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Abstract
Objective
To develop and prospectively evaluate a method of epileptic seizure detection combining heart
rate and movement.

Methods
In this multicenter, in-home, prospective, video-controlled cohort study, nocturnal seizures
were detected by heart rate (photoplethysmography) or movement (3-D accelerometry) in
persons with epilepsy and intellectual disability. Participants with >1 monthly major seizure
wore a bracelet (Nightwatch) on the upper arm at night for 2 to 3 months. Major seizures were
tonic-clonic, generalized tonic >30 seconds, hyperkinetic, or others, including clusters (>30
minutes) of short myoclonic/tonic seizures. The video of all events (alarms, nurse diaries) and
10% completely screened nights were reviewed to classify major (needing an alarm), minor
(needing no alarm), or no seizure. Reliability was tested by interobserver agreement. We
determined device performance, compared it to a bed sensor (Emfit), and evaluated the
caregivers’ user experience.

Results
Twenty-eight of 34 admitted participants (1,826 nights, 809 major seizures) completed the
study. Interobserver agreement (major/no major seizures) was 0.77 (95% confidence interval
[CI] 0.65–0.89). Median sensitivity per participant amounted to 86% (95% CI 77%–93%); the
false-negative alarm rate was 0.03 per night (95% CI 0.01–0.05); and the positive predictive
value was 49% (95%CI 33%–64%). Themultimodal sensor showed a better sensitivity than the
bed sensor (n = 14, median difference 58%, 95% CI 39%–80%, p < 0.001). The caregivers’
questionnaire (n = 33) indicated good sensor acceptance and usability according to 28 and 27
participants, respectively.

Conclusion
Combining heart rate andmovement resulted in reliable detection of a broad range of nocturnal
seizures.
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About 30% of people with epilepsy continue to have seizures
despite medication and are at high risk for sudden unexpected
death in epilepsy (SUDEP).1 In particular, nocturnal motor
seizures may be dangerous2,3 and are often unwitnessed.

Automated seizure detection could improve quality of care,
potentially prevent SUDEP,4 and provide an objective mea-
surement of nocturnal seizure frequency.5

Heart rate (HR) and accelerometry (ACC) are more ac-
ceptable for long-term use than EEG. Most detection systems
have studied motor activity with ACC or piezoelectric devices
during tonic-clonic (TC) seizures in epilepsy monitoring
units with sensitivities of ≈90% and false alarm rates ranging
from 1 to 10 per 24 hours.6–8 Convincing field trials are still
lacking9 and have so far failed to detect a broader range of
seizure types to which caregivers would like to be alerted.

Our consortium performed a number of studies10–13 dem-
onstrating the feasibility of combined HR and ACC detection.
LivAssured BV (Leiden, the Netherlands) developed a new
combined sensor, a bracelet (Nightwatch), worn around the
upper arm and measuring HR (by plethysmography) and
movement (3-dimensional ACC). We prospectively tested
this sensor in a residential setting and compared it to the
current standard, a bed sensor. We chose this population
because of the high number of TC seizures (hence the in-
creased SUDEP risk); because of the diversity of seizure
patterns that can cause complications, including status epi-
lepticus; and because the widely used listening devices are
insufficient.14,15 Caregivers contributed to the study through
the value-sensitive design methodology.16

Methods
Study design
We conducted a multicenter, prospective, cohort study.

Standard protocol approvals, registrations,
and patient consents
The trial (Dutch Trial Registry 4115) was approved by the
Medical Research Ethics Committee of the University Med-
ical Center Utrecht in the Netherlands.

Participants
The study population consisted of adults with an intellectual
disability (ID) who were included if they had a history of >1
major nocturnal seizure per month and resided in a long-term
facility of 1 of the participating epilepsy centers between

September 1, 2015, and January 9, 2017. Persons with
a movement disorder, pacemaker, or skin pigmentation were
excluded (the last because we had no proof that the green
light–-based plethysmography would work on pigmented
skin). All participants or their legal guardians provided written
informed consent.

Outcome

Primary
The primary outcome was performance in terms of sensitivity,
positive predictive value (PPV), false-negative alarm rate (FNAR),
and false-positive alarm rate (FPAR) of the multimodal sensor to
detect major seizures.

Secondary
The secondary outcomes were a comparison with the bed sen-
sor, the quality of the signal data, factors influencing algorithm
performance, and user experience of the caregivers.

Study phases and assessments
In the first (training) phase of the study, 20 participants were
monitored for ≈3 months to test the multimodal sensor (skin
contact, skin reactions, ease of use, quality of signals) and to
improve the hardware and the detection algorithm. In the
second phase, the multimodal sensor generated alarms.
Fourteen of these participants entered the second phase.
Fourteen new participants (group 2) were added and, after
a period of 1 to 2 weeks to become accustomed to the
bracelet, were monitored for 2 to 3 months.

The multimodal sensor was compared with the bed sensor in
14 participants who already used the bed sensor before the
start of the trial.

Sensor measurements
The bracelet (figure 1) was fixed around the upper arm on the
side where the seizures were known to start. The multimodal
sensor settings could not be externally modified. Amplitude
and duration of the piezoelectric Emfit bed sensor were op-
timized according to the manual before the start of the trial. It
detects the clonic part of a motor seizure by producing an
alarm after a rhythmic movement of 2 to 3 Hz during 10 to16
seconds.

Data and events collection
The HR and ACC signals and the online alarms of the mul-
timodal sensor were wirelessly transmitted to a base station
that was connected to a Macbook computer that also was
connected to an infrared-sensitive video camera. HR and
ACC signals were analyzed offline during phase 1 and online

Glossary
ACC = accelerometry;CI = confidence interval; FNAR = false negative alarm rate; FPAR = false-positive alarm rate;GT = long
generalized tonic;HK = hyperkinetic;HR = heart rate; ID = intellectual disability;OM = other major; PPV = positive predictive
value; SUDEP = sudden unexpected death in epilepsy; TC = tonic-clonic.
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during phase 2, and the video images of the events were
annotated with the Nightview program developed specifically
for this trial. Sleep and awake times and the nurses’ log were
entered into the Nightview system. The sleep/wake data were
used to set the boundaries for the video review of all logged
events and screening nights. A flowchart of the data acquisi-
tion process is shown in figure 3 available from Dryad (doi.
org/10.5061/dryad.553f4q3). Periods of poor signal quality
were excluded by the algorithm. Nights were included only if
any data were recorded.

Annotation process and
interobserver agreement
Video images of all reported events (from devices, nurses’
records, diaries, and notes) were annotated by the trial nurses.
In addition, in a random sample of 10% of all nights, the
complete video recordings were screened to estimate the
number of missed major seizures. We considered the fol-
lowing seizure types as clinically urgent and denoted them as
major: (1) TC, given the increased SUDEP risk17; (2) long
generalized tonic (GT; >30 seconds), because they may cause
respiratory distress; (3) focal hyperkinetic (HK), given the
high risk of injury; and (4) a rest category, other major (OM),
consisting of TC-like seizures with atypical semiology and
clusters of minor seizures lasting >30 minutes. All other
seizures were classified as minor and considered false pos-
itives.9 The trial nurses reviewed the video images in groups of
2. If they could not agree about the seizure type, they con-
sulted one of the authors (T.G., R.D.T., J.A.) for a final
decision.

Video was the gold standard to assess the seizure type. All 6
annotating trial nurses and 2 of the authors (T.G., J.A.)

participated in a blinded interobserver agreement evaluation
at the end of phase 1. For this test, 50 random events were
selected. The Fleiss κ18 between major or no major
(i.e., minor or no) seizures was the primary outcomemeasure;
secondary outcomes were whether there was a TC seizure and
the overall agreement.

Signal processing
We analyzed the performance, (sensitivity + PPV)/2, of the
algorithm in the preparation phase 1 with the 14 first partic-
ipants. The algorithm with the best performance was chosen
and fixed for use at the start of phase 2, the prospective trial.

The detection algorithm (see flowchart of the detection al-
gorithm in figure 4 available from Dryad, doi.org/10.5061/
dryad.553f4q3) is executed in the sensor.

In the algorithm, HR values are determined and updated
every second on the basis of a 5-minute average of past in-
dividual peak-to-peak intervals. Simultaneously, a signal
quality index is calculated for each HR value that is based on
the plethysmographic waveform. If the signal quality index is
adequate (>80%), seizure detection starts with a slope and
absolute value threshold (tachycardia), depending on the
prior baseline HR. If the signal quality index is not adequate,
HR is considered unreliable, and only the ACC algorithm is
used for detection. The ACC sensor module provides a mo-
tion and a position indicator every second. The motion is
a representation of the motor rhythmicity during a seizure and
is based on the number of zero crossings for each axis per
second. The position parameter indicates whether the patient
is lying, sitting, or standing. The function of the position
parameter is to prevent alarms when the patient is sitting or
standing.

An alarm is generated only if the position indicates lying and
the threshold for HR (slope or tachycardia) is exceeded or the
motion value stays above threshold for at least 15 seconds.

Performance
A video event was considered true positive when an alarm was
given within 3 minutes before or 5 minutes after the start of
a major seizure to allow detection of focal bilateral spreading
seizures or atypical seizure types. False-positive detections <3
minutes apart were scored as 1. Performance (sensitivity,
PPV, FNAR, and FPAR) was calculated per patient and for
each sensor (multimodal and bed sensor). FNAR and FPAR
were calculated per standardized night (i.e., number of false-
negative or false-positive alarms per 8 hours).

We assessed the relative contributions of HR (slope and
tachycardia) and ACC to the true and false detections because
many false-positive detections may occur when based on HR
alone.16

We assessed the percentage of good signal quality of the HR
(>80%) during all recorded nights.

Figure 1 Multimodal sensor

The Nightwatch bracelet contains a photoplethysmographic heart rate mod-
ule and a 3-dimensional accelerometer. The position on the upper arm was
preferred to the wrist because of better signal quality and fewer movement
artifacts. The signals or alarms are transmittedbyDECTultralowenergy (DECT
ULE) directly to the base, which may be connected to a local area network
for further transmission of the data and alarms. DECT-ULE is a wireless
communication standard with a greater range, reliability, and safety than
Bluetooth or Wifi. Figure published with permission from Livassured.
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Questionnaires
All caregivers (including those of dropouts) completed a ques-
tionnaire designed for this trial that was based on our value-
sensitive design study16 to evaluate the usability of the
multimodal sensor.

Study size and bias
The sample size of 30 adults was chosen to obtain acceptable
confidence limits of the sensitivity and was based on pre-
liminary results of the preceding EEG/video study.8 The re-
quired sample size for the comparison of the multimodal
sensor with the Emfit bed sensor was at least 37 seizures per
group, assuming a sensitivity of 80% for the multimodal
sensor and 60% for the bed sensor (β = 0.80, α = 0.05).
Because the participants should have >1 seizure per month
and the trial lasted 2 to 3 months, we expected >35 seizures.
Because of the unknown variability of the number of seizures
per participant, a more appropriate estimation of the required
number of participants was not possible.

Inclusion bias was avoided by using a low inclusion threshold
and only a few necessary exclusion criteria.

Data presentation and statistics
Sensitivity and PPV are used as performance measures mostly
at the population level and generally not at an individual level.
The strongly varying number of seizures per participant led us
to calculate detection rates as averages per person and then
use these figures for the descriptive group statistics. Rank-
order, nonparametric statistics were used to estimate the
median value of parameter values across the average of within-
patient parameters. The reported 95% confidence intervals
(CIs) for the median estimate were calculated from the pa-
rameter value that is associated with the closest rank to the
rounded n × 0.5 ± 0.98 × sqrt(n) rank value. This formula is
based on the assumption that the ranks of the patient samples
are normally distributed. This assumption is valid for n larger
than or on the order of n = 20. However, to remain consistent
across the presented results, we also used thismethod for n<20.
The 95% CIs for the interobserver agreement scores were calcu-
lated with AgreeStat2015.6 (Advanced Analytics LLC, Gaithers-
burg, MD). The data are presented as population tables. All
individual results, 2 boxplots, and 1 scatterplot are shown in
tables 6 through 17 and figures 3 through available from Dryad
(doi.org/10.5061/dryad.553f4q3).

The following group comparisons were made: multimodal vs
bed sensor and the results of the 10% screening vs the 90%
nonscreening nights. To test for inclusion bias, group 1 (who
already participated in phase 1) was compared to group 2
(those entering the trial in phase 2).

Participants who withdrew from the trial were not replaced.

Statistical tests were performed with the Mann-Whitney test
for unpaired data or the Wilcoxon signed-rank test for paired
data with α (2-sided) < 0.05.

Data availability
Individual deidentified participant data are available in the
supplemental material. Requests for reanalysis of the complete
database, which contains privacy-sensitive information, will have
to be approved by the Medical Research Ethics Committee of
the University Medical Center Utrecht and the members of the
Dutch Tele-Epilepsy Consortium. Data availability is limited
by exclusive rights for LivAssured with regard to commercial
applications.

Results
Participants and demography
During phase 1, 4 withdrawals and 2 exclusions occurred
(figure 2 and table 6 available from Dryad, doi.org/10.5061/
dryad.553f4q3).

Demographic and clinical characteristics of the participants
entering phase 2 are presented in table 1. All persons had
a generalized or combined generalized/focal type of epilepsy
with >1 seizure type.

Interobserver agreement
The agreement between major and other or no seizures was
substantial (κ = 0.77, 95% CI 0.65–0.89). We also found
a substantial agreement between TC and all other major
seizure types (GT, HK, OM) (κ = 0.62, 95% CI 0.43–0.80).
The overall agreement between all seizure types (TC, GT,
HK, OM, minor, no seizure) was 0.61 (95% CI 0.51–0.71).
All individual scores are shown in table 8 available from
Dryad (doi.org/10.5061/dryad.553f4q3).

Performance of the multimodal system
A graphic representation of the output of the multimodal
sensor is shown in figure 5 available from Dryad (doi.org/10.
5061/dryad.553f4q3). The performance of the multimodal
sensor is summarized in table 2.

The total number of observed nights was 1,826, during which
809 major seizures and 2,040 alarms occurred. Fifty-five of
these major seizures (7%) were difficult to classify. The mul-
timodal sensor had a good median sensitivity per participant
(86%) and a reasonable PPV value (49%).

One participant had nomajor seizures all. In 2 others who had
3 major seizures, the seizures were not detected. Three par-
ticipants had >1 false-positive alarm per night (6.3, 3.6, and
3.2), accounting for 75% of all false alarms (data available
from Dryad, table 9, doi.org/10.5061/dryad.553f4q3). Minor
seizures accounted for 26% (368 of 1,402) of the false-positive
alarms (data available from Dryad, table 15).

The median FNAR was low (0.03 per night). These false-
negative alarms were calculated over the reported events.
Comparison of this result with the data of the completely
screened nights (table 2) did not reveal any statistically sig-
nificant difference. The FPAR showed a high variability.
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Groups 1 and 2 showed a comparable performance (table 2)
despite the fact that the algorithm was fitted to group1 (me-
dian sensitivity 86% for both groups, PPV 43% for group 1
and 49% for group 2).

Comparison with the bed sensor
In the group who used the multimodal device and the bed
sensor (n = 14), the total number of observed nights was
1,097, and 508 major seizures were recorded. The multimodal
device generated 877 alarms; the bed sensor, 303. Ten of the
14 patients with both sensors belonged to group 1 with
a longer observation period (3 vs 2 months).

The sensitivity of the bed sensor (median 21%) was signifi-
cantly lower compared to the multimodal one (median 85%)
(table 3). In 2 participants, no PPV difference could be calcu-
lated because no alarms were emitted by either 1 or both sensors.
PPV tended to be higher for the bed sensor (median 82%) than
for the multimodal sensor (median 56%), but the difference did
not reach statistical significance (p = 0.90). The bed sensor
missedmore seizures than the multimodal sensor, with a median
FNAR of 0.28 per night vs 0.04 for the multimodal sensor.

Quality of the sensor data
A good signal quality was obtained in 94% of total recording
time for HR and up to 100% for ACC. Signal quality could be
diminished due to a loss of contact between the bracelet and the
skin or by contamination of the plethysmography signal with
movement artifacts. No complete nights were excluded because
of poor signal quality because a good signal quality of HR and
ACCwas required per protocol before the recording was started.

Factors influencing algorithm performance

HR or ACC detection
We analyzed how HR and ACC contributed to the perfor-
mance of the algorithm. The critical modality for the true-
positive detections was HR (median detection percentage

Table 1 Summary of the demographics

Demographic data (n = 28) No. Mean Range

Age, y 29.1 15–67

Sex

Female 10

Male 18

IQ level (impairment)

Mild 4

Moderate 11

Severe 13

Epilepsy type/syndrome

West/Lennox syndrome 5

Dravet syndrome 4

Other known etiology 13

Unknown etiology 6

Antiepileptic drugs, n 3.3 2–5

Vagus nerve stimulation 3

For individual results, see table 7 available from Dyad (doi.org/10.5061/
dryad.553f4q3).

Figure 2 Flowchart of the study

Flowchart according to the Consolidated Stand-
ards of Reporting Trials guidelines.
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92%, 95% CI 63%–96%), while ACC accounted for only 8%
(95% CI 0%–16%) of the detections. HR was always the
critical modality for the false-positive detections because the
ACC modality had no false-positive detections.

Seizure type
The distribution of the detected major seizure types for the
multimodal sensor was 48% for TC, 21% for GT, 24% for HK,
and 7% for OM. TC seizures were well detected by the
multimodal sensor (median detection rate 0.96). The other
seizure types were somewhat less well detected (median de-
tection rates between 0.73 and 0.89) (table 4).

Bed sensor
The bed sensor detected a minority of all major seizure types
(medians between 0.00 for OM and 0.30 for HK seizures),

including the TC type (0.14). We did not expect this because
the bed sensor records the length of rhythmic movements and
assumes TC seizure to be present if the length of this rhythmic
movement exceeds a programmable value between 10 and 16
seconds.

Outcomes of questionnaires
An assessment questionnaire was designed that addressed the
key aspects of the multimodal sensor that were identified
through a process of value-sensitive design.14 Thirty-three
respondents (30 nurses, 2 parents, and 1 not specified), for
the 28 participants in phase 2 and for 5 of the 6 excluded
participants, completed the questionnaire (table 5).

Caregivers indicated that the sensor implementation facilitated
a more timely response to urgent situations, while the burden of

Table 3 Comparison of the multimodal and the bed sensor

Multimodal sensor Bed sensor Multimodal 2 bed sensor

Median ±95% CI Median ±95% CI Median ±95% CI

Nights, n 79 48–99 79 48–99

Major seizures, n 21 12–72 21 12–72

Major seizures per night, n 0.34 0.12–0.71 0.34 0.12–0.71

Alarms, n 46 13–108 22 1–30

Sensitivity, % 85 71–93 21 6–32 58a 39–80

PPV, % 56 34–94 82 30–90 2 (52)–7

FNAR per night 0.04 0.00–0.17 0.28 0.08–0.54 (0.21)a (0.49)–(0.11)

FPAR per night 0.23 0.00–0.59 0.03 0.00–0.21 0.11 (0.11)–0.45

Abbreviations: CI = confidence interval; FNAR = false-negative alarm rate; FPAR = false-positive alarm rate; PPV = positive predictive value.
For a boxplot, a scatterplot of the differences, and individual data, see information available from Dyad (doi.org/10.5061/dryad.553f4q3).
a p < 0.05 (multimodal − bed sensor).

Table 2 Performance of the multimodal sensor

Total (n ≤ 28) Group 1 (n = 14) Group 2 (n = 14) 10% Screening (n ≤ 28)

Median ±95% CI Median ±95% CI Median ±95% CI Median ±95% CI

Nights, n 54 45–82 90 48–98 46a 33–64 6 5–9

Major seizures, n 14 10–26 30 13–72 11a 2–14 1.0 1–3

Major seizures per night, n 0.29 0.14–0.41 0.40 0.14–0.71 0.22 0.02–0.33 0.17 0.0–0.38

Alarms, n 30.5 14–44 53 22–109 14a 3–35 3 1–5

Sensitivity, % 86 77–93 86 64–94 86 80–92 100 50–100

PPV, % 49 33–64 53 10–94 49 29–56 60 0–83

FNAR per night 0.03 0.01–0.05 0.04 0.00–0.21 0.03 0.00–0.04 0.00 0.00–0.17

FPAR per night 0.25 0.04–0.35 0.26 0.03–0.72 0.18 0.02–0.35 0.04 0.00–0.33

Abbreviations: CI = confidence interval; FNAR = false-negative alarm rate; FPAR = false-positive alarm rate; PPV = positive predictive value.
Number of recorded nights and seizures and performance of themultimodal sensor are shown. For a boxplot and individual data, see information available
from Dyad (doi.org/10.5061/dryad.553f4q3).
a p < 0.05 (group 1 vs group 2).
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care remained unchanged. A considerable number of sensor
problems was reported. All of these were transient or have been
resolved. Skin irritation occurred during the preparatory phase of
the trial and was eliminated by removing the paint on the surface
of the sensor and by avoiding the bracelet being fixed too tightly.
Nonfitting of the bracelet was prevented by changing the texture
and attachment of the elastic band. Nonacceptance by the par-
ticipant occurred twice; it was temporary in one and led to
exclusion in another. The majority of caregivers (n = 20) ex-
perienced more freedom, but only a minority (10) thought the
participants had gained more autonomy.

In addition, respondents gave the user-friendliness of the
multimodal sensor a grade of 7.3 on a scale from 1 to 10 (1
being the lowest user-friendliness). With regard to privacy,
respondents graded the level of invasion of privacy as 4.2 on the
same scale (1 being the lowest level of invasion).

Discussion
This long-term prospective study demonstrates that it is
possible to reliably detect major motor seizures using a com-
bination of HR and ACC parameters. The multimodal sensor

Table 4 Detection rates of multimodal and bed sensor for each seizure type

Detection rate per seizure type TC GT HK MO

Multimodal sensor

No. 22 11 5 14

Median 0.96 0.89 0.73 0.84

295% CI 0.80 0.33 0.50 0.50

+95% CI 1.00 1.00 1.00 1.00

Bed sensor

No. 12 7 3 5

Median 0.14 0.17 0.30 0.00

295% CI 0.06 0.00 0.27 0.00

+95% CI 0.31 0.38 0.32 0.43

Abbreviations: CI = confidence interval; GT = long generalized tonic (>30 seconds); HK = hyperkinetic; OM = other major; TC = tonic-clonic.

Table 5 Assessment of key valued aspects of the multimodal sensor

Questionnaire for parents/caregivers

Aspect Item Yes, n No, n Other, n Not applicable/no answer, n

Care Helps caregiver provide better care 22 5 5 1

More timely care 18

Increased understanding of daytime behaviors 4

Helps relieve burden of caregiving 7 26 — —

Sensor Sensor is accepted by the patient 28 2 2 1

Problems with the sensor 13 8 12

Skin irritation 3

Armband does not fit 5

Poor connection or signal reception 5

Usability Sufficient technical support 27 1 5 —

Sufficient with installation, not for use 2

Sufficient for use, not with installation 3

Autonomy Offers more autonomy to people with epilepsy 10 13 — 10

Offers caregiver more freedom 20 11 — 2
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has a much better sensitivity than the bed sensor and a com-
parable PPV. It is well accepted, is easy to use, and provides
accurate measurements over time. The device can also be used
to monitor epilepsy treatment.

Conventional studies have been testing rhythmic movements
in epilepsy monitoring units where the majority of patients are
screened for epilepsy surgery. These patients usually have
focal seizures of temporal lobe origin that evolve into classic
TC seizures. The bed sensor6 and other systems based on
movement detection7 perform well under these circumstances,
but their performance deteriorates in the specific population of
this trial. This relatively low performance of the bed sensor is in
accordance with the results of the ACC part of our algorithm.
Accelerometric research11 and clinical experience indicate that
people with ID and epilepsy show more atypical seizure pat-
terns: different sequences of tonic and clonic phases may occur
in changing order, and status epilepticus may develop from
seizure types other than classic TC. This may explain the low
performance of the bed sensor in this population, although the
sensor had been selected before the trial as the best alternative.

Despite the low performance, bed sensors and other rhythmic
movement–based sensors remain useful: they may yield accu-
rate alarms if rhythmic movements last for 10 to 16 seconds or
longer and the sensitivity is adapted to avoid false positives.6 The
low performance of the bed sensor confirms the need to include
signal modalities other than ACC in seizure detection. Physio-
logically, complementary signal combinations are as follows:
HR or skin conductance (both expressions of autonomic
function), EMG (for tonic phases of seizures),7,10,19 and video20

or audio detection (based on specific sounds).14 We chose HR,
the fastest signal other than EEG2,21 that is considered an ade-
quate alternative to EEG.22 Measurements of HR in smart-
watches are less reliable because of the oval form of the wrist,
which may prevent optimal body contact. Under controlled
conditions, smartwatches record useful signals up to 88% of the
time,23 while our device showed good signal quality for 94%,
i.e., half the error rate (6% vs 12%). Results of the rhythmic
movement–based seizure detection at the wrist by smartwatches
are disappointing and in line with our results for the bed
sensor.24,25 Contrary to smartwatches, our device does not need
a smartphone interface. Its DECT technology provides a larger
wireless range (50 m) than Bluetooth (10 m). Respiratory
function (depressed postictal blood oxygen saturation) is also
used for seizure detection with fairly good results,26 but the
obtrusiveness and false-positive responses make it less useful for
long-term detection at home. The plethysmographic signal also
has the potential to detect breathing rate.27

We introduced the concept of major seizures as a representation
of clinical urgency of seizures.10 Major seizures are specified by
medical professionals as seizure semiology, which includes loss of
consciousness, falls, long duration, intense movements, re-
spiratory problems, cluster or status, salivation/vomiting, oxygen
drop, migraine, or visual problems.28 All 3 seizure types (TC,
GT,HK) and the less well-defined classOM are characterized by

>1 of these elements and were adequately detected by our device
as a result of the introduction of theHR signal. TheACCmodule
of the device detected aminority of the seizures compared to the
HR module. This is due to the high threshold imposed by the
requirement of 15-second continuous rhythmic movement,
causing seizures with a short clonic phase to be missed, but also
a PPV of 0%. A shorter duration will increase the detection rate
of the ACC module but also will introduce false alarms. Re-
garding the PPV of the multimodal device, we have to consider
different factors than for the bed sensor. The aspecific nature of
the HR response and the atypical evolution of motor seizures in
people with epilepsy and ID11 may lower the PPV for the
multimodal device, while the required long duration of the clonic
part of the seizures6 may result in a higher PPV for the bed
sensor. Together, these may explain why a slightly higher PPV
was found for the bed sensor, although this was not statistically
significant. The PPV results for group 1, in whom the algorithm
was developed, and group 2 were similar, suggesting that our
results are not liable to overfitting.

Although generic “1 size fits all” solutions are feasible,10

personalized algorithms need to be explored in future. ACC
and HR seem complementary: contrary to rhythmic move-
ments, the HR increase is not linked to 1 particular seizure
expression but is the result of the sympathetic response to
seizures. We did not systematically study the interactions
between the HR and ACC signals. HR increases may cause
false-positive detections in persons with high resting HRs or
strong excitability such as children.29 Our HR-related algo-
rithm might benefit from self-learning algorithms accounting
for physiologic arousals30 and varying baseline levels and
requires further study. Adding other signal modalities to the 2
used in this study may also help to improve our algorithms.19

The decision to consider minor seizures as false-positive
results was made to avoid too many alarms for the caregiver
and to limit the alarms to those requiring immediate care.
While these minor seizures could be valuable to improve the
reliability of the seizure counts, we currently have no algo-
rithm that can discriminate these events from nonepileptic
arousals or movements during sleep. In our study population,
focal seizures other than HK occurred relatively rarely.11

Thus, we cannot predict whether the HR and motor patterns
in these seizures will be detected. Novel algorithms might
benefit from analysis of HR variability to discriminate be-
tween epileptic and nonepileptic seizures31 or to use HR
variability as a marker of cardiac arousability.32 Daytime use of
detectors when the higher level of activity may cause more
false positives is also an important issue.

The multimodal sensor might be of help in preventing
SUDEP. A recent guideline of the American Association of
Neurology33 indicates that clinicians may use a remote lis-
tening device to reduce SUDEP risk in high-risk individuals
(Level C).34 Although comparative studies are lacking, com-
bining HR and ACC seems more effective for detecting major
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seizures because of the shortcomings of current audio
detection.14,15

Seizure diaries are an inaccurate, subjective method for
counting seizures.35 Our device may offer a more objective
method for nocturnal seizure counting not only to use in
clinical trials but also to measure the efficacy of individual
therapy. The multimodal sensor may provide data about
the urgency of seizures because we found indications that the
height and duration of the HR increase correlate with the
subjectively estimated urgency of clinical seizures.36

Our study has a number of limitations. First, we did not use
video-EEG as the gold standard. The decision to use video
alone was imposed by the long duration of the monitoring (≥3
months) and the residential use outside the hospital. The
substantial interobserver agreement confirms that this de-
cision was justified. Second, the exclusion of persons with
abnormal movements prevents extrapolation of the results of
this study to this group, consisting mainly of persons with
perinatal damage leading to choreatiformmovement patterns.
Third, because of the current intensity of the light-emitting
source, we could not reliably measure the light reflections in
people with dark-colored skin. This can be overcome by
adaptive light intensity. Fourth, the assessment of quality of
life is important for measuring the economic gain. In this
population, however, the standard tools for quality of life are
not adequate: the low intellectual level (moderate to severe
impairment) prevents adequate communication and is often
associated with immobility and other handicaps. The results
of the value-based scale (gain in care, freedom of movement
for the caregiver, and presumed autonomy for the user) were
counterbalanced by the reported mild interference with the
person’s privacy. These results, however, cannot be compared
with other studies because of the new methodology.16 Fifth,
interference with privacy needs to be explored further because
video verification may be used more often in the relatively
small number of users with many (false) alarms.
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