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A B S T R A C T

Reactive oxygen species (ROS) have been shown or at least suggested to play an essential role for cellular signaling as second messengers. NADPH oxidases represent
a source of controlled ROS formation. Accordingly, understanding the role of individual NADPH oxidases bears potential to interfere with intracellular signaling
cascades without disturbing the signaling itself. Many tools have been developed to study or inhibit the functions and roles of the NADPH oxidases. This short review
summarizes diseases, potentially associated with NADPH oxidases, genetically modified animals, and inhibitors.

Main

The family of NADPH oxidases consists of 7 members. Those are
Nox1 through 5 and Duox1 and 2. All NADPH oxidases are able to
transfer electrons across biological membranes. Those electrons are
provided by NADPH. While passing the membrane through the Nox
subunit, electrons are transferred onto molecular oxygen to generate
superoxide anions (•O2ˉ). •O2ˉ can be released unmodified or protonated
and reduced to form H2O2. Despite this, NADPH oxidases differ in their
mode of activity. Both together allow for a systematic classification of
the individual members of the family into three groups (Fig. 1).

The acutely activatable NADPH oxidases Nox1, Nox2, and Nox3 can
be pooled into group 1. The appropriate complex consists of the name-
giving Nox subunit and the smaller p22phox, which stabilizes the Nox
protein. Nox1-3 depend on the association of the membrane bound
subunits with cytosolic proteins. The interested reader is referred to
Ref. [1] for detailed information concerning the cytosolic subunits of
Nox1-3. Shortly: The cytosolic components are organizers (p47pox or
NoxO1) and activators (p67phox or NoxA1). The organizer proteins
p47phox or NoxO1, facilitate the assembling of the other cytosolic
components into the full NADPH oxidase complex. P47phox contains an
autoinhibitory region (AIR). Upon phosphorylation, this AIR gets in-
activated and p47phox translocates to the membrane and binds
p22phox. In contrast to p47phox, its homologue NoxO1 has no AIR and
shows constitutive activity, which can be modified by phosphorylation.
Accordingly, phosphorylation of the organizers facilitates acute cyto-
kine-induced ROS formation by Nox1-3. Importantly, although in
overexpressing systems the cytosolic subunits can substitute for each
other, this does not occur in vivo, as their expression is cell specific
[2,3]. Therefore, the absence of p47phox is not counterbalanced by an
elevated expression of NoxO1 and vice versa. In leucocytes, an addi-
tional subunit, p40phox, is needed for the full complex to be associated.

Additionally the non-NADPH oxidase specific G-protein Rac binds to
the NADPH oxidase complex in order to activate the formation of su-
peroxide radical anions (•O2̄) by the members of group 1.

The second group of NADPH oxidases consists of the Ca2+ activated
Nox5, DUOX1 and DUOX2. These NADPH oxidases are independent of
cytosolic factors but instead have EF-hands that facilitate the Ca2+

sensing. While Nox5 produces mainly •O2̄, DUOX1 and 2 produce both,
•O2̄, as well as H2O2 probably with the aid of their peroxidase domain
(POD). Both Duoxes require the maturation factors DuoxA1 and 2 for
their activity.

The sole member of the third group of NADPH oxidases is Nox4.
Like Nox1-3, Nox4 is stabilized by and associated with p22phox.
Despite from that Nox4 does not require any further cytosolic subunit
and therefore is constitutively active. Due to a special loop in its
structure Nox4 is capable to restrain single reduced •O2̄ and reduce it
further to H2O2 [4].

Over and above their different mode of action, NADPH oxidases also
have individual intracellular localization and tissue specific expression
patterns [5]. Expression and activity of NADPH oxidases are tightly
controlled which enables the individual members of the family to in-
terfere with numerous paths of signal transduction. Those include
oxidation of phosphatases or kinases [6,7]. According to their complex
role in regulation of cellular signaling, individual members of the fa-
mily have been assigned for a number of diverse diseases in humans.
Some of those are summarized in Table 1.

Table 1 shows basically two clusters of diseases associated with
NADPH oxidases: chronic granulomatous disease and thyroid hormone
production. This reflects the so far identified physiological role of the
parties thereto. Nox2 and its associates p47phox and p67phox are
needed for a proper fist line host defense, known as “the oxidative
burst”. Accordingly, CGD (chronic granulomatous disease), a disease
with inproper function or absence of one of the components of the Nox2
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Fig. 1. Scheme and classification of the members of the NADPH oxidase family.
NADPH oxidases can be classified into three groups according to their mode of activation. Nox1-3 are activatable via the assembly of cytosolic subunits and produce
•O2ˉ. Nox5 and the Duoxes can be activated by Ca2+ and produce •O2ˉ or H2O2. The single member of group three is Nox4, which produces H2O2 in a direct manner
independent from cytosolic subunits. Further explanations can be found in the text.
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complex, represents with frequent infections by fungi and bacteria [8].
Duox2s physiological function is to oxidize iodine for its incorporation
into the thyroid hormone. In case Duox2 or its maturation partner
DuoxA2 is not present, the formation of the hormone is reduced and all
kind of subsequent diseases phenotypes such as goiter and hypothyr-
oidism occur [9]. Besides those clear cases of a physiological function of
NADPH oxidases, that lead to a more or less defined and namable
disease, many functions of the members of the family are unclear. Ac-
cordingly, no diseases have been identified with are solely based on the
function or dysfunction of Nox1, Nox3, Nox5 or Duox1. Nevertheless,
they appear to play a role in prevention or as contributors to several
diseases, where their exact role often remains to be defined. In con-
clusion, NADPH oxidases obviously rather modulate (the development
of) than cause a disease. Most literature indicates a detrimental role of
NADPH oxidases in human diseases. However, beneficial roles of
NADPH oxidases and ROS formation become more and more clear. As
an example, Nox4 plays a role in angiogenesis, prevents bone loss upon

estrogen depletion and protects from atherosclerosis [10–12].
Accordingly, research of the role of specific NADPH oxidases is

needed to obtain a deeper understanding of their physiological roles.
Tools such as knock out models or specific inhibitors have been de-
veloped. An overview of currently available animals with knock out,
knock in and loss of function mutants of NADPH oxidases is provided in
Table 2. This table however, might be incomplete and just provides an
overview. Besides full animal approaches, the CrispR/Cas9 method
opens a variety of possibilities to study the role of individual subunits of
the NADPH oxidase complexes on cellular level. This approach has been
successfully used, for example in Hek293 [13] and human HCT116
colon cancer cells [14].

Additionally, a brief collection of available inhibitors was added
here (Table 3). For a detailed overview on NADPH oxidase inhibitors,
the reader is referred to Ref. [47]. In that specific publication, the au-
thors highlight the evolution as well as the limitations of Nox-in-
hibitors, antioxidants and other related compounds.

Table 1
List of some diseases associated with NADPH oxidases.

All diseases listed were obtained through www.gencards.com. The analysis shows the results in the disease section of each gene in GeneCards, which is based on the
MalaCard website and score. The MalaCards score ranks diseases by how closely they are associated with the gene, factoring in the relative reliability of the sources
that associate them. Green indicates no relevant entry. Relevant entries are represented by numbers and the color scale indicated.
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Besides specific inhibitors, many global inhibitors for NADPH oxi-
dases (or flavoproteins in general) and antioxidants are used. Those
include diphenylene iodonium (DPI), apocynin, diapocynin and ebselen
[68]. Some derivatives of the antioxidant ebselen, such as JM-77b, had
a selectivity for Nox2 over Nox1, Nox4 and Nox5 [69]. This however
does not mean, ebselen derivatives are specific Nox2 inhibitors. Espe-
cially in the light of the fact that ebselens are reported to display glu-
tathione peroxidase-like activity [70].

In contrast, potential specific inhibitors often have been proved to
be not specific or display off-target effects. The best investigated
NADPH oxidase, Nox2, may serve as an example: Formerly known Nox2
inhibitors such as VAS2870 [71,72] and VAS3947 [73] did not fulfill
their assigned roles as specific inhibitors. Both have been identified to
exhibit off-target effects through thiol alkylation and inhibition of mi-
tochondrial respiration and cytotoxicity [74,75]. Substances like ce-
lastrol inhibit Nox1, Nox2, Nox4 and Nox5, as it interferes with the
binding of the proline rich region of p22phox to the tandem SH3 do-
main of p47phox and NoxO1 [76]. Alike, the PR-39 peptide binds other
SH3-containing proteins, such as p130Cas and PI3Kp85α [77,78]. Re-
cently, it was documented that also the Nox1/Nox4 inhibitors
GKT136901 and 137831 are in fact non-specific [68,79]. Additionally,
the Nox1 inhibitor ML-171 was also shown to be unspecific [80]. It
appears that specificity of the inhibitors targeting a common domain in
NADPH oxidases can be impeached. For further reading on how in-
hibitors work and fail the reader is referred to the work of Vincent
Jaquet (Geneva) and Harald Schmidt (Maastricht).

Concluding remarks

Understanding the role of individual NADPH oxidases bears po-
tential to interfere on a modulatory basis with intracellular signaling
cascades. Within the last years, the collection of tools to analyze and
target NADPH oxidases increased constantly. Therefore, it is important
to provide an overview from time to time. This short review sum-
marizes diseases potentially associated with NADPH oxidases, geneti-
cally modified animals, and inhibitors for some members of the family.
Most references either point to a location, where to get the animals or to
the first description of the animal or inhibitor. This should enable the
reader to find a way to his/her tool of interest.
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Table 2
List of some animal models for NADPH oxidase research.

Target Tool

knock out
animal

knock in
animal

Loss of function mutants

Nox1 Mouse [15]
Mouse floxed
[16]
Zebrafish [17]

Nox2 Mouse full ko
[18]
Mouse floxed
[19]
Zebrafish [17]

Nox3 Mouse [20,21]
Mouse [22]

Nox4 Mouse full and
floxed [23]

Nox5 Rabbit [24,25]
Zebrafish [17]

Mouse
[25,26]

DUOX1 Zebrafish [27]
Mouse [28]

DUOX2 Mouse [29]
DuoxA1&2 Mouse floxed

[30]
p22phox Mouse floxed

[31]
Mouse [32] mouse
[33,34] + tyrosinase(−/−)
rat [35]

p47phox Mouse [36] Mouse
[37]

Rat [38]
Mouse [39]

NoxO1 Mouse [40]
p67phox Mouse [41] Rat [42]
NoxA1 Mouse floxed

[43]
Mouse [44]

p40phox Mouse [45] Mouse [46]

Table 3
Inhibitor peptides and small molecules that act as NADPH oxidase inhibitors.

Target Inhibitor peptide Pharmacological inhibitor

Nox1 NoxA1ds (mimics a putative activation domain of NoxA1 and p67phox amino acids 199–210 in the
FAD with substitution of Y199 by alanine 196 EPVDALGKAKV-CONH2 [48]

ML171 [49]
GKT136901 and GKT137831 [50,51]

Nox2 Endogenous PR-39 (RRR PRP PYL PRP RPP PFF PPR LPP RIP PGF PPR FPP RFP) [52] several peptides
(peptide walking) [53]
B-loop peptide of Nox2 that binds to p47phox: C85SRVRRQL93 [54] → Nox2ds-tat [55] works in vitro
and in vivo (specifically inhibits the interaction of Nox2 and p47phox [56])

GSK2795039 [57]
CYR5099 [58]
Bridged tetrahydroisoquinolines: CPP11G and
CPP11H [59]
Perhexiline and Suramin (cell impermeable) [60]

Nox4 GLX7013114 [61]
GKT137831 [50]
GKT137928 [62]
ACD084 [63]
Rosmarinic acid [64]

Nox5 peptides pep1 and pep3 containing a KDSIT sequence at the c-terminus (D637−G661 + Y and
R621−T660) [65]

Duox1 and Duox2 S–P-Re-J-L, wherein Re is a reactive electrophile and J is G or P [66] Acrolein [67]
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