVV-induced histopathology compared to peripheral lymph nodes

(data not shown). However, SVV DNA loads were comparable in

different lymph nodes collected at 9 dpi (Fig. 5A), emphasizing the

need to investigate lymph nodes at earlier times after infection. In

addition, detection of SVV-infected memory T-cells in blood may

represent lung-resident T-cells involved in SVV dissemination.

SVV infects alveolar epithelial cells leading to alveolar wall

damage (data not shown) [19,27,36], which may result in egress of

SVV-infected T-cells into the circulation.

SVV-infected perivascular lymphocytes in early varicella
lesions implicate hematogenous spread of SVV to the
skin

Detailed in situ analysis was performed to identify the SVV-

infected cell types in varicella skin lesions. Macroscopic detection

of EGFP fluorescence corresponded to SVV infection of the skin,

as demonstrated by the co-localization of SVV protein and EGFP

in consecutive skin sections obtained from an SVV-EGFP–infected

monkey (Fig. 6A and B). In vesicular skin lesions, SVV

predominantly infected keratinocytes (Fig. 6C and D). In deeper

skin layers, SVV protein was frequently detected in hair follicles

(Fig. 6E and F) and sebaceous glands (Fig. 6G and H).

Analysis of skin biopsies from SVV-EGFP2infected mon-

keys allowed investigation of the early stages of varicella, as

evidenced on the skin by the appearance of EGFP fluorescent

areas in the absence of lesions visible to the naked eye. In these

biopsies, SVV protein expression was consistently located

within perivascular lymphocytes (Fig. 6I–K). Dual-IF staining

for EGFP and specific lymphocyte markers identified SVV-

infected perivascular cell subsets as CD68pos macrophages

(Fig. 6L), CD11cpos DCs (Fig. 6M) and CD3pos T-cells

(Fig. 6N). The remaining SVV-infected cells, which stained

negative for lymphocyte markers, phenotypically resembled

dendrocytes (data not shown) [37]. Interestingly, SVV-infected

T-cells were also observed in the epidermis of SVV-wt infected

monkeys at 9 dpi (Fig. 6O). Flow cytometric analysis of skin-

resident T-cells showed exclusively memory T-cells, mostly

EM T-cells (data not shown).

Collectively, these data suggest that SVV reaches the skin

hematogenously. Since the skin vasculature is composed of an

upper horizontal superficial vascular plexus just beneath the

epidermal surface and a deep vascular plexus that supplies the

hair bulbs and sweat glands [38], it seems likely that SVV-

infected memory T-cells transfer the virus to skin-resident

perivascular macrophages, DCs or dendrocytes, which in turn

transfer SVV to adjacent epidermal or hair follicle keratinocytes

via cell-to-cell spread. Alternatively, epidermal SVV-infected T-

cells may transfer the virus directly to skin epithelial cells

(Fig. 6O).

Figure 3. SVV preferentially infects myeloid cells and T-cells in lungs of infected African green monkeys. (A) Bronchoalveolar lavage
(BAL) cells obtained at 5, 9 and 13 dpi were analyzed for viral DNA by SVV-specific real-time qPCR. Data are expressed as genome equivalent copies
(geq) per 105 BAL cells. (B) BAL cells were analyzed for infectious virus by co-cultivation with BSC-1 cells. (C–F) Percentage of EGFP-positive cells as
assessed by flow cytometry in: all BAL cells (C); leukocytes (CD45pos cells), non-leukocytes (CD45neg cells) from BAL samples (D) and leukocyte subsets
within BAL (E). Leukocyte subsets were identified based on the differential expression of the following markers: AM/DC = CD45posCD3neg

CD20negMHC-IIposCD14pos/dim, T-cells = CD45posCD3pos, B-cells = CD45posCD20posMHC-IIpos; and the indicated T-cell subsets (F). AM/DC are
BAL-derived lymphocytes expressing markers shared by dendritic cells (DC) and alveolar macrophages (AM). Horizontal bars indicate median
values. (D–F) BAL cells were obtained at 5 dpi and data are given as means 6 SEM.
doi:10.1371/journal.ppat.1003368.g003

T-Cell Tropism of SVV during Primary Infection
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Neurons are the main SVV-infected cell types in ganglia
The hallmark of primary SVV and VZV infection is the

capacity of virus to infect and establish latency in ganglionic

neurons along the entire neuraxis [1,13,39–42]. Virus may reach

ganglia hematogenously or by retrograde axonal transport along

axons innervating varicella lesions [12,20,21,43,44]. We deter-

mined the kinetics of virus infection and the cell types infected in

ganglia during primary SVV infection. The SVV DNA load in

ganglia was significantly higher in SVV-wt2 compared to SVV-

EGFP2infected monkeys (p,0.01; Mann-Whitney test) (Fig. 7A),

Figure 4. SVV infects predominantly memory T-cells in blood after infection in African green monkeys. (A) Average SVV DNA load in
PBMC of SVV-wt2 (closed squares) and SVV-EGFP2 (open squares) infected monkeys determined by SVV-specific real-time qPCR. (B) PBMC from SVV-
wt2 (closed squares) and SVV-EGFP2 (open squares) infected monkeys were analyzed for infectious SVV by co-cultivation with BSC-1 cells. (C) PBMC
from SVV-EGFP2infected monkeys were analyzed for EGFP expression by flow cytometry. (D) EGFP expression in PBMC subsets from SVV-
EGFP2infected monkeys. Data are given as percentage of EGFPpos cells within each lymphocyte subset relative to the total number of PBMC, as
determined by flow cytometry. Lymphocyte subsets were defined by differential expression of the following markers: T-cells = CD3posCD16neg cells, B-
cells = CD20posMHC-IIposcells, natural killer (NK) cells = CD3negCD16pos cells, dendritic cells (DC) = CD3negCD14negCD16negCD20negCD14negMHC-IIpos

cells, and monocytes = CD3negCD14posMHC-IIpos cells. (E and F) Percentage of EGFPpos cells among each T-cell subset relative to the number of
CD8bright, CD8dim and CD4pos T-cells (E) and in naive, central memory and effector memory T-cells (F) from SVV-EGFP2infected monkeys as evaluated
by flow cytometry. In all panels, data are means 6 SEM.
doi:10.1371/journal.ppat.1003368.g004

T-Cell Tropism of SVV during Primary Infection
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peaking at 9 dpi and decreasing thereafter (Fig. 7A), as might be

expected during the establishment of latency. Despite high SVV

DNA loads, no virus-mediated cytopathology was seen in ganglia

(data not shown). Virus antigen was more abundant at 9 dpi than

at 13 and 20 dpi (data not shown). SVV-infected cells in ganglia

were detected in situ by IHC using SVV-specific antiserum

(Fig. 7B–D). Dual-IF staining for SVV and the neuron-specific

marker NCAM (neural cell adhesion molecule) showed that most

SVVpos cells were neurons (Fig. 7E). Occasionally, SVV antigens

were seen at the neuronal cell surface or potentially within satellite

glial cells (SGC) (Fig. 7D). SGC form a sheet that completely

enwraps neuronal cell bodies, providing physical and metabolic

support to the neurons and contributing to regulation of the

immune response in the peripheral nervous system [45,46]. Virus-

infected cells located in vicinity to neurons did not express the

SGC-specific marker glial fibrillary acidic protein (GFAP) [45],

implicating that SGC were not infected with SVV at 9, 13 and

20 dpi (Fig. 7F and data not shown). To address the possibility of

T-cell–mediated transfer of SVV to neurons, ganglia were

examined using dual-IF staining for SVV antigens and CD3. In

an SVV-wt2infected monkey euthanized at 9 dpi, SVV-infected

T-cells were detected in close proximity to neurons (Fig. 7G).

Notably, this animal also had the highest SVV DNA load in blood

and ganglia. Flow cytometric analysis of ganglion-derived single-

cell suspensions demonstrated that ganglion-resident T-cells were

memory T-cells, predominantly EM T-cells (Fig. 7H).

Our findings in ganglia contrast with the pronounced VZV-

induced histopathology of both SGCs and neurons found in VZV-

infected human fetal ganglia xenografts in the SCID-hu mouse

model [12,47]. Most likely, these differences are due to the use of

fetal human ganglia and the lack of adaptive immune responses in

the SCID-hu mouse model. The absence of SVV-induced

histopathology in ganglia is consistent with previous studies

[19,27] and the inability to recover infectious virus from ganglia

[15] at 10 dpi. Nonetheless, virus-induced cytopathology of

ganglia may have occurred during the peak of viremia (5–7 dpi),

which will be considered in future studies. The detection of SVV

protein in the cytoplasm of neurons, but not in the interacting

SGC (Fig. 6B–F), supports the notion of retrograde axonal route of

virus entry into ganglia [43,44,48,49]. In contrast with this

hypothesis, the SVV DNA load did not differ among ganglia,

including those that innervated the dermatomes showing varicella

rash (Fig. 7A and data not shown). The alternative scenario is that

virus traffics to ganglia during viremia within lymphocytes.

Indeed, both SVV and VZV enter ganglia before the onset of

rash, arguing for hematogenous virus spread [1,20,21]. VZV-

infected T-cells infiltrate human ganglion xenografts and transmit

VZV to neurons in the VZV SCID-hu mouse model [12]. The

occasional detection of neuron-interacting, SVV-infected memory

T-cells within ganglia (Fig. 7G) supports the role of memory T-

cells in virus dissemination to ganglia. Further studies on ganglia

from SVV-EGFP2infected monkeys euthanized at earlier times

after primary infection are warranted to test this hypothesis.

The current study is the first to present experimental evidence

(summarized in Fig. 8) that supports the role of memory T-cells in

the inter-organ dissemination of varicella virus in its natural and

immunocompetent host. Our current hypothesis on the patho-

genesis of primary SVV infection is presented in Figure 9. We

hypothesize that upon intratracheal inoculation, SVV replicates in

the respiratory tract and infects epithelial cells, alveolar myeloid

cells (AM and/or DC) and T-cells in the lungs. Subsequently, the

virus enters the circulation as cell-associated virus predominantly

within memory T-cells, first within CM and subsequently within

EM T-cells. Most likely, virus-infected alveolar myeloid cells

Figure 5. Detection of SVV in lymphoid organs from infected African green monkeys. (A) Real-time qPCR analysis of SVV DNA load in
tonsil, lymph nodes and spleen from SVV-wt2 (closed squares) and SVV-EGFP2 (open squares) infected monkeys at 9, 13 and 20 dpi. Squares
indicate individual tissues, i.e., tonsils (red), tracheobronchial lymph nodes (LN) (green), axillary LN (pink), mandibular LN (blue), inguinal LN (orange)
and spleen (black). Horizontal bar indicates the median value. (B–D) Serial sections of tonsil from an SVV-wt2infected monkey stained with
hematoxylin and eosin (inset shows a Cowdry type A intranuclear inclusion body) (B) or examined immunohistochemically using rabbit anti-SVV
antibodies (C) or control normal rabbit serum (D). Magnification: 2006. The area of tonsils containing multiple intranuclear inclusion bodies contained
numerous cells expressing SVV protein. **p,0.01 by Mann-Whitney test.
doi:10.1371/journal.ppat.1003368.g005
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Figure 6. Detection of SVV-infected cells in varicella skin lesions from infected African green monkeys. (A, B) Consecutive sections of
skin obtained from an SVV-EGFP-infected monkey at 9 dpi and stained by immunofluorescence (IF) for EGFP (A) and by immunohistochemistry (IHC)
for SVV antigens (B) show co-localization of SVV proteins and EGFP. Squares indicate the same area of tissue. (C–H) Consecutive sections of skin
obtained from an SVV-wt2infected animal at 9 dpi and examined by staining with hematoxylin and eosin (H&E) or by IHC for SVV show virus-induced
histopathology and viral proteins in epidermal blisters (C and D), dermal hair follicles (E and F) and dermal sebaceous glands (G and H). (I, J)
Consecutive skin sections obtained from an SVV-EGFP-infected monkey at 9 dpi and stained with H&E (I) or by IHC for SVV antigens (J) show blood
vessels (asterisks) surrounded by SVV protein-positive cells (arrows). Inset: magnification of the epidermis showing Cowdry type A intranuclear
inclusion bodies in panel I (arrowheads) and SVV protein-positive cells in panel J (arrows). (K) Skin section from an SVV-EGFP-infected animal obtained
at 9 dpi and double-stained for EGFP (green) and alpha-smooth muscle actin (SMA; red). Asterisks indicate SMA-positive sweat glands, arrowheads
indicate SMA-positive blood vessels, and arrows indicate EGFP-positive cells. (L–N) Skin sections obtained at 9 dpi and double-stained for EGFP
(green) and: CD68 (red) (L); CD11c (red) (M); and CD3 (red) (N). Arrows indicate dual-stained cells. (O) Skin section obtained at 9 dpi and double-
stained for SVV (green) and CD3 (red). Arrows indicate dual-stained cells. A, B: 1006magnification; C–K: 2006magnification; L–O: 4006magnification
and 26digital zoom.
doi:10.1371/journal.ppat.1003368.g006
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Figure 7. Detection of SVV-infected cells in ganglia of infected African green monkeys. (A) Virus DNA load was determined in ganglia at 9,
13 and 20 dpi by SVV-specific real-time qPCR. Filled and open squares represent pooled ganglia from the same level of the neuraxis from animals
infected with SVV-wt and SVV-EGFP, respectively. Colors indicate level of the neuraxis: trigeminal (black), cervical (red), thoracic (blue), lumbar (green)
and sacral (pink) ganglia. Horizontal bars represent mean viral DNA load per animal. (B) Immunohistochemical detection of SVV proteins (arrowheads)
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transport SVV to lung-draining lymph nodes, with subsequent

transfer of SVV to memory T-cells. Peak viremia coincided with

onset of fever and appearance of skin rash. SVV reached the skin

by the hematogenous route, most likely via virus-infected memory

T-cells. SVV may enter ganglia by retrograde axonal transport

from the infected epithelia and/or by the hematogenous route. In

addition to memory T-cells, other lymphocyte subsets may also

contribute to the viremic spread of SVV. Virus-infected DC, NK

cells, B-cells and monocytes were detected in peripheral blood at

5 dpi, albeit at low frequencies compared to memory T-cells. The

contribution of each lymphocyte population in transfer of SVV to

its target organs will be addressed in future studies by analyzing

virus-infected lymphocytes in tissues of animals euthanized during

peak viremia at 5–7 dpi.

Like VZV, SVV is considered to spread to naive monkeys via

aerosols and therefore most likely targets mucosal epithelial cells of

the upper respiratory tract, although – depending on the size of

the aerosols – some virus may also directly reach the lower

in a cervical ganglion at 9 dpi. Squares indicate corresponding tissue areas shown at higher magnification in (C) and (D). (E) Dual-
immunofluorescence (IF) staining of a thoracic ganglion at 9 dpi for SVV proteins (green) and neural cell adhesion molecule (NCAM; red). Arrows
indicate SVV-positive neurons. (F) Dual-IF staining of a thoracic ganglion at 9 dpi for SVV protein (green) and glial fibrillary acidic protein (GFAP; red).
Arrow indicates neuron-adjacent SVV-positive cell. (G) Dual-IF staining of a thoracic ganglion from a monkey at 9 dpi for SVV protein (green) and CD3
(red). Arrows indicate SVV-positive T-cells. Asterisks indicate autofluorescent lipofuscin and the borders of the neuronal cell bodies are indicated with
dashed lines. (H) Ganglion-derived single-cell suspensions were analyzed by flow cytometry and T-cells were categorized as naive, central memory
(CM) and effector memory (EM) T-cells. E–G: nuclei were counterstained with DAPI (blue). ** p,0.01 by Mann-Whitney test. B: 2006magnification; C,
D: 4006magnification, 26digital zoom; E: 4006magnification; F, G: 4006magnification, 26digital zoom.
doi:10.1371/journal.ppat.1003368.g007

Figure 8. Schematic presentation of primary SVV infection. Figure shows the kinetics of SVV infection and virus-infected cell types in African
green monkeys during primary SVV infection. Horizontal lines indicate the time-frame covered by the sampling days. Width of the black bars
indicates onset and severity of clinical signs, amount of SVV DNA detected in blood and the sampled organs, and the frequency of SVV-infected cells
in peripheral blood during primary SVV infection. Note that BAL samples were obtained no earlier than 5 dpi and animals were euthanized no earlier
than 9 dpi. BAL: bronchoalveolar lavage; NK cells: natural killer cells; DC: dendritic cell; TCM: central memory T-cells; TEM: effector memory T-cells.
doi:10.1371/journal.ppat.1003368.g008
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respiratory tract [1,13,14,25]. In the current study, we have used

intratracheal inoculation of monkeys with SVV, bypassing the

putative initial site of local SVV replication in the upper

respiratory tract or tonsils [1,13,14]. Primary VZV infections in

adults are more severe than in children and frequently compli-

cated by varicella pneumonia [1]. Consequently, the adult status of

SVV-infected AGM may have enhanced disease severity, although

pneumonia is a common feature in SVV-infected monkeys due to

the intratracheal route of inoculation [19,27]. Recombinant SVV-

EGFP was attenuated in vivo compared to SVV-wt, possibly due to

insertion of the EGFP gene between open reading frames (ORFs)

66 and ORF67 [50]. Recombinant VZV lacking ORF67 is

severely impaired for growth in cell culture [51]. Although

attenuated in severity, SVV-EGFP–induced disease resembled

that of a SVV-wt infection and attenuation did not alter the cell

tropism of SVV-EGFP. Both SVV-wt and SVV-EGFP infected

the same cell types in lung, lymph nodes, ganglia and skin in vivo,

and identical PBMC types in vitro. The recent cloning of the SVV-

wt full-length genome in a bacterial artificial chromosome

facilitates the generation of a potentially less attenuated recombi-

nant EGFP-expressing SVV by inserting the EGFP gene adjacent

to SVV genes dispensable for growth in vitro [51,52].

Future studies on juvenile African green monkeys, infected with

less-attenuated SVV-EGFP strains and via alternative inoculation

routes (e.g., via the nose or throat), are warranted. Particularly,

analysis of tissues obtained from infected animals euthanized

shortly after primary infection are needed to unequivocally

determine the early target cell types of SVV, their role in virus

dissemination to the target organs affected during primary

infection and the route of SVV entry into sensory ganglia [25].

Our current SVV-EGFP/AGM model, which largely covers the

clinical and pathological features seen in both SVV-wt2infected

monkeys and human varicella patients, provides novel opportu-

nities to elucidate the virus-host cell interactions involved in

varicella pathogenesis. This will open new avenues to develop and

test new VZV vaccination and therapeutic interventions that limit

viremic spread, while inducing long-lasting adaptive VZV-specific

immunity.

Materials and Methods

Ethics statement
This study was performed in strict accordance with European

guidelines (EU Directive on Animal Testing 86/609/EEC) and

Dutch legislation (Experiments on Animals Act, 1997). The

protocol was approved by the independent animal experimenta-

tion ethical review committee DCC in Driebergen, the Nether-

lands (Erasmus MC permit number EMC2374). Animals were

housed in groups, received standard primate feed and fresh fruit

daily, and had access to water ad libitum. Cages also contained

sources of ‘‘environmental enrichment’’ such as hiding places and

hanging ropes, tires and other toys. During infection, study

animals were housed in HEPA-filtered, negatively pressurized

BSL-3 isolator cages. Animal welfare was monitored daily and all

animal handling was performed under light anesthesia (ketamine)

or deep anesthesia (ketamine and medetomidine) to minimize

animal discomfort. After deep anesthesia, atipamezole was

administered to antagonize the effect of medetomidine. Animals

were euthanized by sedation with ketamine and medetomidine

followed by exsanguination.

Viruses
Low-passage clinical isolates of the Delta herpesvirus strain of

SVV-wt and SVV-EGFP were obtained from PBMC of acutely

infected AGM and propagated less than 5 times in AGM- kidney

epithelial cell line BSC-1 (American Tissue Type Culture

no. CCL-26) to generate virus stocks as described [53]. Virus

stocks were confirmed as Mycoplasma-free. SVV-EGFP was

generated by insertion of the EGFP gene downstream from a

Rous sarcoma virus promoter between SVV ORF66 and ORF67

[20,50].

SVV infection of PBMC in vitro
PBMC from SVV-naive AGM were infected by co-cultivating

PBMC (56105) with SVV-EGFP–infected Vero cells (0.5–16105),

showing 70% virus-induced cytopathic effect (CPE), in 0.5 ml

DMEM supplemented with antibiotics and 10% heat-inactivated

fetal bovine serum (FBS) for 24 hr in 24-well plates at 37uC in a

CO2-incubator. Mock-infected PBMC were similarly generated by

co-cultivating PBMC with uninfected Vero cells. SVV-EGFP2in-

fected PBMC were stained and analyzed by flow cytometry or

spotted on microscope slides, fixed and stained by immunofluo-

rescence for SVV as described below.

Experimental SVV infection of AGM, necropsy and
collection of tissues

Five adult (10- to 12-year-old) SVV-seronegative AGMs

(Cercopithecus aethiops) with intraperitoneal implanted temperature

transponders were inoculated intratracheally with ,106 plaque-

forming units (pfu) of SVV-EGFP (n = 3 animals; 1 male and 2

females) or SVV-wt (n = 2 animals; 1 male and 1 female) diluted in

5 ml of phosphate-buffered saline [21]. Just before infection,

animals were sedated with ketamine and medetomidine. The

abdomen and back of the animals were shaved to allow careful

examination for skin rash every other day until necropsy.

Heparinized blood samples were collected under light ketamine

sedation at 0, 2, 7, 11, 13, 17 and 20 dpi. Bronchoalveolar lavage

(BAL) samples and peripheral blood (PB) samples were collected

under deep anesthesia at 5 and 9 dpi. Three punch biopsies

(3 mm) of varicella rashes and EGFP fluorescent skin tissue, while

showing no characteristic varicella-like skin rash by the naked eye,

were obtained from anesthetized animals at 9 dpi under anesthe-

sia. SVV-EGFP2infected animals were checked for macroscopic

EGFP fluorescence using a custom-made lamp containing 6 LEDs

(peak emission 490–495 nm) mounted with D480/40 bandpass

filters [22]. Fluorescence was detected by an amber cover of a UV

transilluminator used for screening DNA gels [22]. Photographs

were taken using a Nikon D80 SLR camera. SVV-infected

animals were euthanized at 9 dpi (n = 2; one SVV-wt- and one

SVV-EGFP2infected animal), 13 dpi (n = 2; one SVV-wt2 and

one SVV-EGFP2infected animal) and 20 dpi (one SVV-EGFP-

Figure 9. Model of the pathogenesis of primary SVV infection. Upon intratracheal inoculation of African green monkeys, SVV replicates in the
lower respiratory tract and infects lung epithelial cells, alveolar macrophages (AM), dendritic cells (DC) and T-cells. SVV-infected AM and DC may
transport the virus to draining lymph nodes and subsequently transfer SVV to local lymphocytes resulting in a cell-associated viremia. Memory T-cells
are the predominant SVV-infected lymphocyte subset during viremia and may play a central role in dissemination of SVV to its target organs. SVV
reaches the skin by the hematogenous route, presumable via virus-infected memory T-cells, which results in the infection of perivascular
macrophages, DC and dendrocytes. Subsequently, SVV may infect epidermal and hair follicle keratinocytes via cell-to-cell spread and cause vesicular
skin lesions. SVV may enter ganglia by (a) retrograde axonal transport and/or (b) by viremic spread via virus-infected lymphocytes.
doi:10.1371/journal.ppat.1003368.g009
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infected animal). Multiple tissues including lung, lymph nodes,

spleen, tonsils, skin and ganglia were collected at necropsy and

either snap-frozen or fixed and paraffin-embedded.

Collection and processing of PB and BAL samples
PBMC were isolated by density-gradient centrifugation and

used for virus isolation, DNA isolation and flow cytometry or

cryopreserved as viable cells as described [19]. Cells recovered

from BAL samples were centrifuged, dissolved in RPMI-1640

medium supplemented with 10% FBS plus antibiotics (R10F

medium), and used for virus isolation, DNA isolation and flow

cytometry as described [22].

Virus isolation from PB and BAL samples
Infectious SVV was isolated from PB and BAL cells by

incubating 1–26106 cells in 10-fold serial dilutions in R10F

medium on confluent monolayers of BSC-1 cells in 6-well plates.

Cells were monitored for SVV-induced CPE or EGFP expression

after 7 days of co-cultivation and results were expressed as

numbers of SVV-infected cells per 106 input PBMC and BAL

cells.

Nucleic acid extraction and quantitative PCR (qPCR)
DNA was isolated from PBMC, BAL cells, pooled ganglia,

pooled lymph nodes, tonsils and spleen using a QIAamp DNA

Mini Kit (Qiagen). qPCR was performed in triplicate on a ABI

Prism 7500 using Taqman 26 PCR Universal Master Mix

(Applied Biosystems) with primers and probes specific for SVV

open reading frame 21 (ORF21) and the pan-primate single-copy

gene oncostatin-M (OSM) as described [14,21,54]. DNA dilutions

obtained from uninfected PBMC were used to validate the OSM

Taqman assay.

Flow cytometry
PBMC were either directly used for flow cytometry to detect

EGFP+ cells or stained for indicated markers using fluorochrome-

conjugated mAbs: CD3APC-Cy7 (clone SP34-2), CD4AmCyan

(L200), CD8PerCp (SK1), CD14PE (M5E2), CD16AF647 (3G8),

CD20PE-Cy7 (L27) and HLA-DRPacificBlue (L243) (all from BD

Biosciences) to delineate SVV-infected PBMC subsets. To identify

SVV-infected T-cell subtypes, PBMC from infected AGMs were

stained with mAbs specific for CD3APC-Cy7 (SP34-2), CD4PacificBlue

(L200), CD8MCyan (SK1), CD28APC (28.2), CD95PerCp (DX2),

CCR4PE-Cy7 (1G1) (all from BD Biosciences) and CD137PE (4B4-

1; Miltenyi biotec). T-cells were categorized into naive, central

memory (CM) and effector memory (EM) T-cells based on

differential expression of CD28 and CD95 (Fig. S2) [28]. In

contrast to humans and macaque species, AGMs have three

distinct CD3pos T-cell populations based on expression of CD4

and CD8a: CD4posCD8aneg (CD4pos), CD4neg CD8adim (CD8dim)

and CD4negCD8abright (CD8bright) (Fig. S2)[28]. BAL cells were

stained as described for PBMC, except for inclusion of anti-

CD45APC (MB4-6D6; Miltenyi biotec) instead of anti-CD16 mAb.

Fluorescence was detected on a FACS Canto II and analyzed

using FACS Diva software (BD Biosciences). At least 106 viable

cells were measured to accurately identify EGFPpos cells.

In situ analyses
Immunohistochemical and immunofluorescence staining was

performed using predefined optimal dilutions of primary mAbs

directed against: CD3 (clone F7.2.38; Dako), CD11c (NCL-L-

CD11c-563; Novocastra), CD20 (L26; Dako), CD68 (KP1; Dako),

NCAM (123C3.D5; Thermo Fischer Scientific), GFAP (4A11; BD

Biosciences), keratin (AE1/AE3; Thermo Fischer Scientific), a-

smooth muscle actin (1A4; Sigma-Aldrich) and rabbit polyclonal

antibodies directed against GFP (IgG fraction; Invitrogen) and

SVV nucleocapsid proteins [19]. As isotype controls, sections were

incubated with mouse IgG1, IgG2a and IgG2b and rabbit

immunoglobulins (Dako). Paraformaldehyde-fixed (4%), paraffin-

embedded tissue sections were deparaffinized, rehydrated, sub-

jected to heat-induced antigen retrieval in citrate buffer (10 mM,

pH = 6.0), blocked and incubated with primary antibodies

overnight at 4uC as described [46,55]. Immunohistochemical

staining was visualized using the avidin-biotin system (Dako) in

combination with 3-amino-9-ethylcarbazole (AEC) (Sigma-Al-

drich) and sections were counterstained with hematoxylin

(Sigma-Aldrich) as described [46,55].

For immunofluorescence staining, sections were incubated with

secondary Alexa Fluor 488 (AF488)- or AF594-conjugated goat-

anti-mouse and/or goat-anti-rabbit antibodies and mounted in

Prolong Gold Antifade reagent with 49,6-diamidino-2-phenylin-

dole (Invitrogen) [56]. Sections were analyzed on a Zeiss LSM

700 confocal laser scanning microscope fitted on an Axio

Observer Z1 inverted microscope (Zeiss). Images were obtained

using 2–46 frame averaging and the pinhole adjusted to 1 airy

unit. ZEN 2010 software (Zeiss) was used to adjust brightness and

contrast.

Supporting Information

Figure S1 Gating strategy for flow cytometric differen-
tiation of bronchoalveolar lavage (BAL) cells of African
green monkeys. BAL cells were gated on viable cells based on

forward scatter (FSC) and sideward scatter (SSC) properties and

defined as CD45neg cells or CD45pos leukocytes. CD45pos BAL

leukocyte subsets were defined as follows: CD3negCD20negMHC-

IIposCD14pos/dim = alveolar macrophages (AM) or dendritic cells

(DC); CD20posMHC-IIpos = B-cells; CD3posT-cells; CD4neg

CD8ahigh = CD8bright T-cells, CD4negCD8adim = CD8dim T-cells,

and CD4posCD8aneg = CD4pos T-cells.

(TIF)

Figure S2 Gating strategy for flow cytometric differ-
entiation of PBMC subsets from African green mon-
keys. (A) Viable lymphocytes were selected based on forward

scatter (FSC) and sideward scatter (SSC) properties and PBMC

subsets were defined as follows: CD3posCD16neg = T-cells;

CD3negCD16pos = natural killer (NK) cells; CD3neg

CD14posMHC-IIpos = monocytes; CD20posMHC-IIpos = B-cells;

CD3negCD20negCD14negCD16negMHC-IIpos = dendritic cells

(DC). (B) AGM-specific T-cell subsets were categorized based

on the expression of CD8a and CD4: CD4negCD8ahigh =

CD8bright T-cells, CD4negCD8adim = CD8dim T-cells, and

CD4posCD8aneg = CD4pos T-cells. (C) Based on the differential

expression of CD28 and CD95, T-cells were categorized as

naive (CD28posCD95neg), central memory (CM; CD28pos

CD95pos) and effector memory (EM; CD28negCD95pos) T-cells.

(TIF)

Figure S3 Peripheral blood CCR4pos and CD137pos T-
cells were not preferentially infected in African green
monkeys. Flow cytometric detection of EGFP expression in

central memory (CM) and effector memory (EM) T-cells at 5 dpi

(A) and 7 dpi (B). Gating strategy was according to Figure S2.

Data are given as means 6 SEM.

(TIF)

Figure S4 Memory T-cells were preferentially infected
in vitro. (A) SVV-naive African green monkey peripheral blood
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mononuclear cells (PBMC) were infected with SVV-EGFP in vitro

and stained 24 hr later for SVV proteins to show that EGFP

fluorescence (green) co-localized with SVV proteins (red). Nuclei

were counterstained with DAPI (blue). Magnification: 4006. (B)

African green monkey PBMC were infected with SVV-EGFP in

vitro and analyzed 24 hr later by flow cytometry for EGFP

expression in the indicated lymphocyte subsets. Data are plotted as

the frequency of EGFPpos cells within individual PBMC subsets

(within subset) or as the percentage of EGFPpos cells within each

lymphocyte subset relative to the total number of PBMC

(absolute). (C, D) Percentage of EGFPpos cells in the indicated

T-cell subsets as assessed by flow cytometry. The lymphocyte

subsets were defined as described in Figure S2. Data represent

means 6 SEM of three independent experiments performed on

PBMC from three animals. * p,0.05 by Mann-Whitney test.

(TIF)
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