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A B S T R A C T   

This study introduces a novel machine learning methodology for predicting GlutoPeak test pa-
rameters from image data, leveraging AutoKeras and transfer learning. The GlutoPeak test is a 
tool used in the baking industry to evaluate the properties of flour, based on its gluten strength 
and elasticity. Our research aimed to devise an efficient and cost-effective technique for quan-
tifying the gluten properties of wheat varieties. We aimed to accomplish this by predicting the 
GlutoPeak test results with convolutional neural network (CNN) models, utilizing the benefits of 
transfer learning and AutoKeras. AutoKeras is a public code repository capable of automating 
neural architecture search and hyperparameter tuning. The ResNet101 model, when trained with 
the Adam optimizer, achieved the highest accuracy of 0.5765 in the 2-class prediction. Mean-
while, the ResNet101 model trained with the SGD optimizer reached the highest accuracy of 
0.4362 in the 4-class prediction. The outcomes of this study illustrate the possibility in using 
machine learning and deep learning techniques for predicting GlutoPeak test parameters from 
image data. This offers a faster and more cost-effective approach for evaluating gluten quality in 
wheat varieties.   

1. Introduction 

In recent years, the GlutoPeak test (GPT) developed by Brabender GmbH and CoKG in Duisburg, Germany, has been used as a fast 
shear-based method for evaluating gluten properties in addition to the mixograph and Farinograph. It measures dough mixing 
properties and evaluates gluten strength and elasticity, which are important factors in determining the baking properties of flour [1]. 
The test is primarily used to assess flour suitability for bread and other baked products. The GPT provides output values for aggregation 
energy (AE), maximum torque (MT), torque 15 s before MT (AM), torque 15 s after MT (PM), and the time required to reach the MT 
(PMT). Many researchers have explored predicting dough quality and rheology based on these parameters. Mecitoğlu and others 
reported significant correlations (p < 0.01) between all the output values (except PMT) and single-kernel characterization 
system-hardness, zeleny sedimentation test, Farinograph water absorption, alveograph energy, and bread loaf volume [2]. In another 
study, Bouachra and others observed a correlation (r = 0.77) between bread loaf volumes and AM measured by the GPT [3]. While the 
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GPT is already an efficient method requiring minimal flour samples, the assay procedure necessitates investment in high-cost 
equipment including the GPT unit, moisture analysis unit, milling unit, chemical reagents, and specialized personnel training. Uti-
lizing convolutional neural networks (CNN) in a rapid screening of the GPT values could further expedite breeding efforts of wheat 
varieties and quality control of wheat products by reducing the processes. 

The application of Artificial Neural Networks (ANN) and CNN has gained significant attention in various fields, including agri-
culture [4]. ANN and CNN are machine learning algorithms capable of analyzing complex patterns in large datasets. Their ability to 
learn from data makes them valuable tools in improving agricultural practices, optimizing crop production, and addressing challenges 
in the agricultural industry. Specifically in application to wheat crops, many studies have focused on the classification of wheat 
cultivars from image data. In the study conducted by Anagun and others, CNN was used to classify nine wheat varieties using the 
EfficientNet models where images were taken with a Scanning Electron Microscope (SEM) [5]. In another study, Lingwal and others 
explored building a CNN model from scratch by tuning various hyperparameters and successfully classified 15 varieties of wheat [6]. 
However, up to our knowledge, no attempt has been made in classifying images of wheat kernels according to their corresponding 
gluten quality. 

Transfer learning is a concept in machine learning and deep learning where weights gained from one model is utilized to improve 
performance on another model [7]. In terms of neural networks, transfer learning involves taking a model typically trained on a large 
dataset and using it as a starting point for a new task. The pre-trained model can extract features, with the initial layers capturing 
low-level image features that are relevant across general image data, while the later layers are fine tuned to adapt to specific cases [8]. 
Transfer learning is particularly beneficial when the target task has limited data available or when training from scratch is compu-
tationally expensive [9]. It has been applied in various fields, including image recognition, natural language processing, and audio 

Table 1 
Gluten aggregation energy of wheat samples.  

Sample # Number of images Gluten aggregation energy (AE) 

1 160 1467.34 
2 130 1432.94 
3 120 1532.56 
4 110 1366.11 
5 130 1462.15 
6 150 1278.56 
7 120 1352.31 
8 150 1391.08 
9 80 1535.11 
10 2 1549.85 
11 120 1376.89 
12 60 1273.92 
13 140 1284.96 
14 90 2138.01 
15 100 1969.88 
16 40 2134.05 
17 180 1920.03 
18 130 1907.66 
19 150 2267.27 
20 150 1959.26 
21 100 2031.2 
22 120 2203.13 
23 100 2047.32 
24 60 1816.95 
25 160 1982.2 
26 100 2102.44 
27 80 1876.63 
28 80 1984.45 
29 120 1839.83 
30 100 1920.15 
31 150 1849.15 
32 140 1706.63 
33 100 1237.21 
34 140 1507.08 
35 120 1342.14 
36 160 1365.02 
37 100 1887.76 
38 180 1748.46 
39 130 1810.04 
40 120 2124.32 
41 120 1453.07 
42 120 1455.64 
43 130 1048.11 
44 120 1644.37  
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analysis, allowing practitioners to achieve competitive results with less effort and resources [10,11]. 
AutoKeras is a popular open-source library that automates the process of neural architecture search (NAS) and hyperparameter 

tuning [12]. It simplifies the development of deep learning models by providing an easy-to-use interface for automatic model selection 
and optimization. With AutoKeras, users can quickly build and deploy custom neural network architectures without the need for 
extensive manual configuration. The library leverages NAS to automatically explore and select the optimal model architecture and 
hyperparameters for a given task. By automating these tedious and time-consuming tasks, AutoKeras allows researchers and practi-
tioners to focus more on the problem at hand and accelerate the development of high-performing deep learning models. 

In this study, we aim to develop a prototype of image acquisition and classification system that can be used in quantifying gluten 
properties of wheat varieties in effort to provide a more cost and time efficient method. 

2. Materials and methods 

2.1. Plant material 

Forty-four spring wheat varieties harvested in St. Paul, Minnesota were used for this study. The wheat kernels were threshed in a 
Vogel thresher, dried for 72 h at 32 ◦C, and the debris were removed by screening and a fan. The wheat kernels were then stored under 
refrigeration at a temperature of 4 ◦C until the time of analysis. 

2.2. GlutoPeak test 

Whole grains of wheat were milled using a UDY cyclone mill (Fort Collins, CO, USA) to less than 0.5 mm in particle size. Flour 
moisture contents were taken on an Ohaus MB45 (Parsippany, NJ, USA) infrared balance within 24 h of the GlutoPeak test. Gluten 
properties of flours were measured in duplicate on a Brabender GlutoPeak (C. W. Brabender) based on the method reported by Chandi 
and Seetharaman [1]. AE values of each wheat variety are shown in Table 1. 

2.3. Image acquisition and preprocessing 

A compartment was designed to enable controlled image acquisition conditions. The compartment consisted of three components: a 
bottom sample tray, a middle section, and a top lid featuring two engraved lanes for positioning the UV-A LED strip lights (Fig. 1). 
Compartment parts were 3D printed on a Prusa Research Original Prusa i3 MK3S + unit (Prague, Czech Republic) with a 1.75 mm PLA 
Deep Black filament sourced from Atomic Filament. (Kendallville, IA) The UV-A LED strip lights with a wavelength of 365 nm were 
purchased from Waveform Lighting (Vancouver, WA). Images were captured with an iPhone® XR with an image acquisition software 
developed using Swift®. Users were instructed to position the sample tray within the designated orange box shown on the application 
screen and to tap the center of the red box to ensure consistent lighting focus across all acquired images (Fig. 2). The images underwent 
a cropping process, where a square region of 1500 × 1500 pixels was extracted around the sample tray area containing the wheat 
kernels (Fig. 3). Images were then preprocessed by rescaling it to a range of 0–1 by dividing each pixel value by 255. The quantity of 
images secured for each type depended on the accessible seed samples, with the goal of broadening the visual representation of each 
variety. 

2.4. Labeling dataset 

There was a total of 5162 images acquired for this study. Image data was stored as JPG files on a Google Drive folder. For training 
the 2-class model, the dataset was split into subcategories corresponding to over 1700 AE and under 1700 AE. For training the 4-class 
model, the dataset was split into subcategories corresponding to 1400–1740 AE, 1740–1950 AE, over 1950 AE, and under 1400 AE. 
Directory structure was constructed in a manner where the name of the sub-directories served as the class labels as seen in Fig. 4. 

Fig. 1. Compartment for image acquisition.  
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Fig. 2. Sample screen of image acquisition software in use.  

Fig. 3. Cropped images of wheat kernel samples 
Labels correspond to the class of each image as defined in the section 2.4. 

Fig. 4. Image dataset directory.  
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2.5. Training, validation, and test set 

As discussed previously, it is known that CNN models can classify among wheat varieties at a high accuracy from past studies [5,6]. 
It is plausible that the CNN model could first categorize wheat images into varieties, and subsequently group these varieties into 
different AE value categories, instead of directly classifying wheat images into AE value categories (Fig. 5). Therefore, the preprocessed 
data was partitioned into training, validation, and test sets approximately at a ratio of 6:2:2 where each set contained different wheat 
varieties to prevent potential confounding effects (Fig. 6). Specific varieties used for the validation and test set in each classification 
task can be found in Table 2. 

2.6. Computing environment 

The CNN models were trained on a Google Colab platform with NVIDIA A100 Tensor Core GPU on a high memory runtime. 

2.7. Transfer learning 

Transfer learning was utilized in this study by leveraging pre-trained models from Keras Applications. The weights of these models 
were initialized with the popular “imagenet” dataset [13]. (Fig. 7) To fine-tune the models for our specific task, a common approach 
was followed, as demonstrated in the Keras Applications documentation [14]. The final layer of the base model was excluded, and 
three additional layers were added: a Global Average Pooling layer, “relu” activation layer, and an output layer. For the two-class 
models, the activation function of the output layer was set to “sigmoid”, while for the four-class models, the activation function 
was set to “softmax”. This configuration allows the new models to adapt the base models to the new image classes while retaining the 
pre-learned features from the “imagenet” dataset. Image size used for the training was 224 × 224 and the batch size, 32. Models were 
trained using both the Adam optimizer and the Stochastic Gradient Descent (SGD) for comparison [15]. Both optimizers had a learning 
rate of 0.001 and the SGD optimizer’s momentum was configured to 0. For models with two classes, the BinaryCrossentropy was used 
as the loss function, and for those with four classes, CategoricalCrossentropy was chosen. Correspondingly, we utilized binary accuracy 
as the metric for the two-class models and categorical accuracy for the four-class models to evaluate their performance. Models were 
set to train for 100 epochs with early stopping implemented to terminate the model training if there was no improvement of the 
validation loss after 20 epochs. Seed was set prior to training for reproducibility. Transfer learning was employed with Python 3.10 
programming language with TensorFlow version 2.12.0 embedded with Keras. Summary of the hyperparameters for transfer learning 
process is as seen in Table 3. 

2.8. Stochastic gradient descent 

Stochastic Gradient Descent (SGD) is a frequently utilized optimization method in neural network training. It is an extension of the 
traditional Gradient Descent (GD) algorithm but with some key differences [16]. The SGD method iteratively adjusts the network’s 
weights and biases by selecting a random subset of training samples to progressively reduce the loss. This random sampling introduces 
a level of stochasticity into the optimization process. Secondly, SGD converges faster than GD since it performs frequent weight updates 
based on the gradients computed on mini batches. Thirdly, SGD introduces more noise and variance into the optimization process 
compared to GD which can help SGD to escape local minimums. 

2.9. Adam optimizer 

The Adam optimizer is an optimization algorithm with an adaptive learning rate that combines the advantages of both AdaGrad 
and RMSProp algorithms [15]. The Adam optimizer maintains adaptive learning rates for each parameter in the network by calculating 
a progressively diminishing average of past gradients and squared gradients. It incorporates both first-order moments (the average of 
gradients) and second-order moments (the average of squared gradients) to improve the parameters. Advantages of the Adam opti-
mizer include computing individual learning rates for each parameter to handle sparse gradients and noisy data, adapting the learning 
rates based on the intensity of gradients for quicker convergence, and incorporating momentum to accelerate the optimization process 

Fig. 5. Plausible confounding effect.  
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and overcome local minimums. 

2.10. Categorical cross-entropy and binary cross-entropy 

Categorical cross-entropy is a widely used loss function in multi-class classification tasks [15]. It quantifies the dissimilarity be-
tween the predicted probabilistic distribution and the true probabilistic distribution, often transformed into one-hot encoded labels in 
the context of classification. In neural networks, categorical cross-entropy measures the discrepancy between the class probabilities 
predicted by the model and the actual probabilistic distribution. Larger discrepancies between the probabilistic distributions predicted 
by the model and the actual probabilistic distributions result in higher loss values. In this study, we compute loss for the 4-class 
prediction models using categorical cross-entropy, and for the 2-class prediction models, we employ binary cross-entropy. The for-
mula for calculating cross-entropy in multi-class classification is defined as. 

Loss = −
∑n

i=1yi · log(ŷi) , while the formula for binary cross-entropy is defined as 
Loss = − 1

n
∑n

i=1log(ŷi) + (1 − yi) · log(1 − ŷi), where yi is defined as expected value and ŷi is defined as the predicted value. 

2.11. ReLU function 

The Rectified Linear Unit (ReLU) function is a type of activation function in neural networks that introduces non-linearity to the 

Fig. 6. Splitting scheme of image dataset.  

Table 2 
Samples used for validation and test set.  

Number of class Set Sample #s 

2 Validation 29, 30, 31, 32, 33, 34, 35, 36 
2 Test 37, 38, 39, 40, 41, 42, 43, 44 
4 Validation 3, 9, 11, 26, 27, 28, 29, 33, 35, 37, 40, 41 
4 Test 4, 7, 14, 18, 19, 30, 42, 44  
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network by mapping the input values to the output based on the following equation: 
ReLU σ(x) = max{0, x} where x is the input value [17]. 
By introducing non-linearity, the ReLU function allows neural networks to learn complex patterns and propagate important fea-

tures of the network onto the next layers. 

2.12. Sigmoid function 

The sigmoid function is a type of activation function in neural networks that maps the input values between 0 and 1, providing a 
non-linear transformation making it suitable for binary classifications defined as: 

Sigmoid (x) = 1
1+e− x where x is the input value [16]. 

The result from the sigmoid function can be understood as the likelihood that the input is associated with a specific class. 

2.13. Softmax function 

The softmax function is a type of activation function widely utilized for multiclass classification problems in neural networks, that 
takes an input vector and normalizes it into a probabilistic distribution over multiple classes defined as: 

Softmax (z) = ezi∑K
j=1

ezj 
where z is the input vector, ezi is the standard exponential function for the input vector, ezj is the standard 

exponential function for the output vector, and K is the total number of classes in the classifier [16]. 
The softmax function transforms the input values into a probabilistic distribution, amplifies the differences between the input 

values, and produces outputs that are non-negative and mutually exclusive. 

2.14. AutoKeras 

In this experiment, both the two class and four class models were trained over a total of 50 trials, with each trial involving the 
training of the model for 50 epochs. Image size of 224 × 224 and batch size of 32 were used for both models. The hyperparameters are 
as summarized in Table 3. Seed was set prior to training for reproducibility. AutoKeras version 1.1.0 was employed for training the 
models. 

2.15. Measure of performance 

Performance of the models will be evaluated on the two test sets by evaluating the test accuracy, precision, recall, and F1-score. The 
equation for each are as follows: 

Fig. 7. Diagram of transfer learning.  

Table 3 
Hyper-parameters used for training the 2-class and 4-class, transfer learning models and AutoKeras models.  

Model Image size Batch size Learning rate Max trials Epochs Early stopping (epochs) 

Transfer learning 224 × 224 32 0.001 N/A 100 20 
AutoKeras 224 × 224 32 N/A 50 50 20  
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Test accuracy=
Number of predictions correct
Number of predictions made  

Precision=
Number of TP

Number of TP + Number of FP  

Recall=
Number of TP

Number of TP + Number of FN  

F1=
2 × Precision × Recall

Precision + Recall  

where TP is true positives, FP is false positives, and FN is false negatives [18]. 
In multiclass predictions, precision, recall, and F1 score are calculated for each class individually, often considering that class as the 

“positive” class and the other classes as the “negative” class, then a weighted average is usually considered for all classes to provide a 
single measure. For our study, we used macro-average recall, precision, and F1 score to treat all classes equally by averaging the 
metrics for each class without considering their size, thus ensuring that performance on smaller classes will have an equal impact on 
the final score as larger ones. 

3. Results & discussion 

Trained models were evaluated based on their test accuracy, precision, recall, and F1 score. The results for the 2-class prediction 
models can be found in Table 4, while Table 5 presents the results for the 4-class prediction models. 

In the two-class prediction tasks, ResNet101, trained with the Adam optimizer, outperformed other models with the highest test 
accuracy, precision, recall, and F1-score of 0.5765, 0.5787, 0.5700, and 0.5612, respectively (Table 4). In the four-class prediction 
tasks, ResNet101 trained with the SGD optimizer excelled with the highest test accuracy, recall, and F1-score, yielding values of 
0.4362, 0.4348, and 0.3168 (Table 5). However, when it comes to precision, DenseNet121, trained with the SGD optimizer, led with a 
score of 0.3072. Considering that these values exceed the probability of correct classifications with random chance, they hint at a 
moderate correlation between certain physical attributes and the AE value of various wheat varieties. 

In the context of this study, where equal importance is given to the correctness of all classes, test accuracy emerges as the most 
appropriate performance measure [19]. Therefore, ResNet101 would be the preferred model for both tasks. On the other hand, when 
the goal is to identify a specific AE class with minimal false-positive predictions, DenseNet121 trained with the SGD optimizer becomes 
the better choice due to its superior precision [20]. 

When deploying neural networks, computational intensity becomes a significant consideration, alongside evaluation metrics such 
as test accuracy [21,22]. Although the ResNet101 models outperform others in both classification tasks, they also contained the 
greatest total number of total parameters. Although the relationship between the parameter size and computational cost isn’t always 
straightforward, models with more parameters are typically more computationally intensive. This is largely due to the need to store 
each parameter—a floating-point number—in memory, which requires more resources [23]. Thus, it’s essential to find a balance 
between computational speed and the effectiveness of the model, particularly in scenarios where resources are limited, or deployment 
speed is a critical factor. 

In both classification tasks, the models constructed with AutoKeras, which were trained for 50 trials and 100 epochs each, exhibited 
the fewest total parameters: 243 for the two-class prediction task, and 46,507 for the four-class prediction task. Even so, its perfor-
mance was comparable to other transfer learning models such as DenseNet, VGG19, and Xception, all of which have significantly more 
parameters than the models built with AutoKeras. Other research has also shown that there isn’t a direct linear relationship between 
the number of parameters and the model’s efficacy [24]. The result of this study also underscores the intricate relationship between the 
number of parameters, model architecture, and the characteristics of the dataset being classified. 

Adam typically outperforms SGD in real-world applications, which often results in its adoption as the standard optimizer in a 
multitude of deep learning frameworks [15]5]. However, the selection between Adam, SGD, or any other optimizer, is contingent upon 
the specific characteristics of the problem and dataset being considered. As evidenced in this study, there are instances where SGD may 
outperform Adam in certain tasks or types of network architectures [25]. This underlines the importance of empirical testing in 
machine learning model development. 

Some limitations exist for this study. Samples of wheat kernels were limited to spring wheat harvested from St. Paul Minnesota. As 
such, the results demonstrated in this study may not transfer to a setting where there is a wider range of wheat varieties to classify. 
Results of this study are also specific to the conditions of image acquisition as described in the methodology section. Similarly, results 
are limited to the versions of the libraries, TensorFlow and AutoKeras, and computing environment in which the neural networks were 
employed. Therefore, these findings should be considered as a preliminary guide rather than definitive conclusions. 

4. Conclusion 

This study offers insights into leveraging machine learning for predicting GlutoPeak test parameters, serving as a preliminary guide 
for subsequent studies in this field. The ResNet101 model, trained with the Adam optimizer, achieved the highest accuracy, precision, 
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recall, and F1 score for the 2-class prediction. The same ResNet101 model also achieved the highest accuracy, recall, and F1 score for 
the 4-class prediction, while the DenseNet121 model trained with the SGD optimizer demonstrated the highest precision. The results of 
this study are specific to the wheat varieties used, the conditions of image acquisition, the library versions, and the computing 
environment. Future research should expand upon these findings by exploring a wider range of wheat varieties with diverse ap-
pearances and gluten properties. Moreover, researchers should consider exploring various libraries, computing environments, and 
hyper-parameters for the training of machine learning models. 
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Table 4 
Summary of 2-class prediction models.  

Model Number of total parameters Optimizer Test accuracy Precision Recall F1 Score 

DenseNet121 8,088,129 SGD 0.3598 0.3603 0.3602 0.3598 
Xception 22,960,681 SGD 0.5196 0.5187 0.5187 0.5187 
VGG19 20,550,721 SGD 0.3490 0.3274 0.3429 0.3295 
ResNet101 44,757,377 SGD 0.5235 0.5450 0.5335 0.4961 
DenseNet121 8,088,129 Adam 0.3911 0.2598 0.5000 0.3419 
Xception 22,960,681 Adam 0.3843 0.3845 0.3873 0.3820 
VGG19 20,550,721 Adam 0.3353 0.3340 0.3341 0.3341 
ResNet101 44,757,377 Adam 0.5765 0.5787 0.5700 0.5612 
AutoKeras 243 N/A 0.3569 0.3461 0.3526 0.3469 

Highest evaluation metrics are bolded. 

Table 5 
Summary of 4-class prediction models.  

Model Number of total parameters Optimizer Test accuracy Precision Recall F1 Score 

DenseNet121 8,091,204 SGD 0.2755 0.3072 0.2774 0.2751 
Xception 22,963,756 SGD 0.2287 0.2495 0.2292 0.2284 
VGG19 20,553,796 SGD 0.2309 0.2479 0.2288 0.2350 
ResNet101 44,760,452 SGD 0.4362 0.2872 0.4348 0.3168 
DenseNet121 8,091,204 Adam 0.3266 0.2571 0.3277 0.2863 
Xception 22,963,756 Adam 0.2681 0.2663 0.2670 0.2659 
VGG19 20,553,796 Adam 0.2053 0.1637 0.2038 0.1809 
ResNet101 44,760,452 Adam 0.3521 0.2446 0.3457 0.2558 
AutoKeras 46,507 N/A 0.2287 0.2055 0.2324 0.2102 

Highest evaluation metrics are bolded. 
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