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Aim: In neuroscience research, data are quite often characterized by an imbalanced

distribution between the majority and minority classes, an issue that can limit or even

worsen the prediction performance of machine learning methods. Different resampling

procedures have been developed to face this problem and a lot of work has been

done in comparing their effectiveness in different scenarios. Notably, the robustness of

such techniques has been tested among a wide variety of different datasets, without

considering the performance of each specific dataset. In this study, we compare

the performances of different resampling procedures for the imbalanced domain in

stereo-electroencephalography (SEEG) recordings of the patients with focal epilepsies

who underwent surgery.

Methods: We considered data obtained by network analysis of interictal SEEG recorded

from 10 patients with drug-resistant focal epilepsies, for a supervised classification

problem aimed at distinguishing between the epileptogenic and non-epileptogenic brain

regions in interictal conditions. We investigated the effectiveness of five oversampling and

five undersampling procedures, using 10 different machine learning classifiers. Moreover,

six specific ensemble methods for the imbalanced domain were also tested. To compare

the performances, Area under the ROC curve (AUC), F-measure, Geometric Mean, and

Balanced Accuracy were considered.

Results: Both the resampling procedures showed improved performances with respect

to the original dataset. The oversampling procedure was found to be more sensitive

to the type of classification method employed, with Adaptive Synthetic Sampling
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(ADASYN) exhibiting the best performances. All the undersampling approaches were

more robust than the oversampling among the different classifiers, with Random

Undersampling (RUS) exhibiting the best performance despite being the simplest and

most basic classification method.

Conclusions: The application of machine learning techniques that take into

consideration the balance of features by resampling is beneficial and leads to more

accurate localization of the epileptogenic zone from interictal periods. In addition, our

results highlight the importance of the type of classification method that must be used

together with the resampling to maximize the benefit to the outcome.

Keywords: imbalanced dataset classification, re-sampling techniques, oversampling and undersampling,

ensemble methods, network analysis, epilepsy surgery, stereo-EEG/intracranial recordings, epileptogenic zone

localization

INTRODUCTION

Epilepsy is a chronic neurological disease affecting 1% of the
worldwide population (Fiest et al., 2017). Approximately 30% of
the patients with focal epilepsies are resistant to the antiepileptic
drugs (AEDs), and they can be considered as candidate for
epilepsy surgery, with the aim of removing the epileptogenic zone
(EZ). The latter is defined as the minimum amount of cortex
that must be resected (inactivated or completely disconnected) to
produce seizure freedom (Lüders et al., 2006; Ryvlin et al., 2014).
However, the correct localization of the EZ to achieve seizure
freedom after surgery, is still an unsolved and open question, as
indicated by the high rate of failure of seizure control (30–40%)
after surgery (Spencer and Huh, 2008; Bulacio et al., 2012). The
advanced signal processing approaches, especially those based
on the connectivity analysis, have been largely applied to stereo-
electroencephalography (SEEG) from the patients with epilepsy
to better pinpoint the location of the EZ (Varotto et al., 2013;
Bartolomei et al., 2017; Adkinson et al., 2019; Narasimhan et al.,
2020).

The supervised machine learning methods are increasingly

applied in epilepsy research, representing useful tools to

integrate the complex and large-scale data deriving from

different electrophysiological or imaging techniques, such as

EEG, magnetoencephalography (MEG), functional-MRI (fMRI),
or positron emission tomography (PET) (refer to Abbasi and
Goldenholz, 2019 for a comprehensive review). Most of these
studies focused on the following aspects: diagnosis of epilepsy
(Kassahun et al., 2014; Azami et al., 2016; Soriano et al., 2017),
seizure prediction (Acharya et al., 2018; Kiral-Kornek et al.,
2018; Daoud and Bayoumi, 2019), lateralization of temporal lobe
epilepsy (Jin and Chung, 2017; Frank et al., 2018; Peter et al.,
2018), and post-surgical outcome prediction (Armañanzas et al.,
2013; Goldenholz et al., 2016; Gleichgerrcht et al., 2018). With
respect to the localization of the EZ and support to pre-surgical
planning, few works applied machine learning tools, showing the
promising usefulness of this approach, and the need for further
investigation and generalization (Dian et al., 2015; Elahian et al.,
2017; Khambhati et al., 2017; Roland et al., 2017). In this specific
framework, one central issue that should be taken into account,
and which could represent one of the main limitations, is that

the EZ represents a smaller region compared with the other non-
EZ areas explored. This leads to an uneven distribution of the
majority (non-EZ) and minority (EZ) classes, which can strongly
worsen or limit the classification performances. This situation is
known as the class imbalance problem and can be considered one
of the central topics inmachine learning research (He andGarcia,
2009; Ali et al., 2015; Fernández et al., 2018).

In the past decade, many different approaches have been
developed to cope with imbalanced classification, most of
them based on four different families: resampling techniques,
cost-sensitive learning, algorithm modification, and ensemble
methods (Mena and Gonzalez, 2006; Galar et al., 2012; Krawczyk
et al., 2014; Loyola-González et al., 2016).

Among these, the methods belonging to the data resampling
family have been proved useful as well as relatively simple
approaches to be applied in the medical context (Lee, 2014;
Loyola-González et al., 2016). In data resampling, the training
instances are modified to rebalance the class distribution through
oversampling of the minority class, or undersampling of the
majority one, before training the classifier. Oversampling could
have the limitation of overfitting the minority class, while
undersampling could eliminate potential useful information for
correct classification (Chawla, 2009).

Different studies dealt with the comparisons of performances
of most of the existing resampling techniques, most of which
were applied to a wide variety of datasets together, being mainly
aimed at assessing the robustness of results across different
dataset combinations (López et al., 2013). Nevertheless, when
applied to a single specific dataset, such comparison can lead to
different results (Xie et al., 2020), reflecting a lack of consensus
about the performances of such techniques and putting in
evidence the need for ad-hoc comparisons in each specific
clinical framework.

To the best of our knowledge, this is the first study focused
on the evaluation and comparison of these approaches in the
context of epilepsy, and in particular, in the framework of
the surgical planning based on analysis of electrophysiological
intracranial recordings.

In this study, we compared five oversampling and five
undersampling procedures and tested the resulting rebalanced
datasets with 10 different machine learning classifiers (such as
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both standard machines and classical ensemble approaches).
Moreover, six specific ensemble methods properly modified
for imbalanced domain and belonging to data variation-based
ensemble were tested and compared. In these algorithms, the
resampling phase is applied to each step of the ensemble classifier,
in such a way that each classifier is trained with a different
resampled dataset (Galar et al., 2012). For this reason, we
considered them as an extension of resampling methods, which
need to be compared with the oversampling and undersampling
techniques combined with the classical ensemble approaches.

The classification was based on the features obtained by
network analysis of interictal SEEG recorded from the 10 patients
who underwent epilepsy surgery and were seizure-free (SF) after
3 years of follow-up.

To compare the performances, area under the ROC curve
(AUC), balanced accuracy (BalACC), F-measure (Fm), and
geometric mean (Gmean) were used as metrics, since these are
usually considered suitable measures to deal with the imbalanced
datasets (Bekkar et al., 2013; López et al., 2013).

MATERIALS AND METHODS

We start this section by describing the steps of selection and
signal recording of the patients. The methodological pipeline is
then outlined: feature extraction, data resampling, classification,
and evaluation of the performance of the model (as shown in
Figure 1 for a schematic representation). Finally, we describe
the statistical analysis, which has been performed to evaluate the
consistency of our results.

Selection of Patients
The study involved SEEG signals recorded fromNp= 10 patients
(three women) with drug-resistant focal epilepsy at the Claudio
Munari Epilepsy Surgery Center of Niguarda Hospital (Milan,
Italy). The patients were selected from the 41 patients implanted
with SEEG electrodes over 24 months. Among them, 24 had
negative MRI and 10 of them were seizure-free after at least 3
years of follow-up and were finally considered for this study.
Table 1 presents the details of the main clinical features.

The mean age of the patients was 31.7 ± 7.3 years, and
the mean duration of epilepsy was 17.2 ± 7.8 years. They had
no obvious risk factor for epilepsy. The surgical outcome was
assessed after at least 3 years of follow-up after surgery (mean
follow-up period: 56 ± 13 months) and classified as class I
according to Engel’s classification (Engel, 1993).

SEEG Recordings
Stereo-electroencephalography signals were recorded using the
multi-lead platinum-iridium electrodes (Dixi, Besançon, France,
with 5–18 contacts of diameter 0.8mm; 1.5mm long; and
2mm apart), implanted under general anesthesia after stereo-
arteriography using a 3DMRI imported into a computer-assisted
neuronavigational module to localize the blood vessels and guide
electrode trajectory. The placement of intracerebral electrodes
was defined according to the data derived by non-invasive
anatomo-electroclinical procedures (Talairach and Bancaud,
1966; Cardinale et al., 2019).

The SEEG signals were recorded using a common reference
electrode (Nikon-Kohden system; 192-channels; sampling rate
1 kHz) under video and clinical control over 5–20 days and then
examined by the two expert neurologists to define the EZ and
plan the surgical approach and resection. EZ was defined by
considering ictal discharge recordings, responses associated with
the intracerebral electrical stimulations, and neurophysiological
mapping, and then integrated into the definition of the brain
area(s) to be surgically excised. Post-resection MRI was used
to identify the areas of the brain that were effectively removed.
The target value to assess the classification performances—SEEG
leads as belonging to EZ or non-EZ—was defined by considering
the intersection between the group of SEEG leads labeled as EZ
by the clinicians through the pre-surgical evaluation, and the
resected zone.

Feature Extraction
Stereo-electroencephalography signals were analyzed using
bipolar derivations, and those presenting non-physiological
artifacts were excluded from the analysis. The number of
analyzed SEEG leads differed for each patient being on average
NL = 73 ± 6. Furthermore, 3min of continuous interictal SEEG
signals, recorded during awake condition at least 1 h far from
any ictal event, were selected and divided into NE = 36, five
s length, non-overlapping epochs. After testing several lengths
and epochs partitions, 3min length was selected as the minimum
recording time to obtain a good EZ classification. The broad 1–
80Hz frequency band was used for the analysis. In addition, 36
time-varying connectivity matrices were estimated by applying a
bivariate non-linear method and the non-linear regression index
(h2) (Lopes da Silva et al., 1989; Wendling et al., 2010) (refer
to Supplementary Material). In this regard, a wide variety of
methods have been proposed to estimate the SEEG connectivity,
all of them being characterized by different advantages and
pitfalls strongly depending on the signal and the aim of the study
(Silfverhuth et al., 2012; Olejarczyk et al., 2017). Among them, a
non-linear regression analysis has been proved to be particularly
suitable to estimate the connectivity from the simulated coupled
neuronal population (Wendling et al., 2009), and has been largely
applied in the specific contest of intracranial EEG recordings and
EZ localization (Bartolomei et al., 2017).

From the adjacency matrices, the corresponding graphs were
built for each patient, after applying a threshold to select the
minimumnumber of connections that ensures a connected graph
for all the epochs.

After a preliminary analysis involving several graph theory-
based indices, nine of them, focusing on different complementary
network properties of centrality (Oldham et al., 2019), were
identified as the optimal one to classify EZ in the whole group of
patients, and used as features of the classifier: outdegree centrality
(Ce), indegree Ce, oustrength Ce, instrength Ce., betweenness Ce.,
outcloseness Ce., incloseness Ce., pagerank Ce., and eigenvector Ce.
(as shown in Supplementary Material for a detailed description
of the basic properties of these metrics).

The connectivity analysis was performed through a specific
custom-written toolbox developed in Matlab (R20a; MathWorks
Inc., Natick, MA, USA). Matlab graph toolbox and the Brain
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FIGURE 1 | A schematic representation of the methodological pipeline. (a) Stereo-electroencephalography (SEEG) epochs selection; (b) connectivity analysis and

graph-based indexes of centrality calculation; (c) feature selection and training and test set definition; (d) set of resampling methods and classifiers applied; and (e)

measures to assess the performance of the models.

connectivity toolbox (Rubinov and Sporns, 2010), were used for
graph analysis.

To provide the classifiers with a suitable number of trials,
we first grouped all the values of the features pertaining to the
different time epochs and obtained, for each patient p, a matrix
with NL,p × NE rows and 10 columns (i.e., nine features and
one target). EZ has been considered as the positive class, with 1

indicating the EZ class and 0 the non-EZ class. The imbalanced
ratio (IR)—the ratio between the number of trials pertaining to
positive and negative classes—for each patient, is indicated in
Table 2.

Since one of the main objectives of the proposed procedure
was to classify SEEG signals of every single patient independently
from the others, training and test set were defined by considering
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TABLE 1 | Main clinical features, epileptogenic zone (EZ) localization performed by the standard methods, and surgery outcomes for the patients enrolled in this study.

Id Gender Age Onset Sz/m Side Lobe Histology Follow-Up/M AEDs

1 M 27 19 10 R TFI crypto 68 Reduced

2 M 25 4 10 L TI crypto 48 Stopped

3 F 30 16 5 R T crypto 54 Reduced

4 F 27 17 10 R T crypto 46 Stopped

5 M 40 16 30 L F no 70 Reduced

6 M 39 20 1 R F crypto 42 Reduced

7 M 28 11 3 L F crypto 65 Ongoing

8 M 22 16 15 L TO crypto 34 Reduced

9 M 44 22 10 R TO FCD Ib 62 Reduced

10 F 35 4 5 R TPCF FCD Ia 71 Ongoing

AEDs, antepileptic drugs; crypto, cryptogenic; FCD, focal cortical dysplasia; F, female; FC, fronto-central; FCD, focal cortical dysplasia; Fr, Frontal; HS, hippocampal sclerosis; M, male;

Sz//m, seizures per month; Age, age at surgical intervention; Onset, age of epilepsy onset; PCI, parieto-centro-insular; T, Temporal; TFI, temporo-fronto-insular; TI, temporo insular; TC,

temporo-central; TO, temporo-occipital; TPCF, temporo-parieto-centro-frontal. AEDs column refers to variation of drug therapy with respect to pre-surgical condition.

TABLE 2 | Number of analyzed SEEG leads (Total SEEG leads), number of leads

belonging to the EZ (EZ leads), and Imbalanced ratio (IR) per patient.

Pt id Tot SEEG leads EZ leads IR

1 66 5 12.2

2 73 6 11.2

3 80 7 10.4

4 81 9 8.0

5 62 4 14.5

6 72 2 35.0

7 76 8 8.5

8 78 13 5.0

9 72 5 13.4

10 72 7 9.3

a proportion of 9:1, using features from nine patients for training
and features from one single patient for test. For further statistical
analysis, the same splitting was repeated for all the combinations
of patients, thus providing 10 different training-testing datasets.

Data Resampling
In all the patients, more electrode contacts were implanted in
the non-epileptogenic than epileptogenic regions. This fact is
reflected in a smaller number of EZ trials than the non-EZ trials,
giving rise to the problems with the statistics of the applied
classification methods (and hence, the subsequent learning by
machine learning models).

Among the existing resampling techniques to tackle
such class imbalance problems, we selected five methods of
oversampling and five methods of undersampling and compared
the performance of classifiers with respect to the original dataset.

The oversampling methods are based on the creation of a new
bigger dataset, obtained by replicating or creating new samples,
usually from the minority class:

- Adaptive Synthetic Sampling (ADASYN). ADASYN generates
data considering a weighted distribution for different minority

class examples, where more synthetic data are generated for
minority class examples that are harder to learn comparedwith
those easier to learn (He et al., 2008).

- Adjusting the direction of the synthetic minority class example
(ADOMS). ADOMS generates positive data instances from
other instances in the original dataset selecting k as the nearest
neighbors and using them to perform arithmetical operations
to generate the new instance by principal component analysis
(PCA) (Tang and Chen, 2008).

- Random oversampling (ROS). ROS generates minority class
instances randomly (Batista et al., 2004).

- Selective Pre-processing for Imbalanced Data (SPIDER).
SPIDER oversamples instances from the minority class that
are difficult to learn and, at the same time, filters the examples
from the majority class which are also difficult to learn
(Stefanowski and Wilk, 2008).

- Borderline-Synthetic Monitoring Oversampling Technique
(bSMOTE). The bSMOTE generates positive data
instances from other instances in the original dataset
selecting k as the nearest neighbors and using them to
perform the arithmetical operations to generate the new
instance (Han et al., 2005).

The undersampling methods are based on the reduction of
the original dataset by eliminating samples, usually form the
majority class:

- Condensed Nearest Neighbor + Tomek’s modification of
Condensed Nearest Neighbor (CNNTL). CNNTL applies the
CNNmethod and the Tomek Linksmethod in a chain to delete
the instances that lead us to misclassify new instances in the
imbalanced domains (Batista et al., 2004).

- Neighborhood Cleaning Rule (NCL). NCL finds a subset S of
the training set T applying the neighborhood cleaning rule of
examples (Laurikkala, 2001).

- One Side Selection (OSS). OSS finds a subset S of the training
set T applying the OSS of examples (Kubat andMatwin, 1997).

- Random Undersampling (RUS). RUS deletes the majority of
class data instances randomly (Batista et al., 2004).
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- Undersampling based on clustering (SBC). After dividing
all the training samples into some clusters, SBC selects a
suitable number of majority class samples from each cluster by
considering the ratio of the number of majority class samples
to the number of minority class samples in the cluster (Yen
and Lee, 2006).

For both oversampling and undersampling methods, the default
parameters were used. The corresponding parameters set can be
found in the method library of KEEL software (UGR Granada,
Spain) (Alcalá-Fdez et al., 2011).

Classification
To classify and compare the different resampled datasets, 10
different machine learning algorithms, belonging to the family
of supervised classification, and most used in the contest of
neurophysiological signal processing, were applied as follows:

1. Decision tree (DT): coarse tree, whose maximum number
of branch points is set to 4. The method adopts the
Gini’s diversity index as the split criterion and envisages a
pruning procedure.

2. Discriminant analysis (DA): creates non-linear boundaries
between the classes (quadratic discriminant analysis).

3. Logistic regression (LR).
4. Naïve Bayes (NB): the method supports continuous attributes

by assuming a Gaussian distribution (Gaussian Naïve Bayes).
5. Support vector machine (SVM): characterized by coarse

distinctions between the classes, with kernel scale set to 4
√
P,

where P is the number of predictors (Coarse Gaussian SVM).
6. KNN (K-nearest neighbors): where we set the number of

neighbors to 100 (Coarse distinctions between classes) and
used the Euclidean distance metric (coarse KNN).

7. Boosted Ensemble (EnsBO): ensemble classifier which uses
the meta-algorithm AdaBoost (Freund and Schapire, 1999).

8. Bagged Ensemble (EnsBA), Random forest Bag, with DT
learners. This implementation uses Breiman’s “random forest”
algorithm (Breiman, 2001).

9. Discriminant Analysis Ensemble (EnsDA): combines different
feature subsets to improve the classification performance
(subspace ensemble), and uses Discriminant learners.

10. KNN ensemble (EnsKNN): Subspace ensemble with Nearest
Neighbor learners.

During the training phase, the validation step was performed
through a 5-fold cross-validation approach. For all the considered
methods, default parameters were used. The corresponding
parameters set can be found in the Matlab classification learner
toolbox specification.

Ensemble Methods for Imbalanced Domain
Since the main objective of the study was to compare the effect of
different resampling techniques on the classifier performances,
in the previous section we described both the standard and
classical ensemble classifiers, with the resampling procedure
applied before the classification.

However, in the past years, ensemble-based classifiers have
been considered a suitable approach in the imbalanced domain,

leading to the implementation of specific modification of
the ensemble algorithm, in which the data rebalancing pre-
processing is integrated into the ensemble algorithm and done
before the learning stage of each classifier of the ensemble
(Chawla et al., 2003; Seiffert et al., 2010). For this reason,
we also tested six of these approaches, three belonging to
boosting (methods 1–2–3) and three to bagging (methods 4–5–
6) approach:

1. DATABoost: it combines the AdaBoost algorithm with a data
generation strategy. It first identifies hard examples (seeds)
and then carries out a rebalance process, always for both the
classes (Guo and Viktor, 2004).

2. RUSBoost: multi-class AdaBoost with RUS in each iteration
(Seiffert et al., 2010).

3. SMOTEBoost: multiclass AdaBoost with SMOTE in each
operation (Chawla et al., 2003).

4. OVERBag: bagging with oversampling of the minority class
(Wang and Yao, 2009).

5. SMOTEBag: bagging where SMOTE quantity of each bag
varies (Wang and Yao, 2009).

6. UnderBag: bagging with undersampling of the majority class
(Barandela et al., 2003b).

Performances Metrics
In common practice, accuracy is the most used measure to
assess classifier performance. However, since it does not allow to
distinguish between the number of correctly classified instances
of the two different classes, it can lead to an erroneous conclusion
when applied in the context of imbalanced datasets.

To assess and compare the performances of the classifiers, we
used the following four metrics, which have been proven to be
suitable for the imbalanced domain (Bekkar et al., 2013; López
et al., 2013; Fernández et al., 2018):

AUC =
1+ TPr + FPr

2

Fm =
(1+ β2)(PPV · TPr)

β2 · PPV + TPr)

GMean =
√

TP

TP + FN
·

TN

FP + TN

BalACC =
TPr + TNr

2

Where TPr is the true positive rate (or sensitivity), TNr is the
true negative rate (or specificity), and PPV is the positive predicted
value, respectively, defined as:

TPr =
TP

TP + FN

TNr =
TN

TN + FP

PPV =
TP

TP + FP
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FIGURE 2 | Comparison of classifier performances (mean and SD values), among the different oversampling procedures, in terms of indices Area under the ROC

curve (AUC) (A), F-measure (Fm) (B) Geometric Mean (Gmean) (C), and Balanced Accuracy (BalACC) (D). X-axis: classifiers applied; Y-axis: resampling techniques.

For ease of understanding, the colormap spans from minimum to maximum values of each specific index. As shown in Table 2 and Supplementary Tables 2–5 for

statistical comparisons among these values.

Note that TP, TN, FP, and FN stay for true positives, true
negatives, false positives, and false negatives, respectively. For Fm
we used β = 1, to assign equal importance to both TP and PPV.

All the analyses were performed using the KEEL software
(Alcalá-Fdez et al., 2011) and the Matlab classification
learner toolbox.

Statistical Analysis
To compare the different resampling techniques, Friedman’s test
was applied to the four performances metrics AUC, Fm, Gmean,
and BalACC (Friedman, 1937). When a significant difference
among the group was found, Shaffer’s post-hoc test was applied
for multiple comparisons (Shaffer, 1986). The alpha level for

statistical significance was set at 0.05, and the final adjusted
p-values are used for the results. All the statistical comparisons
were performed using SPSS (IBM Corp. Version 26.0. Armonk,
NY, USA) and KEEL software.

Data are available from the corresponding authors
upon request.

RESULTS

Oversampling
The average predicted performances in terms of AUC, Fm,
Gmean, and BalACC are shown in Figure 2. For all 10
classifiers, the statistical results of the Friedman’s Test and related
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TABLE 3 | Friedman’s and post-hoc Shaffer’s test for the oversampling techniques applied to the four performance measures: Area under the ROC Curve (AUC),

F-measure (Fm), Geometric Mean (Gmean), and Balanced Accuracy (BalACC).

Oversampling DT DA LR NB SVM KNN EnsBO EnsBA EnsDA EnsKNN

Original vs. ADASYN AUC – – – –

Fm – – – –

Gmean – – – – – – – – –

BalACC – – – – – – – – – –

Original vs. ADOMS AUC – + –

Fm – – –

Gmean – – – – – –

BalACC – – – – – – –

Original vs. ROS AUC – –

Fm – – – – – – –

Gmean – – – – – – –

BalACC – – – – – – – –

Original vs. SPIDER AUC –

Fm – – – – – – –

Gmean –

BalACC – –

Original vs. bSMOTE AUC – –

Fm – – – – – –

Gmean – – – – – – – – –

BalACC – – – – – – – –

ADASYN vs. ADOMS AUC +

Fm

Gmean + +

BalACC + +

ADASYN vs. ROS AUC

Fm +

Gmean + +

BalACC + +

ADASYN vs. SPIDER AUC

Fm

Gmean + + +

BalACC + + +

ADASYN vs. bSMOTE AUC

Fm

Gmean

BalACC

ADOMS vs. ROS AUC – – +

Fm –

Gmean – +

BalACC – +

ADOMS vs. SPIDER AUC – –

Fm –

Gmean + + +

BalACC + + – +

ADOMS vs. bSMOTE AUC

Fm

Gmean –

BalACC –

(Continued)
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TABLE 3 | Continued

Oversampling DT DA LR NB SVM KNN EnsBO EnsBA EnsDA EnsKNN

ROS vs. SPIDER AUC

Fm

Gmean + +

BalACC + +

ROS vs. bSMOTE AUC –

Fm

Gmean – –

BalACC –

SPIDER vs. bSMOTE AUC

Fm

Gmean

BalACC

The 10 columns refer to the 10 classifiers models. The comparisons showing significant results are indicated with a “–” sign when the first algorithm (of the two compared in each row)

was lower or with a “+” sign when it was higher than the second one. The rows without significant differences are not reported. Complete results with the p-values can be found in

Supplementary Tables 3–6.

Shaffer’s post-hoc comparisons for AUC (a), Fm (b), Gmean
(c), and BalACC (d) are shown in Table 3. Shaffer’s post-hoc
comparisons have been indicated only when Friedman’s test
resulted significantly. The sign “–” (respectively, “+”) indicates
that the first algorithm has a lower (higher) value than the
second one.

• The area under the ROC curve: Friedman’s test revealed

significant differences among the pre-processing techniques

only in five of the classifiers tested (DT, SVM, Ens_BO,

Ens_BA, and Ens_KNN). For the two standard classifiers (DT

and SVM), the post-hoc comparisons revealed differences only

with respect to the original datasets, while no differences were

present among the five oversampling techniques. Interestingly,

for three of the four classical ensemble classifiers, none

of the resampling techniques performed better than the
original dataset. On the contrary, the ADOMS approach
showed significantly lower AUC values than the other
methods in both boosted and bagged ensemble classifiers.
In the KNN ensemble, both original and ROS datasets
reported the lowest performances (as shown in Table 3 and
Supplementary Table 2).

• F-measure: the significant differences have been revealed in 8
out of the 10 classifiers (DT, LR, SVM, KNN, EnsBO, EnsBA,
EnsDA, and EnsKNN). The post-hoc comparisons showed the
lower performance of the original dataset with respect to all
resampling procedures in the six standard classifiers. In the
ensemble both original and ADOMS had significantly lower
Fm values than the other algorithm ms (as shown in Table 3

and Supplementary Table 3).
• Geometric Mean: this metric exhibited more differences

among the considered resampling approaches. All the
classifiers except LR showed significant differences among the
rebalancing approaches. In the standard classifiers and the
EnsDA, the algorithmADASYN, ADOMS, ROS, and bSMOTE
performed better than both the original and SPIDER dataset.

As for Fm, in Boosted and Bagged and KNN Ensemble
ADOMS algorithm reported the lowest performance (as
shown in Table 3 and Supplementary Table 4).

• Balanced Accuracy: significant differences among the different
resampling algorithms emerged for all the 10 classifiers.
According to Shaffer’s post-hoc analysis, ADASYN, ADOMS,
ROS, and bSMOTE reported better performances than the
original and SPIDER datasets in the standard classifiers. In
the EnsBO and EnsBA, no differences were found between
the original and ADOMS data set, which performed worse
than the other resampling procedures. In the EnsDA classifier,
the resampling algorithms ADASYN, ADOMS, ROS, and
bSMOTE showed higher BalACC than the original and
SPIDER dataset. In EnsKNN classifier, showed similar results
than EnsDA, except for ROS, which reported BalACC
comparable with original and SPIDER (as shown in Table 3

and Supplementary Table 5).

Undersampling
The average predicted performances of undersampling
procedures in terms of AUC, Fm, Gmean, and BalACC are
shown in Figure 3. For all the 10 classifiers, the statistical
results of the Friedman’s Test and related Shaffer’s post-hoc
comparisons for AUC (a), Fm (b), Gmean, (c), and BalACC
(d) are shown in Table 4, respectively. Shaffer’s post-hoc
comparisons have been indicated only when Friedman’s Test
resulted significantly; The sign “–” (respectively “+”) indicates
that the first algorithm has a lower (higher) value than the
second one.

• The area under the ROC curve: significant differences among
the pre-processing techniques are found in five of the
classifiers tested (DT, SVM, KNN, EnsBA, and EnsKNN). In
the DT classifier, all undersampling algorithms performed
equally and better than the original one; in SVM, RUS,
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FIGURE 3 | Comparison of classifier performances (mean and SD), among the different undersampling procedures, in terms of indices AUC (A), Fm (B), Gmean (C),

and BalACC (D). X-axis: classifiers applied; Y-axis: resampling techniques. For ease of understanding, the colormap spans from minimum to maximum values of each

specific index. As shown in Table 3 and Supplementary Tables 6–9 for statistical comparisons among these values.

and CNNTL performed better than the others, and in KNN
only RUS showed improved AUC performances with respect
to the original and all the other resampling techniques. In
EnsBA and EnsKNN, significantly improved performances
were achieved by NCL, RUS, and SBC (as shown in Table 4

and Supplementary Table 6).
• F-measure: Friedman’s test revealed significant differences in 9

out of the 10 classifiers (all except NB). For standard classifiers,
post-hoc comparisons showed the lower performance of the
original dataset with respect to all resampling procedures
except for SBC in DT classifier, NCL in SVM and KNN, and
NCL, OSS, and SBC in LR classifier. As well as in standard
classifiers, also in all the ensembles, the best performances were

achieved by RUS, followed by the CNNTL algorithm (as shown
in Table 4 and Supplementary Table 7).

• Geometric Mean showed significant differences among the
considered approaches for all the classifiers, proving to be
more suited than AUC and Fm in capturing the differences
among the resampling approaches. RUS, SBC, and CNNTL
showed the highest performances, with significantly higher
Gmean than the original dataset in all the classifiers except NB.
Moreover, RUS indicated significantly higher performances
than NCL and OSS (Table 4 and Supplementary Table 8).

• Balanced Accuracy showed very similar patterns with respect
to Gmean, denoting differences for all the classifiers.
According to Shaffer’s post-hoc analysis, CNNTL, RUS,

Frontiers in Neuroinformatics | www.frontiersin.org 10 November 2021 | Volume 15 | Article 715421

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Varotto et al. Re-sampling Techniques in Epileptic Intracranial EEG

and SBC perform significantly better than the original
dataset and the NCL and OSS resampling approaches,
being RUS the best algorithms (as shown in Table 4

and Supplementary Table 9).

Ensemble Methods for Imbalanced Domain
To compare the ensemble methods, we considered the two
indices Gmean and BalACC since they have been shown to better
capture the differences among the algorithms, as reported in the
previous section.

Figure 4 shows the average ranking value for each of the
proposed ensemble approaches, for both Gmean and BalACC.
Corresponding results according to post-hoc Shaffer’s test,
comparing the seven approaches (original dataset and six
ensembles) can be found inTable 5. According to Friedman’s test,
both the measures indicated significant differences among these
techniques (Gmean: p < 0.00001; BalACC: p < 0.00001). A post-
hoc analysis pointed out that DATABoost and SMOTEBag did not
improve the performances with respect to the original dataset,
and that SMOTEBoost, OVERBag showed higher BalACC than
the original data but no differences in terms of Gmean. On the
contrary, RUSBoost and UNDERBag showed significantly better
performances than all the other algorithms, being UNDERBag
the best one (Table 5).

Since in the previous section we used classical ensemble
classifiers combined with a rebalancing pre-processing step,
we also compared the one with better performances (EnsDA,
after ADASYN and RUS resampling) with the best algorithm
of the modified ensemble family UNDERBag. Interestingly,
EnsDA, with both ADASYN and RUS pre-processing,
showed significantly higher Gmean and BalACC than the
UNDER_Ba approach (p < 0.00519 for ADASYN+Ens_DA vs.
UNDERBag, and p< 0.00104 for RUS+Ens_DA vs. UNDERBag,
for both Gmean and BalACC). Figure 5 represents the
comparison among these three methods, expressed in terms of
ranking values.

Sensitivity and Specificity
To clarify the effective use of the proposed approach to
EZ identification, we reported sensitivity and specificity for
the different techniques tested in the study. Since ensemble
approaches showed significantly lower performances than

resampling in terms of performances metrics (as indicated in

the previous paragraph), only the sensitivity and specificity of

the latter were further analyzed. Figure 6 shows the boxplots

indicating the values of sensitivity (full-color boxes) and

specificity (horizontal lines boxes) for the original dataset

compared with the five oversampling (Figure 6A) and the five

undersampling approaches (Figure 6B). Each box represents the
variability among the 10 classification models. All sensitivity

and specificity values are reported in Table 6. Such results
confirmed the main evidence obtained by the other performance
metrics: (i) original data were not able to provide a good
classification, since all the models tended to classify the whole
set of leads as non-EZ (sensitivity ≈ 0; specificity ≈ 1),
confirming the biased classification toward the majority non-
EZ class; (ii) oversampling improved classification performances,

especially in terms of sensitivity. The Adasyn method provided
the highest combination of both values (sensitivity and specificity
>0.7) and the lowest variability of performances among the
classification models. The ADOMS method showed average
performances comparable with ADASYN, but much more
variability with respect to the model choice. The SPIDER
method was the least effective approach to improve the
performances; (iii) Some undersampling approaches improved
the classification performances, but with a strong variability
among the different methods. NCL and OSS show results
comparable to the original dataset. The RUS method provided
the highest values of both sensitivity and specificity, comparable
with the ADASYN approach. Interestingly, the SBC showed the
highest sensibility values (≈0.9), even if associated with a less
balanced specificity.

Figure 7 shows the visualization of the surgical 3D scene for a
representative patient (pt2), such as an indication of the resected
zone (blue area), true EZ and non-EZ leads, and the EZ and
non-EZ classification provided by the RUS+ EnsDA method.

DISCUSSION

Machine learning approaches are being increasingly applied to
the field of epilepsy, and specifically in the different datasets
from neurophysiological recordings (Abbasi and Goldenholz,
2019). In this context, it is quite common to cope with
the imbalanced datasets characterized by uneven distribution
between majority and minority classes, which can lead to worse
classification performances.

This is the case of the EZ localization in the pre-surgical
planning to achieve seizure freedom after surgical resection of
the EZ. One assessed clinical practice is the exploration through
intracranial EEG recordings (SEEG) (Cardinale et al., 2019)
combined with the visual analysis and advanced signal processing
methods able to extract quantitative indexes to support the
correct EZ localization (Bartolomei et al., 2017).

Intentionally, to sample a wide region of the epileptic brain,
the explored brain regions are much wider than the true EZ,
thus resulting in an imbalanced class distribution between EZ
and non-EZ contacts, with the EZ being the most important class
to be correctly identified to reduce or remove seizures, being
the minority class. This led the classifier to be biased toward the
majority (non-EZ) class.

Starting from the evidence that network analysis of interictal
SEEG recordings could be very useful in support of the EZ
localization (Varotto et al., 2012; Vlachos et al., 2017; Lagarde
et al., 2018), in this study we demonstrated that the combination
of supervised machine learning with appropriate data resampling
approach can strongly improve its potential. For this reason,
the idea of applying resampling techniques in the field of EZ
localization should be taken into consideration.

At present, no study investigated the effect of imbalance
domains on the performance of EZ localization methodologies.
The previous studies demonstrated that the application of
rebalancing techniques could strongly improve the classification
of EEG signals for epilepsy diagnosis (Haldar et al., 2019; Kaur
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TABLE 4 | Friedman’s and post-hoc Shaffer’s test for the undersampling techniques applied to the four performance measures: AUC, Fm, Gmean, and BalACC.

Undersampling DT DA LR NB SVM KNN EnsBO EnsBA EnsDA EnsKNN

Original vs. CNNTL AUC – –

Fm – – – – – – –

Gmean – – – – – – – – –

BalACC – – – – – – – – –

Original vs. NCL AUC –

Fm – – – –

Gmean

BalACC

Original vs. OSS AUC –

Fm – – – –

Gmean

BalACC

Original vs. RUS AUC – – – –

Fm – – – – – – – –

Gmean – – – – – – – – –

BalACC – – – – – – – – –

Original vs. SBC AUC – –

Fm – – –

Gmean – – – – – – – –

BalACC – – – – – – – –

CNNTL vs. NCL AUC + – –

Fm + + –

Gmean + + + + +

BalACC + + +

CNNTL vs. OSS AUC

Fm

Gmean + + + + +

BalACC + + + + + +

CNNTL vs. RUS AUC – –

Fm

Gmean

BalACC

CNNTL vs. SBC AUC – –

Fm +

Gmean

BalACC

NCL vs. OSS AUC + +

Fm

Gmean

BalACC

NCL vs. RUS AUC –

Fm – – –

Gmean – – – – – – – –

BalACC – – – – – – – –

NCL vs. SBC AUC

Fm

Gmean

BalACC –

(Continued)
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TABLE 4 | Continued

Undersampling DT DA LR NB SVM KNN EnsBO EnsBA EnsDA EnsKNN

OSS vs. RUS AUC – –

Fm

Gmean – – – – – – – – –

BalACC – – – – – – – – –

OSS vs. SBC AUC – –

Fm

Gmean

BalACC

RUS vs. SBC AUC

Fm +

Gmean

BalACC

The 10 columns refer to the 10 classifiers models. The comparisons showing significant results are indicated with a “–” sign when the first algorithm (of the two compared in each row)

was lower or with a “+” sign when it was higher than the second one. The rows without significant differences are not reported. Complete results with the p-values can be found in

Supplementary Tables 3–6.

FIGURE 4 | Comparison of performances among the original dataset (blue bars) and six modified ensemble approaches for the imbalanced domain, in terms of the

ranking (y-axis) of Gmean and BalACC. Lower-ranking values indicate better performances. As shown in Table 4, for the results of statistical comparisons.

et al., 2020) and automatic seizure detection (Cosgun et al.,
2019; Romaissa et al., 2019; Masum et al., 2020). However,
in most of them, the well-known and assessed resampling
techniques belonging to the SMOTE family were applied,
and systematic comparison with other possible approaches
was missing.

In this study, we compared five oversampling and five
undersampling procedures and tested the resulting rebalanced
datasets with 10 different machine learning classifiers. Moreover,
we also tested six specific ensemble methods properly modified

for imbalanced domain and belonging to data variation-
based ensemble.

Our study focuses on identifying the best resampling and
classification approach to support the classification of brain
regions as EZ or non-EZ, using the indexes derived from
connectivity and graph-theory analysis of interictal SEEG
recording as features. The selection of the nine graph-theory-
based indexes used as input features of the classifiers was
based on the preliminary analysis we performed, showing that
the combination of these indexes was the most appropriate
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TABLE 5 | Shaffer’s test for the ensemble approaches for the imbalance domain.

Ensemble AUC Fm Gmean BalACC

Original vs. DATABoost – 0.000 – 0.014 1.895 1.285

Original vs. RUSBoost 2.344 0.789 – 0.000 – 0.000

Original vs. SMOTEBoost 0.165 0.423 0.297 – 0.034

Original vs. OVERBag 0.555 1.285 0.106 – 0.005

Original vs. SMOTEBag – 0.040 – 0.006 1.895 0.143

Original vs. UNDERBag 2.344 – 0.000 – 0.000 – 0.000

DATABoost vs. RUSBoost + 0.000 0.789 – 0.000 – 0.001

DATABoost vs. SMOTEBoost 0.555 1.285 0.251 0.491

DATABoost vs. OVERBag 0.218 0.372 0.078 0.199

DATABoost vs. SMOTEBag 1.499 1.814 1.895 1.285

DATABoost vs. UNDERBag + 0.000 0.298 – 0.000 – 0.000

RUSBoost vs. SMOTEBoost 0.165 1.814 0.297 0.205

RUSBoost vs. OVERBag 0.555 1.814 0.549 0.549

RUSBoost vs. SMOTEBag + 0.040 0.701 + 0.005 + 0.049

RUSBoost vs. UNDERBag 2.344 – 0.002 1.895 1.406

SMOTEBoost vs. OVERBag 2.344 1.516 1.895 1.406

SMOTEBoost vs. SMOTEBag 2.344 1.031 0.974 1.406

SMOTEBoost vs. UNDERBag – 0.024 – 0.006 0.056 – 0.034

OVERBag vs. SMOTEBag 1.663 0.298 0.491 1.285

OVERBag vs. UNDERBag 0.091 – 0.000 0.143 0.143

SMOTEBag vs. UNDERBag – 0.003 0.423 – 0.000 – 0.005

Red color indicates the p-values with significant differences according to Shaffer’s post-hoc (p < 0.05); the sign “–” (respectively “+”) indicates that the first algorithm has a lower (higher)

value than the second one.

to achieve the best EZ classification. In the contest of EZ
localization, despite the early application of several other signal
processing approaches for feature extraction, such as working in
the frequency domain or by non-linear analysis, network analysis
started only recently to be employed based on the evidence that
focal epilepsy is a network disease. However, most of these recent
network studies normally focus only on the connectivity analysis
that is rarely combined with the pre-processing approaches,
due to the huge amount of data to be processed. For
this reason, in this study, we mainly focused on presenting
pre-processing, in combination with a few of such feature
extraction and connectivity measures in the literature, to provide
evidence of and support for a proper pre-processing method in
this context.

Regarding oversampling, all five approaches reported
improved performances with respect to the original dataset.
The differences among the five oversampling approaches varied
according to the considered classifiers.

Adaptive Synthetic Sampling resulted to be the most robust
approach among the classifiers. ADOMS was the less robust and
most sensitive to the choice of classifier, being comparable or
even slightly better than ADASYN in LR, SVM, KNN, EnsDA,
and EnsKNN, while as bad as the original dataset in DA, EnsBO,
and EnsBA. SPIDER was the least effective, with performances
significantly worse than the other approaches and comparable
with the original dataset for some classifiers, especially the
classical ensemble family.

Regarding undersampling, all the approaches appeared to be
less influenced by the classifier choice than the oversampling.

Two of the proposed methods, NCL and OSS, did not improve
the classification performances with respect to the original data.
The other approaches were significantly better than original data,
with RUS, the simplest of the proposed methods, being the
best one.

Interestingly RUS showed higher, even not significant,
performances than the best oversampling approach, ADASYN.

The resampling technique is not the only family to cope with
the imbalanced domain. A wide number of approaches exist
to deal with this problem, which can be mainly categorized
as data-level or algorithmic-level approaches (López et al.,
2013). Rebalancing belongs to the data-level approaches, in
which data are pre-processed before the classification (Lee,
2014). On the contrary, in the algorithmic-level ones, the
classification algorithm is modified to deal with the imbalanced
nature (Barandela et al., 2003a). The cost-sensitive approaches
combine both the data and algorithmic levels, by assigning
different misclassification costs for the two classes andmodify the
classification algorithm to minimize the higher misclassification
cost (Domingos, 1999; Zhou and Liu, 2006; Sun et al., 2007).

The main limitation of cost-sensitive approaches is the need
of defining the correct misclassification costs for the two classes,
which may not be so clear in many clinical problems, as in
our case.

In this paper, we focused on the rebalancing techniques since
they can be quite easily implemented, and are independent of
the underlying classifiers, which can be an advantage in problems
where the selection of the most appropriate classifier is not clear
(Batista et al., 2004; Batuwita and Palade, 2010).
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FIGURE 5 | A final comparison of performances among the best approach for each of the resampling families considered: (1) Oversampling: ADASYN + EnsDA

[Adaptive Synthetic Sampling (ADASYN) combined with “classical” ensemble approach EnsembleDA; orange bars]; (2) Undersampling: RUS + EnsDA [Random

Undersampling (RUS) combined with “classical” ensemble approach EnsembleDA—blue bars]; (3) Specific ensemble learner for imbalanced domain: UNDERBagging

(violet bars). Y-axis represents ranking values, for both the Gmean and BalACC. The lower-ranking values indicate better performances. *indicates significant

differences according to Shaffer’s post-hoc analysis.

In addition, several modifications of ensemble methods for
the imbalanced domain have been proposed (Rokach, 2010),
both working at data-level approach, through the data pre-
processing before each step of the ensemble classification
(Breiman, 1996; Freund and Schapire, 1997; Kuncheva, 2014),
or with algorithmic-level cost-sensitive modification (Sun et al.,
2007).

As part of the data-level approaches, we considered and
tested, in this study, six different data-level ensemble algorithms.
As reported in a previous study (Galar et al., 2012), we
found that the simplest algorithms, UNDERBag and RUSBoost
emerged as the best ensemble methods, while offering lower
computation costs.

Interestingly, when compared these results with those
obtained by a standard single-step resampling approach
combined with a classical ensemble algorithm, we found
significantly higher performances in the latter family, in
particular for the combination (ADASYN + EnsDA and RUS
+ EnsDA).

This highlights again that the simplest algorithms guarantee
high performances, and that their very low computational
complexity can be a strong advantage toward routine
clinical applications.

It is important to notice that the performances of the
different resampling techniques are strongly influenced by the
choice of the classifier. This highlights that the selection of the
resampling approach for a specific dataset should always take into
consideration the choice of the classifier.

Regarding the measure to assess and compare the
performances, in this study we applied four measures considered
most appropriate to deal with imbalanced classification: AUC,
Fm, Gmean, and BalACC (Bekkar et al., 2013). Several studies
already highlighted that the choice of the proper evaluation
measures for model assessment is one of the most complex
issues faced in the imbalanced data learning context and how
the application of more standard measures, such as accuracy,
could lead to erroneous interpretations and biased classification
(Weiss, 2004).
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FIGURE 6 | Boxplot representing the values of sensitivity (full-color bars) and specificity (horizontal lines bars) for the original dataset and the five oversampling (A) and

undersampling approaches (B). Each box represents the variability among the 10 classification models. The middle line indicates the median value; upper and lower

limits of the box indicate the first and third quartile; external points indicate outliers; x indicates the mean values. The corresponding values can be found in Table 6.
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FIGURE 7 | Visualization of the surgical 3D scene for a representative patient (pt2). The Blue area indicates the final resected zone. Red and green dot points indicate

leads classified as epileptogenic zone (EZ) A, anterior; L, left; P, posterior; R, right.
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TABLE 6 | The Sensitivity (Sens) and Specificity (Spec) values for oversampling and undersampling techniques.

Oversampling

Orig Adasyn Adoms ROS Spider2 bSmote

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

DT 0.00 1.00 0.75 0.63 0.78 0.54 0.63 0.76 0.49 0.83 0.59 0.75

DA 0.30 0.90 0.64 0.74 0.49 0.81 0.56 0.79 0.47 0.83 0.58 0.78

LR 0.08 0.98 0.73 0.71 0.72 0.74 0.68 0.74 0.40 0.89 0.61 0.79

NB 0.49 0.81 0.68 0.68 0.67 0.69 0.67 0.69 0.64 0.71 0.62 0.73

SVM 0.00 1.00 0.73 0.68 0.75 0.70 0.69 0.72 0.35 0.91 0.60 0.80

KNN 0.00 1.00 0.68 0.67 0.68 0.70 0.63 0.71 0.40 0.87 0.59 0.75

EnsBO 0.06 0.99 0.85 0.50 0.99 0.08 0.67 0.72 0.48 0.85 0.83 0.47

EnsBA 0.10 0.97 0.55 0.68 0.99 0.04 0.08 0.98 0.12 0.96 0.78 0.41

EnsDA 0.09 0.98 0.73 0.71 0.70 0.73 0.69 0.74 0.38 0.90 0.61 0.78

EnsKNN 0.03 0.99 0.48 0.77 0.35 0.85 0.03 0.99 0.07 0.98 0.26 0.90

Mean 0.12 0.96 0.68 0.68 0.71 0.59 0.53 0.78 0.38 0.87 0.61 0.72

St. Dev 0.16 0.06 0.11 0.07 0.20 0.29 0.26 0.11 0.17 0.08 0.15 0.15

Undersampling

Orig CNNTL NCL OSS RUS SBC

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

DT 0.00 1.00 0.61 0.74 0.35 0.87 0.28 0.91 0.71 0.71 0.92 0.39

DA 0.30 0.90 0.51 0.83 0.42 0.86 0.30 0.91 0.60 0.78 0.78 0.59

LR 0.08 0.98 0.63 0.75 0.26 0.91 0.28 0.92 0.71 0.74 0.91 0.45

NB 0.49 0.81 0.61 0.74 0.58 0.76 0.48 0.83 0.67 0.69 0.81 0.54

SVM 0.00 1.00 0.69 0.72 0.12 0.96 0.19 0.96 0.75 0.70 0.92 0.41

KNN 0.00 1.00 0.67 0.74 0.17 0.95 0.19 0.95 0.74 0.70 0.93 0.39

EnsBO 0.06 0.99 0.64 0.75 0.29 0.91 0.26 0.93 0.73 0.70 0.92 0.41

EnsBA 0.10 0.97 0.53 0.74 0.36 0.90 0.31 0.88 0.74 0.73 0.90 0.43

EnsDA 0.09 0.98 0.66 0.74 0.29 0.91 0.22 0.94 0.71 0.74 0.90 0.45

EnsKNN 0.03 0.99 0.60 0.62 0.25 0.93 0.31 0.83 0.74 0.68 0.89 0.40

Mean 0.12 0.96 0.62 0.74 0.31 0.90 0.28 0.91 0.71 0.72 0.89 0.45

St. Dev 0.16 0.06 0.06 0.05 0.13 0.06 0.08 0.05 0.05 0.03 0.05 0.07

Single values for each of the 10 classifier models, as well as mean and standard deviation (St.Dev.) are indicated.

These four measures provided complementary results and
to properly evaluate the performances of different approaches,
it is important to take into account the combination of them,
especially considering which aspect is more important in the
specific problem we are facing. Particularly, in this case, we
noticed that AUC and Fm did not completely capture differences
in the model performances. On the other side, as already
described in another paper (Luque et al., 2019), Gmean and
BalACC appear to be good performance metrics when the
main focus is to maximize sensitivity, without losing too
much specificity.
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oversampling techniques with Gmean measure. Shaffer post-hoc comparisons
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have been indicated only when Friedman test resulted significant (p-values in the

first line). Red color indicates p-values with significant differences according to
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oversampling techniques with AUC measure. Shaffer post-hoc comparisons have
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post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm has

lower (higher) value than the second one.
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undersampling techniques with Fm measure. Shaffer post-hoc comparisons have

been indicated only when Friedman test resulted significant (p-values in the first

line). Red color indicates p-values with significant differences according to shaffer

post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm has

lower (higher) value than the second one.

Supplementary Table 8 | Friedman and post-hoc Shaffer test for the

underampling techniques with Gmean measure. Shaffer post-hoc comparisons

have been indicated only when Friedman test resulted significant (p-values in the

first line). Red color indicates p-values with significant differences according to

shaffer post-hoc (p < 0.05); “–” (respectively “+”) indicates that the first algorithm

has lower (higher) value than the second one.

Supplementary Table 9 | Friedman and post-hoc Shaffer test for the

undersampling techniques with BalACC measure. Shaffer post-hoc comparisons

have been indicated only when Friedman test resulted significant (p-values in the

first line). Red color indicates p-values with significant differences according to
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