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Introduction
The genetic complexity across the landscape of human cancers 
makes it extremely difficult to find concordant molecular 
signatures – there is a tremendous amount of genetic hetero-
geneity across various cancer types and subtypes.1 It is well 
accepted that the development of cancer entails six biologi-
cal capabilities acquired during tumorigenesis – “sustaining 
proliferative signaling,” “evading growth suppressors,” 
“activating invasion and metastasis,” “enabling replicative 
immortality,” “inducing angiogenesis,” and “resisting cell 
death.”2,3 A complex combination of these events causes 
major changes in phenotype – tumor cells have drastically 
rewired cellular machinery such as altered messenger RNA 
(mRNA) and microRNA expression, copy number variations, 
and epigenetic modifications. The molecular elucidation of all 
these changes is a highly challenging task that has necessi-
tated global international collaborations combining different 
areas of expertise.4,5 It is widely believed that comprehensive 
molecular characterization of key causal driver events that are 

concordant across cancer types holds the key in developing 
successful therapeutic regimens for cancer.3

Thus, one primary focus of many efforts has been to 
develop bioinformatic tools to analyze the different kinds 
of data that are being made available by these projects and 
identify global signatures. A key challenge addressed by 
many of these tools is to utilize different data sets and pre-
dict prognostic outcome for one or more types of cancer. This 
is an extremely difficult problem because it is not clear as to 
which measurements are most informative of disease outcome. 
This had led researchers to use several functional genomics 
data sets to predict prognosis – expression, protein networks, 
somatic mutation profiles, and epigenetic modifications. Con-
ceptually, these data sets can be grouped into three broad 
categories – changes in expression, nucleotide modifications, 
and nucleotide alterations. These three sets can be used indi-
vidually or in the context of the underlying cellular networks 
to predict prognosis. In the course of this review, we outline 
different studies that have adopted these approaches to identify 
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a molecular signature that correlates with disease outcome and 
use it to predict prognosis.

Prognosis Prediction Using Expression Profiles
Since cancer mutations significantly rewire transcriptional 
machinery, it is well established that gene expression profiles 
of tumors undergo major changes.6 This enables the classifica-
tion of tumors into subtypes determined by their expression 
signatures.6 In two seminal studies, van ‘t Veer et al.7 and van 
de Vijver et al.8 used microarrays to obtain the transcriptomic 
profile of 295 breast cancer patients and clustered the expres-
sion matrix to identify a 70-gene signature that could be used 
to predict disease outcome. They concluded that gene expres-
sion profile was a better predictor of outcome than standard 
clinical and histological criteria. These studies were a major 
breakthrough at different levels – they showed the limitations 
of existing clinical parameters in predicting disease outcome, 
the utility of an expression data set in overcoming these limi-
tations, and established the concept of a gene signature for 
predicting prognosis.

Wang et al.9 measured the expression profile of a differ-
ent cohort of 286 breast cancer patients. Using hierarchical 
clustering, they identified a 76-gene signature comprising 
60  genes for estrogen receptors (ER)–positive and 16  genes 
for ER-negative patients. Although both groups comprised 
breast cancer patients, surprisingly there was very little over-
lap between the two gene signatures. This led Wang et  al.9 
to hypothesize that “because of differences in patients, tech-
niques, and materials used” the signatures were vastly diver-
gent. This also suggested that even within the same cancer 
type, different subtypes could have completely different gene 
signatures that correlate with disease outcome. This has been 
valuable in helping clinicians and researchers appreciate 
that there may be major molecular differences across cancer 
subtypes.

Song et  al.10 used microRNA and mRNA expression 
profiles for prognosis prediction in gastric cancer. With 90 
cancer tissue samples and 10 normal samples, the authors first 
used consensus clustering to identify candidate microRNAs 
and targets that are potential biomarkers – ie, correlate sig-
nificantly with disease outcome. These were then further 
validated and evaluated using 385  samples. Specifically, the 
authors found that miR-200c, miR-200b, and miR-125b and 
the corresponding target expression correlated most with sur-
vival outcome and are thus potential prognostic biomarkers for 
gastric cancer.

Combining Expression Data with Interactome 
Networks for Prognosis Prediction
One key limitation to expression-based approaches is the 
treatment of genes as independent variables. The previously 
described methods used genes that are differentially expressed 
between patients with good and bad prognoses. However, in 
the cellular environment, these genes do not act in isolation. 

They are part of different complex cellular networks, one of 
which is the protein interactome network. In this network, 
nodes represent proteins and edges represent physical interac-
tions between these proteins.11 Complex phenotypes are best 
explained by dysregulation of gene sets12 rather than isolated 
genes since alteration of expression levels of genes affects not 
only the protein products encoded by those genes but also 
those that are in the network neighborhood of those proteins. 
This has led to the idea of “guilt-by-association”13 – a con-
cept that has been often used to identify and prioritize disease 
genes.

In the context of cancer prognosis prediction, Chuang 
et al.14 were the first to attempt network-based classification 
of breast cancer prognosis at a genomic scale. Compared to 
previous studies that had identified gene-based markers, the 
authors elucidated subnetwork markers. For each subnetwork, 
they calculated a patient-specific activity score by averaging 
the normalized expression values for genes in that subnetwork. 
The “discriminative potential” of a subnetwork was defined as 
the mutual information between its activity score and disease 
status (metastatic or not) across all patients. They found that 
significant subnetworks thus identified were more reproducible 
than individual gene markers and were enriched for biological 
processes known to be important in cancer progression. These 
could also be used to predict prognostic outcome.

Another key property of these protein interactome net-
works is their modularity.15 Specifically, there are two kinds of 
hubs in these networks – intramodular and intermodular hubs. 
It has been shown that the biological properties of these hubs are 
very different.15–17 Taylor et al.18 showed that differential expres-
sion of these hub groups in the protein network can be used to 
predict breast cancer prognosis. Specifically, the co-expression 
of intermodular hubs with their interactors is tissue specific but 
the co-expression of intramodular hubs with their interactors is 
mostly generic and tissue independent. The authors used this 
dynamic modularity to identify hubs whose relative expression 
with their interactors was significantly correlated with prog-
nosis. These hubs were then subjected to affinity propagation 
clustering19 to identify top exemplars that could be used to pre-
dict prognosis. The results of this study suggest that molecular 
changes in a tumor are reflected by alterations in disease network 
modularity. Since these changes are significantly correlated with 
prognosis, measuring them would improve the predictive power 
of previously used clinical prognostic variables.

Edwin Wang and colleagues developed an algorithm – 
Multiple Survival Screening (MSS) – to identify breast cancer 
metastasis drivers using a combination of expression and inter-
action data.20 Their key hypothesis was that the variability of 
gene expression in tumor cells is much higher than that in 
normal cells. Thus, only a small fraction of the altered expres-
sion profiles can be explained by driver metastatic events. 
Thus, a “one-step clustering” of expression profiles is likely 
to identify mostly passenger events. They used this to explain 
the low overlap between the gene signatures identified for the 
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two cohorts of breast cancer patients described earlier.8,9 To 
circumvent this, MSS used three discrete gene signatures to 
identify different risk categories – low, intermediate, and high. 
Combining these signatures with the protein interactome also 
yielded driver modules recurrent in breast cancer tumors.

Wu et al.21 used a previously constructed functional inter-
action network to identify prognostic biomarkers for breast and 
ovarian cancer.22 The functional interaction network incorpo-
rates gene ontology annotations and domain–domain inter-
actions in addition to protein–protein interactions and gene 
expression.21 To predict prognosis, the authors used Markov 
clustering to identify gene expression modules from this net-
work. They then identified linear combinations of modules 
that are maximally correlated with patient survival.

Chowdhury et al.23 and Patel et al.24 developed Combi-
natorially dysRegulAted subNEtworks – a neural network–
based approach for prognosis prediction. Their approach 
identified subnetworks that are dysregulated in tumor and 
metastatic samples. They found that these subnetworks can 
be used as accurated predictors of prognostic outcome for col-
orectal cancer23 and glioblastoma multiformae.24

Other Functional Genomics Data Sets 
for Prognosis Prediction
With the rapid growth of sequencing technology, whole-
genome and whole-exome sequencing studies have become an 
indispensable tool to identify drivers of cancer.1,25 Typically, 
these studies identify thousands of mutations that are enriched 
in the individuals afflicted with disease when compared to nor-
mal controls.26 However, most of these are passenger muta-
tions and not causative.26 One commonly accepted way to 
search for cancer drivers is to look for hypermutated genes and 
combine it with orthogonal lines of functional evidence wher-
ever available.27 While a large amount of somatic mutation 
data have recently become available,28 it is still unclear in many 
cases as to how or why these driver events lead to vastly differ-
ent outcomes. Although the issue of understanding molecular 
outcomes is extremely complex, the large number of recently 
sequenced cancer samples has helped build comprehensive 
catalogs of cancer genes.25 It has also been estimated that 600–
5,000 samples per tumor type may lead to “saturation” in terms 
of analyzing gene-specific mutational spectrums.25

Hofree et  al.29 devised a Network-Based Stratification 
(NBS) approach on somatic mutations from sequencing data 
to predict subtypes of different cancers. NBS uses somatic 
mutation profiles in conjunction with an interactome net-
work to divide patients into subtypes where patients with 
mutations in similar network neighborhoods are assigned to 
the same group. Conceptually, there are three steps in NBS. 
First, somatic mutations for each patient are projected onto a 
network and their influence is propagated using an algorithm 
previously established by Vanunu et  al.30 The resulting pro-
files are then subsampled and clustered into a fixed number 
of subtypes using nonnegative matrix factorization.31 The 

subsamples are then combined into a single aggregate matrix 
using consensus clustering.32 The authors showed that sub-
types identified by NBS are clinically relevant as they cor-
relate well with prognostic outcomes for ovarian, uterine, and 
lung adenocarcinoma.

Wen et  al. found that aberrant DNA methylation of 
transcription factors can be used to identify genes causing col-
orectal cancer.33 They combined methylation data with known 
cancer genes to identify candidate causal genes. This informa-
tion was used in conjunction with a protein network weighted 
by corresponding mRNA co-expression values to define an 
activity matrix for network modules. Using this matrix, the 
authors identified seven important modules that could serve as 
biomarkers for colorectal cancer. Although the authors did not 
use their method to predict survival, since the identified mod-
ules try to infer underlying causality, the expression profiles of 
these key network modules may provide insights into severity 
of prognostic outcome. Another key difference of this study 
from previous studies was the incorporation of epigenomic 
information in addition to expression and network data.

Kai Tan and colleagues34 also used DNA methyla-
tion data in conjunction with gene expression and the pro-
tein network as inputs to a support vector machine classifier 
to predict prognosis for glioblastoma multiformae patients 
with reasonably high accuracy. They found 10 expression-
based and 3 methylation-based network markers that have a 
significant effect on outcome. Based on these network mark-
ers, they hypothesized that two key pathways have a signifi-
cant effect on prognosis – GTPase-mediated trafficking and 
ubiquitination-dependent degradation.

Zhang and Ouellette developed CAERUS - a modified 
Naive Bayes classifier that combines domain architecture with 
gene expression, protein networks and somatic mutations to 
predict breast and ovarian cancer prognosis35. They were the 
first to incorporate protein structural information in prognosis 
prediction.

Discussion
The methods discussed above represent excellent efforts to pre-
dict cancer prognosis across cancer types and subtypes. They 
have been validated on large sample sizes and in general are 
quite successful both in terms of prediction and identification 
of certain genes or groups of genes that help determine prog-
nostic outcome. However, there are several issues that limit 
the use of these computational methods in conjunction with 
existing clinical practices. Typically, these have been validated 
on single-patient cohorts. Thus, it is unclear how successful 
the same method would be for a different cohort. For exam-
ple, as discussed earlier, the gene signature identified by the 
van de Vijver et al. study has minimal overlap with the Wang 
et al. study. Ideally, it is important to validate a method across 
multiple sets of patients. Moreover, studies that combine mul-
tiple functional genomics data sets sometimes do not focus on 
how well each individual data set performs. This information 
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can often be critical as all data sets may not be available for 
different cohorts.

In general, it seems clear that integration of multiple 
layers of information helps prediction accuracy. Efforts such 
as the TCGA Pan-Cancer Analysis Project are already trying 
to combine mutation, copy number, gene expression, methyla-
tion, microRNA, proteomic arrays, and clinical data to distin-
guish driver from passenger mutations.4 The complementarity 
of these different data sets has also been recognized – eg, direct 
study of protein levels often provides insights that genomic or 
transcriptomic data sets cannot.36

However, several questions remain unanswered. First, our 
understanding of which data sets are most informative for a par-
ticular cancer type/subtype is still highly limited. Being able to 
identify certain data sets a priori certain is likely to significantly 
boost prognosis prediction performance of existing algorithms. 
Second, there has been a significant amount of effort in the 
community to translate genetic insights into druggable targets – 
numerous repositories of drug-gene targets such as DrugBank,37 
PharmGKB,38 and Therapeutic Target DB39 catalog these efforts. 
However, still only a small fraction of all the US Food and Drug 
Administration–approved drugs have gene targets based on well-
elucidated mechanisms (ie, are etiology specific) and the majority 
of drugs today are still palliative.40 Thus, it remains to be seen 
whether the mechanistic insights generated by these prognosis 
prediction methods can be used to guide rational drug design. 
Finally, it is still unclear whether these prognosis prediction 
schemes can be directly applied in a clinical setting to create per-
sonalized treatment regimens. While there have been a few cases 
where insights have directly guided clinical treatment schemes,41 
these are still the exception rather than the norm. In general, 
there is still a wide chasm between researchers who develop these 
in silico approaches and clinicians who actually decide how to 
treat cancer patients. It is important for the in silico approaches 
to focus on generating biological insights that are translatable to 
concrete mechanistic hypotheses. Finally, crosstalk between these 
two communities and development of customized computational 
pipelines that clinicians are willing to trust and adopt in specific 
settings can go a long way in bridging this gap.
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