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Abstract

Several microRNAs (miRNAs) that are either specifically enriched or highly expressed in neurons and glia have been
described, but the identification of miRNAs modulating neural stem cell (NSC) biology remains elusive. In this study, we
exploited high throughput miRNA expression profiling to identify candidate miRNAs enriched in NSC/early progenitors
derived from the murine subventricular zone (SVZ). Then, we used lentiviral miRNA sensor vectors (LV.miRT) to monitor the
activity of shortlisted miRNAs with cellular and temporal resolution during NSC differentiation, taking advantage of in vitro
and in vivo models that recapitulate physiological neurogenesis and gliogenesis and using known neuronal- and glial-
specific miRNAs as reference. The LV.miRT platform allowed us monitoring endogenous miRNA activity in low represented
cell populations within a bulk culture or within the complexity of CNS tissue, with high sensitivity and specificity. In this way
we validated and extended previous results on the neuronal-specific miR-124 and the astroglial-specific miR-23a.
Importantly, we describe for the first time a cell type- and differentiation stage-specific modulation of miR-93 and miR-125b
in SVZ-derived NSC cultures and in the SVZ neurogenic niche in vivo, suggesting key roles of these miRNAs in regulating
NSC function.
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Introduction

MicroRNAs (miRNAs) are small non-coding-RNAs that regu-

late the expression of a large fraction of mRNA in a sequence-

specific manner [1] through translational repression and/or

transcript destabilization [2], [3]. The dramatic changes in

expression levels of some miRNAs with CNS specific/enriched

expression profiles [4], [5], [6], [7] suggest their critical role as

regulators of the developmental pathways that contribute to the

complexity and cellular diversity of the adult nervous system [8],

[9].

Indeed, an increasing amount of studies address miRNA

function in multiple steps of neurogenesis, including self-renewal

and specification of neural stem cells (NSCs), migration and

maturation of young neurons, and functional integration of mature

neurons in the neural circuitry [10], [11]. Among the most widely

studied, miR-124 is a neuronal fate determinant in cell cultures

[12], [13] and in the subventricular zone (SVZ) neurogenic niche

[14], [15], while miR-125b promotes neuronal differentiation and

regulation of synaptic function [16], [17], [18]. However, the

identification of individual miRNAs that might specifically identify

NSCs and play a functional role in modulating NSC self-renewal

and multipotency remains largely incomplete.

Functional studies of individual miRNAs in the CNS require

techniques allowing to simultaneously monitor spatio-temporal

expression patterns and cellular localization. To this end, strategies

based on the visualization of miRNA-regulated reporters have

been developed [8] that could overcome the low sensitivity of

histology and in situ RNA expression [19], [20]. Recently, miRNA-

regulation has been implemented in the context of lentivirally

delivered transgenes. In lentiviral (LV) miRNA sensor vectors

(LV.miRT) the expression of a reporter gene is regulated by

perfectly matched miRNA target (T) sequences. The expression of

the reporter gene is downregulated when the cognate miRNA is

active within the cell [21]. LV.miRT allow segregating transgene

expression between different CNS lineages (i.e. neurons versus

astrocytes) [22], [15], separating out neural precursors in ES-

derived pluripotent cultures [23] as well as selecting/maintaining

human pluripotent cell populations in culture [24]. Thus, a similar

strategy could possibly be used to enrich for NSCs or committed

progenitors, providing large amounts of neural cells suitable for

transplantation in different neurodegenerative pathologies. In this

perspective, a comprehensive knowledge of the modulation of
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specific miRNAs during NSC maintenance/differentiation is

needed.

Here, we used global miRNA expression profiling to identify

candidate miRNAs enriched in NSC populations. Then, we

applied the LV.miRT platform to monitor the activity of

shortlisted miRNAs during NSC differentiation, exploiting several

in vitro and in vivo experimental settings that recapitulate physio-

logical neurogenesis and gliogenesis and using known neuronal-

and glial-specific miRNAs as reference. We found that miR-93, a

member of the miR-106b-25 cluster, and the brain-associated

miR-125b are highly enriched in somatic NSCs, and their

expression and activity are significantly modulated in NSC-

derived progeny, with distinct temporal progression as well as

lineage- and cell type-specific patterns of modulation. Further-

more, we highlighted a positive correlation between the expression

of both miRNAs in NSCs and their proliferative activity.

Our studies validate ‘‘sensor’’ LVs as a sensitive tool to monitor

the temporal patterns of endogenous miRNA activity at the

cellular level. Also, they provide for the first time a comprehensive

analysis of the dynamic activity of miR-93 and miR-125b during

lineage commitment and differentiation of murine somatic NSCs

in culture systems and in the SVZ stem cell niche during

physiological neurogenesis.

Materials and Methods

Ethics Statement
All animals were handled in strict accordance with the

ARRIVE guidelines. Protocols were approved by the Institutional

Committee for the Good Animal Experimentation of the San

Raffaele Scientific Institute (IACUC #420).

CD1 mice (adult males and pregnant females) were purchased

by Charles River (Calco, LC, Italy) and housed in the SPF animal

facility of the San Raffaele Scientific Institute.

Transfer Vector Plasmids
We used monocystronic and bidirectional (bd) self-inactivating-

LVs, the latter allowing the coordinate dual expression of two

transgenes driven by the human phosphoglycerate kinase (PGK)

promoter [21], [25]. LV.CTRL encodes for GFP, bdLV.CTRL

encodes for two reporter genes (GFP and the monomeric (m)

Cherry). MiRNA target sequences were cloned into the XbaI-

XmaI site, downstream of the GFP marker gene of (bd)LV.CTRL,

as previously described [21], [26]. Briefly, mature miRNA

sequences (hsa-miR) were obtained from the miRNA registry

(http://microrna.sanger.ac.uk), and oligonucleotides containing 4

repeats of the reverse complement of the miRNA sequence were

synthesized and cloned into the LV or bdLV.

List of oligonucleotides used to generate transfer vector

plasmids:

miR-125b sense 1: ctagatcacaagttagggtctcagggacgattcacaagt-

tagggtctcagggaacgcgt.

miR-125b sense 2: tcacaagttagggtctcagggatcactcacaagttagggtct-

cagggac.

miR-125b antisense 1: tccctgagaccctaacttgtgaatcgtccctgagaccc-

taacttgtgat.

miR-125b antisense 2: ccgggtccctgagaccctaacttgtgagtgatccctga-

gaccctaacttgtgaacgcgt.

miR-124 sense 1: ctagataatggcattcaccgcgtgccttaattcgaatggcatt-

caccgcgtgccttaaacgcgt.

miR-124 sense 2: tggcattcaccgcgtgccttaaatgcattggcatt-

caccgcgtgccttaac.

miR-124 antisense 1: ttaaggcacgcggtgaatgccattcgaattaagg-

cacgcggtgaatgccattat.

miR-124 antisense 2: ccgggttaaggcacgcggtgaatgccaatgcatttaagg-

cacgcggtgaatgccaacgcgt.

miR-93-5p sense1: ctagactacctgcacgaacagcactttgttcgaactacctg-

cacgaacagcactttgacgcgt.

miR-93-5p sense2: ctacctgcacgaacagcactttgatgcatctacctgcacgaa-

cagcactttgc.

miR-93-5p antisense1: caaagtgctgttcgtgcaggtagttcgaa-

caaagtgctgttcgtgcaggtagt.

miR-93-5p antisense2: ccgggcaaagtgctgttcgtgcaggtagatgcat-

caaagtgctgttcgtgcaggtagacgcg.

miR-23a sense: ctagatagggaaatccctggcaatgtgatcgatggaaatccctgg-

caatgtgatc.

miR-23a antisense: ccgggatcacattgccagggatttccatcgatcacattgc-

cagggatttccctat.

NB: 4 copies of miR-23a were generated by successive ligation

of 2 oligonucleotide products (each containing 2 tandem repeats

complementary to miR-23a) into the pBlueNA subcloning

construct.

Vector Production and Titration
Vector production and titration were performed as described

previously [21], [25]. Briefly, VSV-pseudotyped third-generation

LV were produced by transient four-plasmid co-transfection into

293T cells and purified by ultracentrifugation as described [25].

Vector titer was tested on 293T cells by limiting dilution and

estimated by means of qPCR for HIV genome copies. Vector

particles were measured by HIV-1 gag p24 antigen immunocap-

ture (NEN Life Science Products, Waltham, MA, USA). Vector

infectivity was calculated as the ratio between titer and particles.

Details can be found in [25]. Vector titers were in the range

between 2 to 56109 TU/ml (bdLVs) and 5 to 86109 TU/ml

(monocystronic LVs). Infectivity was higher than 56104 TU/ng of

p24 for all vectors.

Cell Cultures
Neural stem cells. Post-natal day (PND) 2 CD1 mice were

anaesthetised in crushed ice before being decapitated. Brains were

removed and tissue containing the subventricular zone (SVZ) of

the forebrain lateral ventricles was dissected. Tissues from 3 mice

were pooled to establish and expand NSC cultures (n = 2–5

independent cultures) using the NeuroSphere Assay (NSA), as

previously described [27]. For all the experiments we used serially

passaged NSCs (passage 5th – 20th).

Establishment of NSC-derived populations at different stages of

commitment/differentiation was performed as previously de-

scribed [27] and summarized in Figure S1. Briefly, serially

passaged neurospheres were dissociated and grown for 24 hours

in serum-free DMEM/F12 (1:1 vol:vol) containing insulin, apo-

transferrin, putrescine and progesterone (control medium) containing

FGF2 and EGF (growth medium), in order to obtain a population

enriched in proliferating, undifferentiated cells (stem/precursors;

1day, d). This population was plated in the presence of an adhesion

substrate, in control medium supplemented with FGF2 in order to

obtain a population enriched in neuronal and glial committed

progenitors at different stages of commitment (progenitors; 3d).

Progenitors were exposed to control medium containing 10 ng/ml

leukaemia inhibitory factor (LIF) or 2% FBS and grown for

additional 1d, 4d and 7d (differentiated cells) in order to achieve

cultures at progressive stages of neuronal and glial differentiation/

maturation. We used nestin to identify stem/precursor cells and

immature glial precursor cells, glial fibrillary protein (GFAP) to

identify astrocytes, b-tubulin III (btubIII) to identify immature

neurons, microtubule-associated protein 2 (Map2) and neuronal

nuclear antigen (NeuN) to identify mature neurons.

miRNAs in Somatic Neural Stem Cells
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SH-SY5Y neuroblastoma cells. The SH-SY5Y cell line

(kindly provided by Dr. J. Meldolesi, San Raffaele Scientific

Institute; originally purchased from ATTC, CRL-2266) was

grown in DMEM/F12 (1:1 vol:vol) supplemented with 10%

FBS. Differentiation of SH-SY5Y cells was performed by plating

104 cells/cm2 in DMEM/F12 containing 2% FBS and 10 mM

retinoic acid for 3 days, followed by 4 days in the presence of

serum-free DMEM/F12 supplemented with brain derived neuro-

trophic factor (BDNF; 10 ng/ml).

Lentiviral-mediated Gene Transfer in NSCs
Stem/precursor cells were incubated overnight with LV or bdLV

(26107 TU/ml; MOI 100). Medium was then removed and fresh

medium added in order to obtain the formation of neurospheres,

which were then subcultured every 4–5 days by mechanical

dissociation. In this way we established stably transduced NSC

lines that were further differentiated according to the protocol

described above. We evaluated the efficacy of LV and bdLV

transduction by quantifying: 1) the vector copy number (VCN) by

qPCR; 2) the number of mCherry+ cells and GFP+ cells by FACS

and immunohistochemistry.

The effect of bdLV transduction on NSC functional features

(self-renewal, proliferation and differentiation capacity) was

evaluated as previously described [27].

Fluorescence Activated Cell Sorting (FACS)
Transduced cells were grown for at least 4 passages before

undergoing FACS analysis, in order to reach steady-state mCherry

and GFP expression and to rule out pseudo-transduction. Before

FACS analysis, either free floating cells were collected or adherent

cells were detached with Accumax (Sigma-Aldrich, St. Louis, MO,

USA), washed, resuspended in PBS and analyzed by multi-color

flow cytometry on a FACS Canto flow cytometer (Becton-

Dickinson, San Jose, CA, USA). 7-Aminoctinomycin D (7-AAD;

Sigma-Aldrich) was used to exclude dead cells. Transduced cells

were identified by gating on 7-AAD2/mCherry+ cells. Direct GFP

fluorescence was then analyzed.

MiRNA activity is expressed as fold repression (FR) of GFP

expression measured in bdLV.miRT-transduced cells as compared

to bdLV.CTRL-transduced cells. For this analysis we considered

only the population expressing bright mCherry signal (mCherryhi).

Transgene ratio (TGR) and FR was calculated as previously

described [26]: FR = TGRmiRT/TGRCTRL; TGR = MFIGFP/

MFImCherry.

Intracerebral Delivery of Vectors
Adult mice. Two month-old CD1 mice were anesthetized

with Avertine (Sigma-Aldrich). A hole was drilled in the skull and

vectors (26106 TU/1.5 ml) were slowly injected (0.3 ml/min)

unilaterally in the striatum by means of a 33G needle-Hamilton

syringe. The needle was left in place for additional 3 min and then

slowly withdrawn. Stereotactic coordinates in mm from Bregma

(according to the Paxinos mouse brain atlas) were: AP +0.5, ML

+2, DV 22.5.

Neonates. PND1 CD1 mice were anaesthetised in crushed

ice and placed on a refrigerated stage. The head was trans-

illuminated in order to identify the ventricles. Vectors (26106 TU/

1.5 ml) were rapidly injected in the left lateral ventricle through a

glass capillary mounted on a micromanipulator without exposing

the skull. The procedure takes 3 to 5 minutes, the survival rate is

.90%.

Forty days post-injection mice were deeply anesthetized with

Avertine and intracardially perfused with 0.9% NaCl followed by

ice-cold 4% PFA in PBS. Brains tissues were collected, equilibrat-

ed for 24 hours in 30% sucrose in PBS and included in agarose.

Serial coronal vibratom-cut sections (6 series, 40 mm-thick) were

processed for immunofluorescence analysis.

Immunofluorescence Analysis
Immunofluorescence on cell cultures and tissue slices was

performed as previously described [27], [28].

Primary antibodies. Rabbit polyclonal anti-DS red

(mCherry) (Clontech, Mountain View, CA, USA; 1:500); mouse

monoclonal anti-b-tubulin III (Babco, Richmond, CA, USA;

1:1.000); rabbit polyclonal anti-b-tubulin III (Babco; 1:500);

mouse monoclonal anti-GFAP (Chemicon-Millipore, Temecula,

CA, USA; 1:1.000); rabbit polyclonal anti-GFAP (Dako, Glostrup,

Denmark; 1:1.000); mouse monoclonal anti-Map2 (Immunologi-

cal Science, Rome, Italy; 1:300); mouse monoclonal anti-nestin

(Chemicon; 1:200); mouse monoclonal anti-NeuN (Chemicon;

1:500); rabbit polyclonal anti-Ki67 (Novocastra-Leica Biosystems

GmbH, Nussloch, Germany; 1:1.000); chicken polyclonal anti-

GFP (Abcam, Cambridge, UK; 1:1.000).
Secondary antibodies. Alexa 488-, Alexa 546- or Alexa

633-conjugated anti-mouse or anti rabbit IgG (1:1.000, 1:2.000

and 1:500, respectively) (Molecular Probes; Carlsbad, CA, USA);

Cy3- conjugated goat anti-mouse or goat anti-rabbit IgG (Jackson

ImmunoResearch Laboratories, West Grove, PA, USA; 1:500).

Coverslips and tissue sections were counterstained with dapi (4’,

6-diamidino-2-phenylindole; Roche) or TO-PRO-3 (Life Tech-

nologies-Invitrogen, Carlsbad, CA, USA), washed in PBS, and

mounted on glass slides using Fluorsave (Calbiochem-EMD

Millipore, Billerica, MA, USA).

Image Acquisition
Samples were visualized with: 1) Zeiss Axioskop2 microscope

using double laser confocal microscopy with Zeiss Plan-Neofluar

objective lens (Zeiss, Arese, Italy). Images were acquired using a

Radiance 2100 camera (Bio-Rad, Segrate, Italy) and LaserSharp

2000 acquisition software (Bio-Rad); 2) Perkin Elmer UltraVIEW

ERS Spinning Disk Confocal (PerkinElmer Life Sciences Inc.,

MA, USA); 3) Leica TCS SP2 three-laser confocal microscope

with Leica Confocal Software (LCS; Leica Microsystems GmbH,

Wetzlar, Germany).

Cell Quantification
Cell cultures. We analyzed 3–4 coverslips for each antigen

(.1000 cells) in each experiment, performing 2–3 independent

experiments.

Tissue slices. We analyzed coronal brain sections (2–3

slices/region/mice; n = 3 mice/treatment group) selected within

the striatal region (adult injection) or all along the SVZ-RMS-OB

pathway (neonatal injection). For the cell type composition, data

are expressed as percentage of immunoreactive (IR) cells (for each

specific marker) on total nuclei (untreated mice), or on total

transduced cells (GFP+ for LV.CTRL; mCherry+ for bdLVs). The

OB was divided into different cell layers based on nuclear staining,

including the glomerular layer (GlL), the external plexiform layer

(ExPL), the internal plexiform layer (InPL), the mitral cell layer

(MiL), the granule cell layer (GCL) and the medulla (Me). For each

OB section, the number of transduced cells in each layer was

expressed as the percentage on the total number of transduced

cells (GFP+ for monocystronic LVs; mCherry+ for bdLVs).

For the quantification of miRT-mediated GFP expression, a

total of 300–3000 cells were examined in each experimental group

for GFP expression and co-localization with lineage-specific

markers. Data are expressed as: i) percentage of marker+GFP+

cells (direct GFP fluorescence) on total number of marker+ cells

miRNAs in Somatic Neural Stem Cells
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(monocystronic LVs); ii) percentage of marker+GFP+ cells (direct

GFP fluorescence) on total number of marker+mCherry+ cells

(anti-mCherry antibody).

Detection of LV Genome
Detection of LV genome was performed as previously described

[28]. Genomic DNA was extracted from cell pellets (Maxwell,

Promega, Madison, WI, USA) and quantified at NanoDrop ND-

1000 Spectrophotometer (Euroclone, Pero, Italy). Vector copies

per genome were quantified by TaqMan analysis starting from

100 ng of template DNA. Quantitative PCR was performed by

amplifying the PSI sequence of the LV backbone using primers as

follows: forward, 59-TGAAAGCGAAAGGGAAACCA-39,

750 nmol final concentration; reverse, 59-

CCGTGCGCGCTTCAG-39, 200 nmol final concentration.

PCR product length was 64 bp. The probe was 59-VIC-

AGCTCTCTCGACGCAGGACTCGGC- MGB-39, 200 nmol

final concentration. As internal reference for normalization, we

amplified a fragment of the murine b-actin gene: forward, 59-

AGAGGGAAATCGTGCGTGAC-39, 300 nmol final concentra-

tion; reverse, 59-CAATAGTGATGACCTGGCCGT-39,

750 nmol final concentration; probe, 59-VIC-CACTGCCG-

CATCCTCTTCCTCCCMGB-39, 200 nmol final concentration.

A standard curve of genomic DNA carrying 4 LV copies,

validated by Southern blot analysis, was constructed using DNA

extracted from transgenic mouse tissue. The standard curve, based

on different dilutions of DNA (from 200 to 25 ng), and

accordingly, of LV copies, was used as standard both for LVs

and for b-actin amplification. Reactions were carried out in a total

volume of 25 ml, in an ABI Prism 7900 HT Sequence Detection

System (Life Technologies-Applied Biosystems, Carlsbad, CA,

USA). The number of LV copies was calculated as follows: (ng

LVs/ng endogenous DNA)6(number of LV integrations in the

standard curve).

Quantitative RT-PCR
Total RNA was isolated from stem/precursor, progenitors and

differentiated cells using the miRNeasy Mini kit (Qiagen, Hilden,

Germany) according to the manufacturer instructions. 200 ng of

total RNA were reverse transcribed using High Capacity cDNA

Reverse Transcription kit and specific miRNA primers (Life

Technologies-Applied Biosystems, Carlsbad, CA, USA). TaqMan

quantitative real-time PCR was performed with hsa-miR-16, hsa-

let7a, hsa-miR-125b, mmu-miR93, mmu-miR-124a, hsa-miR-

23a, hsa-miR-106b, hsa-miR-25 and hsa-miR-9 specific probes

(Life Technologies-Applied Biosystems) on ABI7900 thermal

cycler. Data were normalized on miR-9 expression level and the

fold change to stem/precursors values was calculated trough DDCt

method.

miRNA Expression Profiling
Murine mature miRNA expression levels were quantified using

the stem-loop RT-qPCR platform (Life Technologies-Applied

Biosystems). Briefly, 60 ng of total RNA was reverse transcribed

using the rodent stem-loop RT Megaplex primer pools A and B

(v2.0) followed by a 12-cycle pre-amplification according to the

manufacturer’s instructions. Pre-amplified cDNA was diluted 1/4

and quantified using miRNA specific Taqman assays (Life

Technologies-Applied Biosystems) in a 3.5 ml qPCR reaction

containing 1.5 ml of Taqman assay (1/17 dilution of 206solution),

1.75 ml Taqman gene expression master mix, 0.02 ml of cDNA

and 0.23 ml of water on a 7900 HT qPCR system (Life

Technologies-Applied Biosystems). A proper normalization strat-

egy is a crucial aspect of the RT-qPCR data analysis workflow. For

large-scale miRNA expression profiling studies it has been

previously shown that mean expression value normalization

outperforms the normalization strategies that make use of small

RNA controls. For this reason, raw miRNA expression values

were filtered using a Cq-cutoff of 32 and normalized using the

global mean, as previously described [29], [30].

Statistics
Data were analyzed with Graph Pad Prism version 5.0a for

Macintosh. Unpaired Student t-test, One-Way or Two-Way

analysis of variance followed by post-tests were used according

to data sets and p#0.05 was considered to be statistically

significant. The number of samples analyzed and the statistical

test used are indicated in the figure legends.

Results

miRNA Expression Profile during NSC Differentiation
We isolated and cultured NSCs from the murine neonatal

subventricular zone (SVZ) [31], [27] and established NSC-derived

populations at progressive stages of commitment/differentiation,

identified as stem/precursors, committed progenitors and differentiated cells

(7d and 10d in vitro) [32] (Figure S1). On these NSC-derived

populations we performed a high-throughput miRNA RT-qPCR

analysis [30] in order to identify miRNAs specifically expressed

and/or significantly modulated upon NSC differentiation. By

using stem-loop RT-qPCR platform we interrogated 535 mam-

malian miRNAs. Among them, 201 displayed detectable expres-

sion level. In Table S1 we report the full list of miRNAs analyzed

and their expression levels (expressed as DCt). From this large

dataset we shortlisted 33 miRNAs displaying modulation as a

function of lineage commitment and differentiation, on the base of

differential expression (DDCt $1) in progenitors and/or differentiated

cells as compared to stem/precursors (Table S2). We further selected

9 and 14 miRNAs that were significantly upregulated and

downregulated, respectively (Figure 1A).

Among the upregulated miRNAs there were some expected

candidates, such as the miR-145-152 cluster [24] and the miR-24-

23-27 cluster, previously reported to be upregulated during

differentiation of neural progenitors in the astroglial lineage [33],

[34]. A moderate upregulation of expression levels in differentiated

cultures was observed for the brain-associated miR-125b. This

miRNA has been described to promote neuronal differentiation

and synaptic function [16], [35], [18]. However, the involvement

of miR-125b in the regulation of cell proliferation and apoptosis

[36], and the indication that nestin is a direct functional target of

miR-125b [37] suggest a possible implication of this miRNA in

NSC homeostasis. These data, and the hypothesis that the weak

upregulation of miRNA expression observed in bulk populations

might overestimate cell subsets with differential miRNA expres-

sion/activity, prompted us to consider miR-125b as an interesting

candidate to be further investigated in our NSC culture model.

Among the downregulated miRNAs we found the miR-132/

212 cluster, which is involved in CNS development and embryonic

stem (ES) cell biology [38], [39], [40] and miR-93, which belongs

to the miR106b-25 cluster located on murine chromosome 5, in

the 13th intron of the host gene mcm7 [41]. This miRNA cluster

has been implicated in the regulation of neural progenitor cell

proliferation and neuronal differentiation [42] but the potential

role of miR-93 in modulating somatic NSC function is still elusive.

Based on the available data and on our expression profile we

selected miR-93 and miR-125b for further analysis, in order to

assess their activity in stem/early progenitor cells and the cell-

specific modulation during lineage commitment and differentia-

miRNAs in Somatic Neural Stem Cells
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tion, considering the neuronal-specific miR-124 [11], [43] and the

astroglial-specific miR-23a [33] as reference.

Quantitative PCR analysis confirmed that miR-125b and miR-

93 are abundantly expressed in stem/precursor cells when compared

to miR-23a and miR-124 (Figure 1B). Expression of miR-23a

was upregulated in differentiated cells as compared to stem/precursors,

as expected (Figure 1C). Surprisingly, this trend was not observed

for miR-124 (Figure 1D). This apparent discrepancy was likely

due to the low percentage of mature neurons in NSC-derived

differentiated cultures (10–20%; see Figure S1) when compared to

homogeneous neuronal cultures (i.e. neurons from SH-SY5Y

neuroblastoma cells) (Figure 1D). While miR-125b expression

increased upon cell commitment and was maintained at high level

in the differentiated progeny (Figure 1E), miR-93 was signifi-

cantly downregulated during NSC differentiation (Figure 1F). We

observed a similar trend of expression of miR-106b and miR-25,

the other two miRNAs in the cluster (Figure 1F) even though

their absolute expression is lower with respect to miR-93 (see

Figure 1B). Also, expression levels of these miRNAs during NSC

differentiation paralleled those of the host gene mcm7

(Figure 1G), strongly suggesting that they are co-transcribed in

the context of the mcm7 primary transcript.

While these data suggested a potential role for miR-93 and

miR-125b in the maintenance of stem/early progenitor cells and/

or in lineage commitment, they also highlighted the limitation of

qPCR-based analysis in detecting modulation of miRNA-expres-

sion in low-represented subset of cells within a bulk culture. This

prompted us to investigate the activity of the selected miRNAs at

the cell level using a novel LV-based reporter system.

Modulation of miR-124 and miR-23a Activity in NSC-
derived Neurons and Astroglia

Lentiviral vectors (LV) expressing a reporter gene regulated by

perfectly matched miRNA target sequences (miRT) can be

Figure 1. Modulation of miRNA expression in NSCs during differentiation. (A) Top ranked miRNAs from genome-wide expression profiling
showing $2 fold-change in expression in progenitors and differentiated cells (7 and 10 days in vitro) when compared to stem/precursors. (B) Relative
abundance of miRNAs in stem/precursors. Expression levels are normalized on miR-9 and plotted as 2

ˆ2DCt values, according to qRT-PCR expression
data. Mean 6 SEM; n = 3–4 independent NSC lines in triplicate. (C) Expression levels of miR-23a in progenitors and differentiated cells relative to stem/
precursors. Mean 6 SEM; n = 4 independent NSC lines in triplicate. (D) Expression levels of miR-124 in progenitors and differentiated cells relative to
stem/precursors (NSCs) compared to levels in SH-SY5Y neuroblastoma cells before (undifferentiated) or after exposure to retinoic acid/BDNF
(differentiated). Data are mean 6 SEM; n = 3 independent experiments with 4 independent NSC lines. (E) Modulation of miR-125b expression during
NSC differentiation. Data are expressed as fold to stem/precursors. Mean 6 SEM, n = 4 independent experiments, n = 5 independent NSC lines. (F)
Relative expression levels of miR-106b, miR-93 and miR-25 in progenitors and differentiated cells as compared to stem/precursors. Mean 6 SEM; n = 2
independent experiments, n = 3 independent NSC lines. (G) Relative expression of mcm7 mRNA in progenitors and differentiated cells as compared to
stem/precursors. Mean 6 SEM; n = 3 independent experiments, n = 5 independent NSC lines. (E, F, G): One way analysis of variance followed by
Bonferroni’s posttest.*p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0067411.g001
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exploited to dynamically monitor miRNA activity [44]. When

miRNA expression reaches a threshold for activity in a cell, it

binds the miRT in the vector-derived mRNA (in this case, a GFP

reporter), efficiently inhibiting its expression [45], [21], [46]. In

cells in which the miRNA is not expressed or falls below the

activity threshold, GFP is proficiently expressed from the

ubiquitous PGK promoter and can be detected by flow cytometry

or direct immunofluorescence (IF) analysis. To reliably detect a

negative GFP signal in cells with miRNA activity, we used a

bidirectional (bd) LV.miRT co-expressing from the same PGK

promoter a second fluorescence reporter (mCherry) not subjected

to miRNA regulation (Figure 2A). In some experiments, we used

monocystronic LV.miRT (Figure 2A), obtaining similar results.

Vectors without miRNA-specific target sequences were used as

controls (LV.CTRL, bdLV.CTRL; Figure 2A).

We transduced stem/precursors using bdLV.miRT23a,

bdLV.miRT124 and bdLV.CTRL according to previously opti-

mized protocols [28], [47]. Transduced cells were then expanded

in culture as neurospheres for at least 3 passages before analysis.

bdLV-transduced NSCs displayed between 1.3 and 7 vector copies

integrated per genome (VCN), resulting in <70–90% of mCherry-

immunoreactive (IR) cells (Figure 2B). Notably, transduction did

not alter NSC long-term expansion, clonogenic efficiency and

multipotency (Figure S1).

We then measured GFP and mCherry expression by FACS

analysis in bdLV.CTRL- and bdLV.miRT-transduced cells

(Figure 2C). The normalized suppression of GFP protein in

bdLV.miRT-transduced cells correlates directly with the activity

of endogenous miRNAs and was calculated as described

previously [21], [48]. Stem/precursors transduced with

bdLV.miRT124 and bdLV.CTRL expressed comparable levels

of GFP after normalization to mCherry protein (fold repres-

sion = 1), thus indicating absence of miR-124 activity in this cell

population. Interestingly, the 2-fold repression of GFP expression

in bdLV.miRT23a-transduced stem/precursor cells suggested low

basal activity of this miRNA in this population (Figure 2D).

Figure 2. miR-124 and miR-23a activity in NSCs monitored using LV.mirT. (A) Cartoon showing monocystronic (LVs) and bidirectional
(bdLV) miRNA-regulated (LV.miRT, bdLV.miRT) and control vectors (LV.CTRL, bdLV.CTRL). (B) Efficacy of transduction in NSCs measured as VCN
(assessed by taqman qPCR) and as percentage of mCherry+ cells (assessed by indirect immunofluorescence). Data are mean 6 SEM, n = 1–3
independent experiments. (C) Representative dot plots of untransduced, bdLV.CTRL- and bdLV.miRT-transduced stem/precursors (bdLV.miRT23a and
bdLV.miRT124) gated on physical parameters. GFP/mCherry expression is shown, the percentages in the plots indicate transduction levels. MFI, mean
fluorescence intensity of GFP signal. (D) miRNA activity is expressed as fold repression (FR) of GFP expression measured in bdLV.miRT124- and
bdLV.miRT23a-transduced cells as compared to bdLV.CTRL-transduced cells. FR was calculated as previously described [26]: FR = TGRmiRT/TGRCTRL;
TGR (transgene ratio) = MFIGFP/MFImCherry. Data are the mean 6 SEM; n = 3 independent experiments.
doi:10.1371/journal.pone.0067411.g002
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Cell counts following IF confocal analysis performed on the

mCherry-expressing population in differentiated cultures (10d)

indicated a miRT-mediated cell-type specific GFP repression in

the NSC-derived differentiated progeny (Figure 3). In

bdLV.CTRL-transduced cultures we detected 99.8%60.12%

(mean 6 SEM; n = 5) of mCherry+GFP+ cells within the neuronal

(btubIII, Map2) and glial (Nestin, GFAP) populations, indicating

transgene co-expression (Figure 3A). Robust downregulation of

GFP expression in neurons derived from bdLV.miRT124-

transduced NSCs (Figure 3B, C), and in glial cells derived from

bdLV.miRT23a-transduced NSCs (Figure 3D, E) confirmed the

upregulation of miR-124 and miR-23a during neuronal and glial

differentiation, respectively.

Our results obtained using known neuronal- and glial-specific

miRNAs validated the bdLV.miRT platform as a sensitive and

specific tool to monitor endogenous miRNA activity at the single-

cell level in low-represented subset of cells within mixed neuronal/

glial cultures. Thus, we reasoned that this platform could be a

powerful tool to monitor the activity of miRNAs that were

shortlisted based on enriched expression in NSCs and modulation

of expression during NSC differentiation.

Cell-type Specific Modulation of miR-125b and miR-93
Activity during NSC Differentiation

In order to define a lineage- and/or functional-specific

modulation of miR-93 and miR-125b activity in NSC-derived

neuronal and glial progeny, we exploited the sensitivity and

specificity of the bdLV.miRT platform in a time-course differen-

tiation analysis.

We generated bdLV.miRT93 and bdLV.miRT125b and used

them to transduce NSCs. BdLV.miRT-transduced NSC-derived

populations were analyzed by FACS and by IF, using the same

experimental protocol described for miR-23a and miR-124.

FACS analysis (Figure 4A) showed a 10-fold repression of GFP

expression in bdLV.miRT125b-transduced stem/precursors and

progenitors, which increased up to 20 fold after removal of FGF2

(Figure 4A, B), indicating upregulation of miR-125b activity at

the beginning of lineage commitment that persisted in the

differentiated populations. Interestingly, a 30–40-fold repression

of GFP was measured in bdLV.miRT93-transduced stem/precursors

and progenitors, indicating robust activity of miR-93, which

significantly decreased upon cell differentiation (Figure 4A, B).

FACS analysis of more differentiated neural cultures is challenging

due to the difficulties in generating viable single cell suspensions.

We therefore performed IF analysis followed by quantitative

confocal microscopy to assess mCherry and GFP expression. The

number of GFP+ cells (direct IF) was expressed as percentage on

total mCherry+ cells (indirect IF). BdLV.CTRL-transduced cells

co-expressed GFP and mCherry at all differentiation time points

(Figure 4C; 10d), while bdLV.miR125b- (Figure 4D) and

bdLV.miR93-transduced NSCs (Figure 4E) showed a significant

and specific modulation of GFP expression during differentiation.

The presence of 80–90% of GFP-expressing cells in

bdLV.miRT125b-transduced stem/precursor cells and progeni-

tors might appear counterintuitive when considering the high

basal levels of miR-125b expression (see Figure 1B) and the 10-

fold repression of GFP expression (Figure 4B). Given the different

sensitivity of direct IF as compared to FACS analysis in setting a

threshold for GFP signal and in quantifying small variations of

GFP expression, it is possible that the proportion of GFP+ cells was

slightly overestimated in IF analysis.

We next investigated the modulation of endogenous miR-93

and miR-125b in NSC-derived cellular subpopulations. In

bdLV.CTRL-transduced cultures, NSCs and their differentiated

progeny expressed bright GFP (97.6961.31% mCherry+GFP+

cells; mean 6 SEM; n = 31 coverslips, 6 independent experiments)

(Figure 5A). In bdLV.miRT125b-transduced stem/precursors and

progenitors, more than 80% of nestin+ cells (which represent .80%

of the total cell population; see Figure S1), co-express GFP and

mCherry. Detectable GFP signal was still observed in <50% of

nestin+ cells in differentiated cultures, which likely represent the

persistent subpopulation of immature astroglial cells previously

described in murine NSC-derived cultures [27]. Interestingly, GFP

expression was low/absent in the majority of differentiated GFAP+

astrocytes, which represent 50–70% of the total cell population

after 1 week in differentiating conditions. Altogether these results

indicate upregulation of miR-125b at the time of lineage

commitment and further increase of its activity as astroglial

maturation progressed. Activity of miR-125b was low in both

immature and mature NSC-derived neuronal populations in vitro

(Figure 5B, C).

Differently from what observed in bdLV.miRT125b-transduced

cultures we found persistently high activity of miR-93 in

undifferentiated stem/precursors and in immature astroglial cells

(nestin+) in differentiated cultures (Figure 5D, E). Expression of GFP

in ,50% of btubIII+ and ,90% of NeuN+ (Figure 5D) suggested

progressive decrease of endogenous miR-93 activity in NSC-

derived neurons.

The expression of the proliferation marker Ki67 was detected in

33.4262.24% and 23.7463.10% (% on nuclei) of stem/precursors

and progenitors, respectively (mean 6 SEM; n = 13), with no

differences between untransduced and LV-transduced cultures

(these experiments were performed using monocystronic

LV.CTRL and LV.miRT; see Figure 2A). Expression of nestin

by the vast majority (.90%) of Ki67+ cells indicated their

immature phenotype (Figure S2). Interestingly, GFP expression

was significantly downregulated in Ki67+nestin+ cells but not in

Ki672nestin+ cells, in both LV.miRT125b- and LV.miRT93-

transduced stem/precursors (Figure S2) and progenitors (not shown)

when compared to LV.CTRL-transduced matched populations,

strongly suggesting a positive association between miR-125b and

miR-93 activity and proliferation of immature neural cells.

These results indicate that miR-93 and miR-125b are highly

active in proliferating neural stem/precursor cells and committed

progenitors, displaying a distinct time- and cell-type-pattern of

modulation of both expression and activity during cell differen-

tiation in vitro.

Modulation of Endogenous miRNAs in Brain Tissues
In order to assess whether the modulation of miRNA activity

detected in vitro using the sensor vector platform could be

reproduced in vivo, we performed IF analysis on brain tissues after

injection of LV.CTRL, LV.miRT124, LV.miRT23a (monocy-

stronic LVs), bdLV.miRT125b and bdLV.miRT93 in the striatum

of adult mice (Figure 6).

The cell type composition of the GFP+ cell population in

LV.CTRL-injected striatal tissue closely resembled that observed

in the same brain region of UT mice (Figure 6A–C). In the

striatum of mice injected with LV.miRT124 (Figure 6B, D) and

LV.miRT23a (Figure 6B, E), the expression of GFP was

downregulated in .90% of NeuN+ neurons or GFAP+ astrocytes,

respectively, in strict agreement with the lineage specificity of these

miRNAs highlighted in NSC cultures.

Faint GFP signal characterized bdLV.miRT125b-injected

striatal parenchyma, indicating high miR-125b activity in this

region. Indeed, GFP expression was almost undetectable in both

neurons and astrocytes (Figure 6F, G), pointing to high activity of

this miRNA in both cell types in vivo. Analysis of bdLV.miRT93-
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Figure 3. Activity of miR-124 and miR-23a in NSC-derived neurons and astrocytes. Qualitative and quantitative GFP expression in neurons
(btubIII, Map2; blue) and astroglial cells (GFAP, nestin; blue) in bdLV.CTRL-, bdLV.miRT124- and bdLV.miRT23a-transduced NSC-derived differentiated
cells (10 days in vitro). (A) Transduced cells (red, anti-mCherry antibody) in bdLV.CTRL-transduced cultures express bright GFP (green; direct
fluorescence). (B–E) A significant decrease of GFP expression is observed in bdLV.miRT124-transduced neurons (btubIII, MAP2) (B, C) and in
bdLV.miRT23a-transduced astrocytes (GFAP) and immature glial cells (nestin) (D, E). Arrowheads indicate GFP+marker+ (miR2/low) cells, arrows
indicate GFP2marker+(miR+/high) cells. Data are the mean 6 SEM; n = 3 experiments, 1–3 coverlips/antigen/experiment. Data for each marker in
bdLV.miRT-transduced cells were compared to their counterpart in bdLV.CTRL-transduced cells using One-way analysis of variance followed by
Bonferroni’s posttest. * p,0.05, *** p,0.001. Scale bars, 50 mm.
doi:10.1371/journal.pone.0067411.g003
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Figure 4. Modulation of miR-125b and miR-93 activity during NSC differentiation. (A) Representative GFP/mCherry expression in stem/
precursors transduced with bdLV.miRT93 or bdLV.miRT125b (left), and their differentiated progeny (right). Percentages indicate GFP+ cells. MFI, mean
fluorescence intensity of GFP signal. (B) Mean GFP fold repression (FR) measured in bdLV.miRT125b- and bdLV.miRT93-transduced cells as compared
to bdLV.CTRL-transduced cells (mean 6SEM; n = 2 independent experiments). Calculations were done as in Figure 2D. (C) Co-expression of GFP and
mCherry in bdLV.CTRL-transduced cells. Red, anti-mCherry antibody; green, GFP direct fluorescence. (D) Downregulation of GFP expression indicates
increased activity of miR-125b at late stages of NSC differentiation in bdLV.miRT125b-transduced cells. (E) Faint GFP expression in bdLV.miRT93-
transduced NSC cultures indicates robust activity of miR-93 in stem/precursor cells that is maintained in <50% of cells in progenitors and
differentiated cells. Prec, stem/precursors; Prog, progenitors; Diff, differentiated cells; d, days in vitro. Data are expressed as percentage of GFP+ cells on
transduced cells (mCherry+). Gray bars represent percentages in bdLV.CTRL-transduced cells. Data are the mean6SEM; n = 2 experiments, 3–5
coverlips/experiment. One-way analysis of variance followed by Bonferroni’s posttest. * p,0.05, *** p,0.001 versus bdLV.CTRL; 1 p,0.05 versus
stem/precursors.
doi:10.1371/journal.pone.0067411.g004

miRNAs in Somatic Neural Stem Cells

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e67411



Figure 5. Lineage-specific modulation of miR-125b and miR-93 activity during NSC differentiation. (A) Representative confocal images
of bdLV.CTRL-transduced NSC cultures (mCherry+; red, anti-mCherry antibody) showing bright GFP expression (green; direct fluorescence) in neurons
(btubIII, blue) and astroglial cells (nestin, blue). (B,C) Quantification and representative images of miR-125b activity in glial and neuronal
subpopulations in bdLV.miRT125b-transduced NSC cultures. (D,E) Quantification and representative images of miR-93 activity in the glial and
neuronal subpopulations in bdLV.miRT93-transduced NSC cultures. Data are the mean 6SEM; n = 2 experiments, 2–5 coverlips/antigen/experiment.
Prec, stem/precursors; Prog, progenitors; Diff, differentiated cells; d, days in vitro. Arrowheads indicate GFP+marker+ (miR2/low) cells; arrows indicate
GFP2marker+ (miR+/high) cells. Scale bars: 50 mm. Data were analyzed by one-way analysis of variance followed by Bonferroni’s posttest. *, ,̂ 1 p,0.01
versus bdLV.CTRL-transduced GFAP+ cells, nestin+ and btubIII+ cells, respectively.
doi:10.1371/journal.pone.0067411.g005
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injected striatal tissue indicated robust miR-93 activity in GFAP+

astrocytes (Figure 6H, I), further confirming in vitro data obtained

for this cell population.

These data indicate good correlation between data obtained in

(bd)LV.miRT-transduced NSC-derived cultures and brain tissue,

in particular for miR-124 and miR-23a, whose activity is enriched

Figure 6. Activity of miR-124, miR-23a, miR-125b and miR-93a in striatal cell types. (A) Cell type composition (NeuN, neurons; GFAP,
astrocytes) quantified by confocal IF analysis in striatal tissues of PND40 untransduced (UT) mice. (B) Quantitative analysis and representative
confocal images of GFP expression (green, direct fluorescence) and immunoreactivity for NeuN (neurons, red) and GFAP (astrocytes, red) in brain
tissue sections of PND40 mice after neonatal striatal injection of LV.CTRL (C), LV.miRT124 (D), LV.miRT23a (E). Nuclei are counterstained with TO-PRO-
3 (blue). CC, corpus callosum; CPu, Caudate Putamen; ctx, cortex. Scale bars: 100 mm (C–E). Data are the mean 6 SEM; n = 3 animals per experimental
group, 2–4 sections/animal. Data were analyzed by one-way analysis of variance followed by Bonferroni’s posttest. *** p,0.001 (NeuN), ˆ̂ p,0.01
(GFAP) versus NeuN and GFAP values of LV.CTRL-injected mice. (F, G) Quantification and representative images of miR-125b activity after striatal
injection of bdLV.miRT125b. Grey bars indicate the percentages of GFP+mCherry+ cells in bdLV.CTRL-injected mice. (H, I) Quantification and
representative images of miR-93 activity after striatal injection of bdLV.miRT93. Arrowheads indicate GFP+ (miR2/low) cells; arrows indicate GFP2

(miR+/high) cells. Data are the mean 6 SEM; n = 3 animals per experimental group, 2–4 sections/animal. Data were analyzed by one-way analysis of
variance followed by Bonferroni’s posttest. **p,0.01, ***p,0.001 versus bdLV.CTRL. Scale bars: 50 mm (G, I).
doi:10.1371/journal.pone.0067411.g006
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in mature neurons and astrocytes, the most represented cell types

in the adult striatal parenchyma.

Modulation of miR-125b and miR-93 in the SVZ
Neurogenic Niche

The cell composition and organization of the adult non-

neurogenic brain tissue does not accurately reproduce the dynamic

model represented by NSC compartments. The use of NSC

cultures allowed us describing the modulation of miR-125b and

miR-93 activity in SVZ-derived NSC populations. However,

caution is necessary when extrapolating in vitro results to the

physiological process of post-natal neurogenesis in vivo. Thus, we

finally sought to confirm our findings by directly assessing miRNA

activity in the SVZ neurogenic niche, the largest stem cell

compartment in the mammalian post-natal brain [49], [50].

We injected bdLV.miRT93, bdLV.miRT125b and the mono-

cystronic LV.CTRL into the lateral ventricles of PND2 mice. This

experimental system results in efficient labelling of all the SVZ cell

types, including the quiescent primary precursors (B cells; nestin+,

GFAP+), the transient amplifying progenitors (C cells) and their

neuronal progeny (neuroblasts, A cells; btubIII+), and the SVZ

astrocytes (GFAP+) [15]. Transgene-labelled neuroblasts will then

migrate via the rostral migratory stream (RMS) to the olfactory

bulb (OB), where they integrate as newly-generated post-mitotic

neurons around two weeks after (bd)LV-injection.

We analyzed animals 40 days after injection and found

transduced cells (identified by GFP and mCherry expression in

LV.CTRL- and bdLV.miRT-injected mice, respectively) in the

SVZ, all along the migratory pathway, and in the OB layers

(Figure 7A, B). The relative proportions of transduced nestin+,

GFAP+ and btubIII+ cells in the SVZ were similar in all the

treatment groups (Figure 7C). However, the robust downregu-

lation of GFP expression in all SVZ cell types of

bdLV.miRT125b- and bdLV.miRT93-injected mice when com-

pared to LV.CTRL-injected mice confirmed high expression of

both miRNAs in the endogenous stem/progenitor cell population

from which we derived NSC-cultures (Figure 7D, E). We next

analyzed the migration of transduced neuroblasts and their

differentiation and positioning in the OB. We found a similar

distribution of transgene-labelled cells in mice injected with

LV.CTRL (GFP+ cells) and bdLV.miRT (mCherry+ cells) in the

different OB layers (Figure 7F). In agreement with previous

reports [51], [52], we found the majority of newly born-cells in the

granule cell layer (GCL; Figure 7F). Of note, 60–80% of

mCherry+ neuroblasts in the deeper OB layers (Me and GCL)

strongly dowregulated GFP in bdLV.miRT93- and

bdLV.miRT125b- injected mice, indicating high activity of both

miRNAs in young neuroblasts during tangential migration and at

the beginning of radial migration in the OB (Figure 7G, H).

Activity of miR-93 decreased concomitantly to radial migration

and differentiation of newly born neurons in the more external OB

layers (Figure 7G, H), according to the low activity of this

miRNA found in mature neurons (see Figure 5 and Figure 6).

On the contrary, miR-125b activity was maintained in a variable

but significant proportion (30–70%) of neurons in all the OB layers

(Figure 7G, H), similarly to what observed in bdLV.miRT125b-

transduced striatal neurons (see Figure 6).

Discussion

Several miRNAs have roles in NSC proliferation or in specific

stages of either neuronal or glial differentiation/maturation [53].

However, the functional significance of many others remains to be

elucidated. In this study we demonstrated the sensitivity and

specificity of (bd)LV sensor vectors in reporting the activity of

endogenous miRNAs at single cell resolution, both in vitro and in

the complex tissue architecture of the CNS. Using this platform we

described for the first time a cell type- and differentiation stage-

specific modulation of miR-93 and miR-125b in NSC cultures and

in the SVZ neurogenic niche, suggesting a role of these miRNAs in

regulating NSC function.

By using (bd)LV sensor vectors we validated and extended

previous results on the neuronal-specific miR-124 and provided

new data on the activity of the astroglial-specific miR-23a. Our

analysis on bdLV.miRT124-transduced NSC cultures confirmed

previous data obtained using a transgenic miR-124 reporter mouse

[15], demonstrating at the single cell level that SVZ-derived

primary precursors lack detectable miR-124 activity, which is then

upregulated in concomitance with neuronal commitment and in

mature neurons. The incomplete down-regulation of GFP signal

observed in the Map2+ cell population is likely explained by

incomplete neuronal maturation in NSC-derived cultures. Simi-

larly, the presence of heterogeneous glial cell populations in NSC-

derived progeny might explain the variable pattern of miR-23a

activity. In support of this hypothesis, the lineage-specific

segregation of miR-124 and miR-23a activity was clearly

highlighted in vivo, where .90% of striatal neurons and .95%

of parenchymal astrocytes downregulated GFP following direct

injection of LV.miRT124 and LV.miRT23a, respectively, con-

firming that the incorporation of target sequences for these

miRNAs effectively abolished transgene expression in neurons and

glial cells post-transcriptionally [22].

Genome-wide miRNA profiling on NSC cultures allowed us to

shortlist miR-125b and miR-93 as candidates of potential interest

in NSC biology. These miRNAs have been implicated in the

control of apoptosis, proliferation and differentiation, in physio-

logical conditions and in cancer [54], but their possible role in

NSC function is poorly described. We found high basal expression

levels of both miRNAs in stem/precursors and a good correlation

between expression levels and activity during NSC differentiation

in culture as well as during physiological neurogenesis in vivo.

Importantly, the sensor approach establishes that baseline levels of

these two miRNAs in NSCs are biologically meaningful and

provide a high level of regulatory capacity, a conclusion which

cannot be drawn from relative differences in miRNA expression

levels detected by high throughput profiling techniques. That is

because miRNA concentration must reach a threshold level in

order become active, and this threshold is miRNA specific and not

readily predictable [21], [45], [46].

The pattern of expression and activity of miR-125b in NSC

cultures and in vivo suggested that this miRNA might regulate the

transition between stem cells and committed progenitors. In

agreement with reports in which upregulation of miR-125b has

been associated with astrogliosis and glial cell proliferation in

culture [55], we found upregulation of miR-125b activity in the

astroglial compartment and in proliferating nestin+ cells. Interest-

ingly, miR-125b activity in the SVZ niche was present not only in

cells expressing nestin and GFAP, markers that identify primary

progenitors [56], but also in btubIII+ neuroblasts, which are

actively proliferating in this region. We exploited neonatal

intraventricular injection of bdLV.miRT to label the whole SVZ

neurogenic niche, showing that miR-125b is active in a consistent

fraction of newly-generated neurons in the different OB layers.

Our data do not allow us to functionally distinguish the

subpopulations of neurons based on miR-125b activity. SVZ

neurogenesis is a continuous, asynchronous process producing

thousands of new neurons per day. Thus, the downregulation of

miR-125b activity might be dependent on the position of
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neuroblasts along the pathway and/or on the exit from the cell

cycle. A more detailed study using complementary systems, i.e.

transgenic reporter mice [15], could help addressing this issue.

The miR-17–92 cluster and the paralogous miR-106b-25 are

emerging as key modulators of TGFb signaling in multiple tumor

types [57], [58]. Genetic ablation of these miRNAs reveals their

physiologic role in the control of liver and CNS apoptosis [41],

suggesting that oncogenic miRNAs could have physiological

functions in somatic (stem) cells. Also, these clusters are involved

in the regulation of proliferation and cell-fate decision of neural

precursors in the developing neocortex [59], of self-renewal and

proliferation of embryonic stem (ES) cells [60], [61], and in

somatic cell reprogramming [62], [63]. Our results indicate that

the basal expression of miR-93 in stem/precursors and progenitors is

lower when compared to miR-125b, but its activity is up to 4-fold

higher, as assessed by the high fold-repression of GFP expression

in bdLV.miRT93-transduced cells. This might be related to the

capacity of the other miRNAs in the cluster (which have similar

seed sequences) to bind the miR-93 target sequence, thus resulting

in an additive/synergic effect on miRNA activity [21], [46]. Both

miR-93 expression and activity decrease during lineage specifica-

tion and differentiation, and our expression data indicate that all

the miRNAs in the cluster are modulated similarly upon NSC

differentiation. These results are in agreement with a previous

study [64] but seem inconsistent with an earlier study [42]. This

apparent discrepancy is possibly due to the different method used

to isolate and culture neural stem/progenitor cells as well as to the

shorter differentiation protocol used by these authors when

compared to our study.

The high miR-93 activity that we observed in GFAP+ cells in

the SVZ niche, in NSC-cultures and in striatal tissue suggests a

prominent role of miR-93 in glial cells, which include primary

precursors (stem cells) and non-neurogenic parenchymal astro-

cytes. On the other hand, the high activity of miR-93 in SVZ

neuroblasts and in Ki67+nestin+ cells in NSC cultures strongly

points to the association between miR-93 and the proliferative

state (as previously suggested for miR-25) [42], possibly linked to

the capacity of immature progenitors to reactivate proliferation

and acquire stem-like functional attributes. This ability has been

described in cultured SVZ-derived transit amplifying progenitors

[65], and it is a distinctive feature of astrocytes during brain

development, in adult neurogenic niches, during reactive neuro-

genesis after brain injury or disease and also during brain

tumorigenesis [66], [67], [68]. Importantly, all our data indicate

a strong downregulation of miR-93 activity in mature neurons,

thus underlying an important difference with respect to miR-125b.

Conclusions
The (bd)LV.miRT platform is complementary to genome-wide

PCR-based techniques that are limited to measure expression

levels and that we used to shortlist miRNA candidates modulated

during NSC differentiation. In this way, we identified miR-125b

and miR-93 as abundantly expressed in SVZ neural stem/

progenitor cells, and extended our understanding on their

potential involvement in the regulation of NSC function. Gain-

and loss-of-function studies combined with accurate experimental

determination of true miRNA targets will clarify the role of these

miRNAs in neural stem/progenitor cell biology. Exploiting the

endogenous miRNA machinery can provide an alternative or a

complementary strategy to de-target the expression of vector-

coded transgenes in specific cell types, as recently demonstrated in

ex vivo-hematopoietic stem cell gene therapy approach for a

lysosomal storage disorder [26]. In this perspective, our work lays

the framework to regulate transgene expression within the CNS,

e.g. for specifically targeting the stem/progenitor cell population

residing in the neurogenic niches or the differentiated cell types

that are selectively affected in several neurodegenerative diseases.

Supporting Information

Figure S1 BdLV-transduced NSCs maintain self-renew-
al ability and multipotency. (A) Cartoon summarizing the

NSC culture system and the differentiation protocol. (B)
Representative images showing neuronal (Map2, red) and glial

progeny (GFAP, red) in NSC-derived populations during differ-

entiation. Nuclei counterstained with DAPI (blue). Scale bar,

100 mm. (C) Cell counts performed after immunofluorescence

analysis using lineage-specific markers showed similar cell type

composition of untransduced (UT) and bdLV-transduced NSCs

(bdLVs) at different stages of lineage commitment and differen-

tiation. Data are mean 6SEM, n = 5 independent experiment, 3

independent NSC cultures, 2–4 coverlips/experiment/antigen

(data from bdLV.CTRL- and bdLV.miRT-transduced cells were

pooled). (D) Clonogenic efficiency and (E) long-term proliferation

ability of NSCs are not altered following transduction with bdLVs.

Data in (D) are the mean 6 SEM, n = 5 independent experiments

(data from bdLV.CTRL- and bdLV.miRT-transduced cells were

pooled) Data in (E) are the mean 6 SEM, n = 3 NSC independent

cultures (data from bdLV.CTRL- and bdLV.miRT-transduced

cells were pooled). NSCs were analyzed starting from 6 passages

after transduction (total subculturing passages between 12 and 16).

(TIF)

Figure S2 Activity of miR-125b and miR-93 in prolifer-
ating precursors and progenitors. (A) Integrated LV

Figure 7. Modulation of miR-125b and miR-93 activity in the SVZ neurogenic niche. (A) Schematic of the neurogenic pathway in adult
mice. From the SVZ stem cell niche, newly generated neuroblasts migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB),
where they integrate as mature neurons. Red lines indicate the levels of the sections analyzed in this study. DG, dentate gyrus of the hippocampus.
(B) Representative confocal images of PND40 mice at the level of the SVZ, RMS, OB after injection of LV.CTRL at PND2. Note the distribution of GFP+

neurons in the different OB layers (form dorsal to ventral: GlL, glomerular layer; ExPl, external plexiform layer; IPL, internal plexiform layer; MiL, mitral
cell layer; GCL, granule cell layer; Me, medulla). CC, corpus callosum; CPu, Caudate Putamen; lv, lateral ventricle. Scale bars, 300 mm. (C) LV-marked cell
type composition quantified at PND40 in the SVZ of LV.CTRL and bdLV.miRT-injected mice. (D) Downregulation of GFP expression (direct
fluorescence) in the transduced (mCherry+) nestin+, GFAP+ or bTubIII+ cells in bdLV.miRT-injected mice when compared to LV.CTRL-injected mice. (E)
Representative confocal pictures of the SVZ of PND40 mice showing robust downregulation of GFP expression in transduced (mCherry+) nestin+ and
GFAP+ cells in LV.miRT125b and LV.miRT93-injected mice when compared to LV.CTRL-injected mice. Arrowheads indicate GFP+mCherry+marker+

(miR2/low) cells; arrows indicate GFP2 mCherry+marker+(miR+/high) cells. Scale bars, 300 mm (F) Distribution of transgene-labelled neurons in the
different OB layers (legend as in panel B). (G) Downregulation of GFP expression in the transgene-labelled neuronal population of bdLV.miRT-injected
mice indicates modulation of miR-125b and miR-93 activity in different OB layers. Data are the mean 6 SEM. We analyzed 2–3 OB sections/mice,
n = 2–4 mice/treatment group (300–3000 transduced cells). Each bdLV.miRT-treated group was compared to the LV.CTRL group by One-Way analysis
of variance followed by Dunnet’s Multiple comparison test, *p,0.05, ** p,0.01, *** p,0.001 vs LV.CTRL. (H) Representative confocal pictures
showing downregulation of GFP expression (direct fluorescence) in the transduced (mCherry+) neurons in the superficial (upper panel) and deeper
(lower panel) OB layer in bdLV.miRT-injected mice when compared to LV.CTRL-injected mice. Scale bars, 150 mm.
doi:10.1371/journal.pone.0067411.g007
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genome (vector copy number, VCN) measured by qPCR in

LV.CTRL-, LV.miRT125b- and LV.miRT93-transduced stem/

precursors. The percentage of GFP+ cells (assessed by indirect IF

analysis) was 80.5361.1 (mean 6 SEM; n = 4) in LV.CTRL-

transduced cells (index of transduction efficiency). LV.miRT-

transduced cells show VCN that are comparable or higher than

LV.CTRL-transduced cells, suggesting comparable or even higher

transduction efficiency. Data are expressed as mean 6 SEM, n = 2

independent NSC lines. (B) Quantitative analysis of GFP

expression in Ki67+nestin+ cells (on total Ki67+) and Ki672nestin+

cells (on total nestin+) in LV.CTRL-, LV.miRT125b- and

LV.miRT93-transduced stem/precursors. GFP2 cells in LV.CTRL-

transduced cultures represent untranduced cells. The GFP2 cell

population in LV.miRT-transduced stem/precursors is composed by

a small percentage of untransduced cells while in the remaining

cells GFP expression is low/absent due to the high activity of the

endogenous miRNA. The proportion of GFP+ cells is significantly

decreased in the nestin+Ki67+ cell population but not in the

nestin+Ki672 cell population as compared to LV.CTRL-trans-

duced cells, revealing high activity of miR-125b and miR-93 in

cycling precursors. Data are the mean 6 SEM; n = 2 experiments,

2 NSC lines/experiment. Data were analyzed by one-way analysis

of variance followed by Bonferroni’s posttest. *p,0.01 versus

LV.CTRL-transduced cells. (C) Representative images of

LV.CTRL-, LV.miRT125b- and LV.miRT93-transduced stem/

precursors showing GFP expression in Ki67+Nestin+ cells (arrows).

Arrowheads identify Ki67+Nestin+GFP2 cells. Scale bars, 100 mm.

(TIF)

Table S1 miRNA expression profile in NSCs and
differentiated progeny. In order to identify novel miRNA

candidates enriched and/or highly modulated in NSC-derived

populations along the differentiation stages, we performed a high-

throughput miRNA RT-qPCR in a time course differentiation

analysis considering stem/precursors, committed progenitors and differen-

tiated cells at two different stages (7d and 10d in vitro; see Figure

S1). A total of 535 mammalian miRNAs were interrogated.

Among them, 201 displayed detectable expression level (Ct #32).

We used the mean expression value in a given sample to normalize

high-throughput miRNA RT-qPCR data [30,58]. Levels of

miRNA expression are expressed as DCt.

(PDF)

Table S2 Heatmap of the most variable top-ranked
miRNAs. Heatmap showing the list of miRNAs that are

modulated along the differentiation process. Data are expressed

as DCt normalized on mean expression value. We assigned an

arbitrary color code referring to the relative abundance of each

miRNA. We reported miRNAs that displayed differential

expression (DDCt $1) in progenitors and/or differentiated cells as

compared to stem/precursors. #1 and #2 indicate two independent

NSC lines.

(PDF)

Methods S1

(DOCX)
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